1 /**
2   ******************************************************************************
3   * @file    stm32f4xx_hal_rtc.c
4   * @author  MCD Application Team
5   * @brief   RTC HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Real-Time Clock (RTC) peripheral:
8   *           + Initialization and de-initialization functions
9   *           + RTC Calendar (Time and Date) configuration functions
10   *           + RTC Alarms (Alarm A and Alarm B) configuration functions
11   *           + Peripheral Control functions
12   *           + Peripheral State functions
13   *
14   ******************************************************************************
15   * @attention
16   *
17   * Copyright (c) 2016 STMicroelectronics.
18   * All rights reserved.
19   *
20   * This software is licensed under terms that can be found in the LICENSE file
21   * in the root directory of this software component.
22   * If no LICENSE file comes with this software, it is provided AS-IS.
23   *
24   ******************************************************************************
25   @verbatim
26   ==============================================================================
27                ##### RTC and Backup Domain Operating Condition #####
28   ==============================================================================
29   [..] The real-time clock (RTC), the RTC backup registers, and the backup
30        SRAM (BKP SRAM) can be powered from the VBAT voltage when the main
31        VDD supply is powered off.
32        To retain the content of the RTC backup registers, BKP SRAM, and supply
33        the RTC when VDD is turned off, VBAT pin can be connected to an optional
34        standby voltage supplied by a battery or by another source.
35 
36   [..] To allow the RTC operating even when the main digital supply (VDD) is turned
37        off, the VBAT pin powers the following blocks:
38     (#) The RTC
39     (#) The LSE oscillator
40     (#) The BKP SRAM when the low power backup regulator is enabled
41     (#) PC13 to PC15 I/Os, plus PI8 I/O (when available)
42 
43   [..] When the backup domain is supplied by VDD (analog switch connected to VDD),
44        the following pins are available:
45     (#) PC14 and PC15 can be used as either GPIO or LSE pins
46     (#) PC13 can be used as a GPIO or as the RTC_AF1 pin
47     (#) PI8 can be used as a GPIO or as the RTC_AF2 pin
48 
49   [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
50        because VDD is not present), the following pins are available:
51     (#) PC14 and PC15 can be used as LSE pins only
52     (#) PC13 can be used as the RTC_AF1 pin
53     (#) PI8 can be used as the RTC_AF2 pin
54 
55                    ##### Backup Domain Reset #####
56   ==================================================================
57   [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
58        to their reset values.
59        The BKP SRAM is not affected by this reset. The only way to reset the BKP
60        SRAM is through the Flash interface by requesting a protection level
61        change from 1 to 0.
62   [..] A backup domain reset is generated when one of the following events occurs:
63     (#) Software reset, triggered by setting the BDRST bit in the
64         RCC Backup domain control register (RCC_BDCR).
65     (#) VDD or VBAT power on, if both supplies have previously been powered off.
66 
67                    ##### Backup Domain Access #####
68   ==================================================================
69   [..] After reset, the backup domain (RTC registers, RTC backup data registers
70        and BKP SRAM) is protected against possible unwanted write accesses.
71   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
72     (+) Enable the Power Controller (PWR) APB1 interface clock using the
73         __HAL_RCC_PWR_CLK_ENABLE() macro.
74     (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
75     (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() macro.
76     (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
77 
78   ==============================================================================
79                         ##### How to use this driver #####
80   ==============================================================================
81   [..]
82     (+) Enable the RTC domain access (see description in the section above).
83     (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
84         format using the HAL_RTC_Init() function.
85 
86   *** Time and Date configuration ***
87   ===================================
88   [..]
89     (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
90         and HAL_RTC_SetDate() functions.
91     (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate()
92         functions.
93     (+) To manage the RTC summer or winter time change, use the following
94         functions:
95         (++) HAL_RTC_DST_Add1Hour() or HAL_RTC_DST_Sub1Hour to add or subtract
96              1 hour from the calendar time.
97         (++) HAL_RTC_DST_SetStoreOperation() or HAL_RTC_DST_ClearStoreOperation
98              to memorize whether the time change has been performed or not.
99 
100   *** Alarm configuration ***
101   ===========================
102   [..]
103     (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
104         You can also configure the RTC Alarm with interrupt mode using the
105         HAL_RTC_SetAlarm_IT() function.
106     (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
107 
108                   ##### RTC and low power modes #####
109   ==================================================================
110   [..] The MCU can be woken up from a low power mode by an RTC alternate
111        function.
112   [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
113        RTC wakeup, RTC tamper event detection and RTC timestamp event detection.
114        These RTC alternate functions can wake up the system from the Stop and
115        Standby low power modes.
116   [..] The system can also wake up from low power modes without depending
117        on an external interrupt (Auto-wakeup mode), by using the RTC alarm
118        or the RTC wakeup events.
119   [..] The RTC provides a programmable time base for waking up from the
120        Stop or Standby mode at regular intervals.
121        Wakeup from STOP and STANDBY modes is possible only when the RTC clock
122        source is LSE or LSI.
123 
124   *** Callback registration ***
125   =============================================
126   [..]
127   The compilation define  USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
128   allows the user to configure dynamically the driver callbacks.
129   Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
130   [..]
131   Function HAL_RTC_RegisterCallback() allows to register following callbacks:
132     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
133     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
134     (+) TimeStampEventCallback       : RTC Timestamp Event callback.
135     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
136     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
137     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
138     (+) MspInitCallback              : RTC MspInit callback.
139     (+) MspDeInitCallback            : RTC MspDeInit callback.
140   [..]
141   This function takes as parameters the HAL peripheral handle, the Callback ID
142   and a pointer to the user callback function.
143   [..]
144   Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
145   weak function.
146   HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
147   and the Callback ID.
148   This function allows to reset following callbacks:
149     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
150     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
151     (+) TimeStampEventCallback       : RTC Timestamp Event callback.
152     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
153     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
154     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
155     (+) MspInitCallback              : RTC MspInit callback.
156     (+) MspDeInitCallback            : RTC MspDeInit callback.
157   [..]
158   By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
159   all callbacks are set to the corresponding weak functions:
160   examples AlarmAEventCallback(), WakeUpTimerEventCallback().
161   Exception done for MspInit() and MspDeInit() callbacks that are reset to the
162   legacy weak function in the HAL_RTC_Init()/HAL_RTC_DeInit() only
163   when these callbacks are null (not registered beforehand).
164   If not, MspInit() or MspDeInit() are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
165   keep and use the user MspInit()/MspDeInit() callbacks (registered beforehand).
166   [..]
167   Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
168   Exception done MspInit()/MspDeInit() that can be registered/unregistered
169   in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state.
170   Thus registered (user) MspInit()/MspDeInit() callbacks can be used during the
171   Init/DeInit.
172   In that case first register the MspInit()/MspDeInit() user callbacks
173   using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
174   or HAL_RTC_Init() functions.
175   [..]
176   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
177   not defined, the callback registration feature is not available and all
178   callbacks are set to the corresponding weak functions.
179 
180   @endverbatim
181   ******************************************************************************
182   */
183 
184 /* Includes ------------------------------------------------------------------*/
185 #include "stm32f4xx_hal.h"
186 
187 /** @addtogroup STM32F4xx_HAL_Driver
188   * @{
189   */
190 
191 /** @defgroup RTC RTC
192   * @brief    RTC HAL module driver
193   * @{
194   */
195 
196 #ifdef HAL_RTC_MODULE_ENABLED
197 
198 /* Private typedef -----------------------------------------------------------*/
199 /* Private define ------------------------------------------------------------*/
200 /* Private macro -------------------------------------------------------------*/
201 /* Private variables ---------------------------------------------------------*/
202 /* Private function prototypes -----------------------------------------------*/
203 /* Exported functions --------------------------------------------------------*/
204 
205 /** @defgroup RTC_Exported_Functions RTC Exported Functions
206   * @{
207   */
208 
209 /** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions
210   * @brief    Initialization and Configuration functions
211   *
212 @verbatim
213  ===============================================================================
214               ##### Initialization and de-initialization functions #####
215  ===============================================================================
216    [..] This section provides functions allowing to initialize and configure the
217          RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
218          RTC registers Write protection, enter and exit the RTC initialization mode,
219          RTC registers synchronization check and reference clock detection enable.
220          (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
221              It is split into 2 programmable prescalers to minimize power consumption.
222              (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
223              (++) When both prescalers are used, it is recommended to configure the
224                  asynchronous prescaler to a high value to minimize power consumption.
225          (#) All RTC registers are Write protected. Writing to the RTC registers
226              is enabled by writing a key into the Write Protection register, RTC_WPR.
227          (#) To configure the RTC Calendar, user application should enter
228              initialization mode. In this mode, the calendar counter is stopped
229              and its value can be updated. When the initialization sequence is
230              complete, the calendar restarts counting after 4 RTCCLK cycles.
231          (#) To read the calendar through the shadow registers after Calendar
232              initialization, calendar update or after wakeup from low power modes
233              the software must first clear the RSF flag. The software must then
234              wait until it is set again before reading the calendar, which means
235              that the calendar registers have been correctly copied into the
236              RTC_TR and RTC_DR shadow registers. The HAL_RTC_WaitForSynchro() function
237              implements the above software sequence (RSF clear and RSF check).
238 
239 @endverbatim
240   * @{
241   */
242 
243 /**
244   * @brief  Initializes the RTC peripheral
245   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
246   *                the configuration information for RTC.
247   * @retval HAL status
248   */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)249 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
250 {
251   HAL_StatusTypeDef status = HAL_ERROR;
252 
253   /* Check RTC handler validity */
254   if (hrtc == NULL)
255   {
256     return HAL_ERROR;
257   }
258 
259   /* Check the parameters */
260   assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
261   assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
262   assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
263   assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
264   assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
265   assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
266   assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
267 
268 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
269   if (hrtc->State == HAL_RTC_STATE_RESET)
270   {
271     /* Allocate lock resource and initialize it */
272     hrtc->Lock = HAL_UNLOCKED;
273 
274     hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;        /* Legacy weak AlarmAEventCallback      */
275     hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;      /* Legacy weak AlarmBEventCallback      */
276     hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;   /* Legacy weak TimeStampEventCallback   */
277     hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
278     hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;     /* Legacy weak Tamper1EventCallback     */
279 #if defined(RTC_TAMPER2_SUPPORT)
280     hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;     /* Legacy weak Tamper2EventCallback     */
281 #endif /* RTC_TAMPER2_SUPPORT */
282 
283     if (hrtc->MspInitCallback == NULL)
284     {
285       hrtc->MspInitCallback = HAL_RTC_MspInit;
286     }
287     /* Init the low level hardware */
288     hrtc->MspInitCallback(hrtc);
289 
290     if (hrtc->MspDeInitCallback == NULL)
291     {
292       hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
293     }
294   }
295 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
296   if (hrtc->State == HAL_RTC_STATE_RESET)
297   {
298     /* Allocate lock resource and initialize it */
299     hrtc->Lock = HAL_UNLOCKED;
300 
301     /* Initialize RTC MSP */
302     HAL_RTC_MspInit(hrtc);
303   }
304 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
305 
306   /* Set RTC state */
307   hrtc->State = HAL_RTC_STATE_BUSY;
308 
309   /* Check whether the calendar needs to be initialized */
310   if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
311   {
312     /* Disable the write protection for RTC registers */
313     __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
314 
315     /* Enter Initialization mode */
316     status = RTC_EnterInitMode(hrtc);
317 
318     if (status == HAL_OK)
319     {
320       /* Clear RTC_CR FMT, OSEL and POL Bits */
321       hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
322       /* Set RTC_CR register */
323       hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
324 
325       /* Configure the RTC PRER */
326       hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
327       hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
328 
329       /* Exit Initialization mode */
330       status = RTC_ExitInitMode(hrtc);
331     }
332 
333     if (status == HAL_OK)
334     {
335       hrtc->Instance->TAFCR &= (uint32_t)~RTC_OUTPUT_TYPE_PUSHPULL;
336       hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
337     }
338 
339     /* Enable the write protection for RTC registers */
340     __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
341   }
342   else
343   {
344     /* The calendar is already initialized */
345     status = HAL_OK;
346   }
347 
348   if (status == HAL_OK)
349   {
350     hrtc->State = HAL_RTC_STATE_READY;
351   }
352 
353   return status;
354 }
355 
356 /**
357   * @brief  DeInitializes the RTC peripheral
358   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
359   *                the configuration information for RTC.
360   * @note   This function does not reset the RTC Backup Data registers.
361   * @retval HAL status
362   */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)363 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
364 {
365   HAL_StatusTypeDef status = HAL_ERROR;
366 
367   /* Check the parameters */
368   assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
369 
370   /* Set RTC state */
371   hrtc->State = HAL_RTC_STATE_BUSY;
372 
373   /* Disable the write protection for RTC registers */
374   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
375 
376   /* Enter Initialization mode */
377   status = RTC_EnterInitMode(hrtc);
378 
379   if (status == HAL_OK)
380   {
381     /* Reset RTC registers */
382     hrtc->Instance->TR = 0x00000000U;
383     hrtc->Instance->DR = (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0);
384     hrtc->Instance->CR  &= 0x00000000U;
385     hrtc->Instance->WUTR = RTC_WUTR_WUT;
386     hrtc->Instance->PRER = (uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU);
387     hrtc->Instance->CALIBR = 0x00000000U;
388     hrtc->Instance->ALRMAR   = 0x00000000U;
389     hrtc->Instance->ALRMBR   = 0x00000000U;
390     hrtc->Instance->CALR     = 0x00000000U;
391     hrtc->Instance->SHIFTR   = 0x00000000U;
392     hrtc->Instance->ALRMASSR = 0x00000000U;
393     hrtc->Instance->ALRMBSSR = 0x00000000U;
394 
395     /* Exit Initialization mode */
396     status = RTC_ExitInitMode(hrtc);
397   }
398 
399   /* Enable the write protection for RTC registers */
400   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
401 
402   if (status == HAL_OK)
403   {
404     /* Reset Tamper and alternate functions configuration register */
405     hrtc->Instance->TAFCR = 0x00000000U;
406 
407 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
408     if (hrtc->MspDeInitCallback == NULL)
409     {
410       hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
411     }
412 
413     /* DeInit the low level hardware: CLOCK, NVIC.*/
414     hrtc->MspDeInitCallback(hrtc);
415 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
416     /* De-Initialize RTC MSP */
417     HAL_RTC_MspDeInit(hrtc);
418 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
419 
420     hrtc->State = HAL_RTC_STATE_RESET;
421   }
422 
423   /* Release Lock */
424   __HAL_UNLOCK(hrtc);
425 
426   return status;
427 }
428 
429 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
430 /**
431   * @brief  Registers a User RTC Callback
432   *         To be used instead of the weak predefined callback
433   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
434   *                the configuration information for RTC.
435   * @param  CallbackID ID of the callback to be registered
436   *         This parameter can be one of the following values:
437   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
438   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
439   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        Timestamp Event Callback ID
440   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      Wakeup Timer Event Callback ID
441   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
442   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
443   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
444   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
445   * @note   HAL_RTC_TAMPER2_EVENT_CB_ID is not applicable to all devices.
446   * @param  pCallback pointer to the Callback function
447   * @retval HAL status
448   */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)449 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
450 {
451   HAL_StatusTypeDef status = HAL_OK;
452 
453   if (pCallback == NULL)
454   {
455     return HAL_ERROR;
456   }
457 
458   /* Process locked */
459   __HAL_LOCK(hrtc);
460 
461   if (HAL_RTC_STATE_READY == hrtc->State)
462   {
463     switch (CallbackID)
464     {
465       case HAL_RTC_ALARM_A_EVENT_CB_ID :
466         hrtc->AlarmAEventCallback = pCallback;
467         break;
468 
469       case HAL_RTC_ALARM_B_EVENT_CB_ID :
470         hrtc->AlarmBEventCallback = pCallback;
471         break;
472 
473       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
474         hrtc->TimeStampEventCallback = pCallback;
475         break;
476 
477       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
478         hrtc->WakeUpTimerEventCallback = pCallback;
479         break;
480 
481       case HAL_RTC_TAMPER1_EVENT_CB_ID :
482         hrtc->Tamper1EventCallback = pCallback;
483         break;
484 
485 #if defined(RTC_TAMPER2_SUPPORT)
486       case HAL_RTC_TAMPER2_EVENT_CB_ID :
487         hrtc->Tamper2EventCallback = pCallback;
488         break;
489 #endif /* RTC_TAMPER2_SUPPORT */
490 
491       case HAL_RTC_MSPINIT_CB_ID :
492         hrtc->MspInitCallback = pCallback;
493         break;
494 
495       case HAL_RTC_MSPDEINIT_CB_ID :
496         hrtc->MspDeInitCallback = pCallback;
497         break;
498 
499       default :
500         /* Return error status */
501         status =  HAL_ERROR;
502         break;
503     }
504   }
505   else if (HAL_RTC_STATE_RESET == hrtc->State)
506   {
507     switch (CallbackID)
508     {
509       case HAL_RTC_MSPINIT_CB_ID :
510         hrtc->MspInitCallback = pCallback;
511         break;
512 
513       case HAL_RTC_MSPDEINIT_CB_ID :
514         hrtc->MspDeInitCallback = pCallback;
515         break;
516 
517       default :
518         /* Return error status */
519         status =  HAL_ERROR;
520         break;
521     }
522   }
523   else
524   {
525     /* Return error status */
526     status =  HAL_ERROR;
527   }
528 
529   /* Release Lock */
530   __HAL_UNLOCK(hrtc);
531 
532   return status;
533 }
534 
535 /**
536   * @brief  Unregisters an RTC Callback
537   *         RTC callback is redirected to the weak predefined callback
538   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
539   *                the configuration information for RTC.
540   * @param  CallbackID ID of the callback to be unregistered
541   *         This parameter can be one of the following values:
542   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
543   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
544   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        Timestamp Event Callback ID
545   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      Wakeup Timer Event Callback ID
546   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
547   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
548   *          @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
549   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
550   * @note   HAL_RTC_TAMPER2_EVENT_CB_ID is not applicable to all devices.
551   * @retval HAL status
552   */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)553 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
554 {
555   HAL_StatusTypeDef status = HAL_OK;
556 
557   /* Process locked */
558   __HAL_LOCK(hrtc);
559 
560   if (HAL_RTC_STATE_READY == hrtc->State)
561   {
562     switch (CallbackID)
563     {
564       case HAL_RTC_ALARM_A_EVENT_CB_ID :
565         hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;             /* Legacy weak AlarmAEventCallback    */
566         break;
567 
568       case HAL_RTC_ALARM_B_EVENT_CB_ID :
569         hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;           /* Legacy weak AlarmBEventCallback */
570         break;
571 
572       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
573         hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;     /* Legacy weak TimeStampEventCallback    */
574         break;
575 
576       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
577         hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
578         break;
579 
580       case HAL_RTC_TAMPER1_EVENT_CB_ID :
581         hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
582         break;
583 
584 #if defined(RTC_TAMPER2_SUPPORT)
585       case HAL_RTC_TAMPER2_EVENT_CB_ID :
586         hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
587         break;
588 #endif /* RTC_TAMPER2_SUPPORT */
589 
590       case HAL_RTC_MSPINIT_CB_ID :
591         hrtc->MspInitCallback = HAL_RTC_MspInit;
592         break;
593 
594       case HAL_RTC_MSPDEINIT_CB_ID :
595         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
596         break;
597 
598       default :
599         /* Return error status */
600         status =  HAL_ERROR;
601         break;
602     }
603   }
604   else if (HAL_RTC_STATE_RESET == hrtc->State)
605   {
606     switch (CallbackID)
607     {
608       case HAL_RTC_MSPINIT_CB_ID :
609         hrtc->MspInitCallback = HAL_RTC_MspInit;
610         break;
611 
612       case HAL_RTC_MSPDEINIT_CB_ID :
613         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
614         break;
615 
616       default :
617         /* Return error status */
618         status =  HAL_ERROR;
619         break;
620     }
621   }
622   else
623   {
624     /* Return error status */
625     status =  HAL_ERROR;
626   }
627 
628   /* Release Lock */
629   __HAL_UNLOCK(hrtc);
630 
631   return status;
632 }
633 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
634 
635 /**
636   * @brief  Initializes the RTC MSP.
637   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
638   *                the configuration information for RTC.
639   * @retval None
640   */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)641 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
642 {
643   /* Prevent unused argument(s) compilation warning */
644   UNUSED(hrtc);
645 
646   /* NOTE: This function should not be modified, when the callback is needed,
647            the HAL_RTC_MspInit could be implemented in the user file
648    */
649 }
650 
651 /**
652   * @brief  DeInitializes the RTC MSP.
653   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
654   *                the configuration information for RTC.
655   * @retval None
656   */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)657 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
658 {
659   /* Prevent unused argument(s) compilation warning */
660   UNUSED(hrtc);
661 
662   /* NOTE: This function should not be modified, when the callback is needed,
663            the HAL_RTC_MspDeInit could be implemented in the user file
664    */
665 }
666 
667 /**
668   * @}
669   */
670 
671 /** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions
672   * @brief    RTC Time and Date functions
673   *
674 @verbatim
675  ===============================================================================
676                  ##### RTC Time and Date functions #####
677  ===============================================================================
678 
679  [..] This section provides functions allowing to configure Time and Date features
680 
681 @endverbatim
682   * @{
683   */
684 
685 /**
686   * @brief  Sets RTC current time.
687   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
688   *                the configuration information for RTC.
689   * @param  sTime Pointer to Time structure
690   * @note   DayLightSaving and StoreOperation interfaces are deprecated.
691   *         To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions.
692   * @param  Format Specifies the format of the entered parameters.
693   *          This parameter can be one of the following values:
694   *            @arg RTC_FORMAT_BIN: Binary data format
695   *            @arg RTC_FORMAT_BCD: BCD data format
696   * @retval HAL status
697   */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)698 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
699 {
700   uint32_t tmpreg = 0U;
701   HAL_StatusTypeDef status;
702 
703   /* Check the parameters */
704   assert_param(IS_RTC_FORMAT(Format));
705   assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
706   assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
707 
708   /* Process Locked */
709   __HAL_LOCK(hrtc);
710 
711   hrtc->State = HAL_RTC_STATE_BUSY;
712 
713   if (Format == RTC_FORMAT_BIN)
714   {
715     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
716     {
717       assert_param(IS_RTC_HOUR12(sTime->Hours));
718       assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
719     }
720     else
721     {
722       sTime->TimeFormat = 0x00U;
723       assert_param(IS_RTC_HOUR24(sTime->Hours));
724     }
725     assert_param(IS_RTC_MINUTES(sTime->Minutes));
726     assert_param(IS_RTC_SECONDS(sTime->Seconds));
727 
728     tmpreg = (uint32_t)(( (uint32_t)RTC_ByteToBcd2(sTime->Hours)   << RTC_TR_HU_Pos)  | \
729                         ( (uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
730                         ( (uint32_t)RTC_ByteToBcd2(sTime->Seconds))                   | \
731                         (((uint32_t)sTime->TimeFormat)             << RTC_TR_PM_Pos));
732   }
733   else
734   {
735     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
736     {
737       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
738       assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
739     }
740     else
741     {
742       sTime->TimeFormat = 0x00U;
743       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
744     }
745     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
746     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
747     tmpreg = (((uint32_t)(sTime->Hours)      << RTC_TR_HU_Pos)  | \
748               ((uint32_t)(sTime->Minutes)    << RTC_TR_MNU_Pos) | \
749               ((uint32_t) sTime->Seconds)                       | \
750               ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
751   }
752 
753   /* Disable the write protection for RTC registers */
754   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
755 
756   /* Enter Initialization mode */
757   status = RTC_EnterInitMode(hrtc);
758 
759   if (status == HAL_OK)
760   {
761     /* Set the RTC_TR register */
762     hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
763 
764     /* Clear the bits to be configured (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
765     hrtc->Instance->CR &= (uint32_t)~RTC_CR_BKP;
766 
767     /* Configure the RTC_CR register (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
768     hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
769 
770     /* Exit Initialization mode */
771     status = RTC_ExitInitMode(hrtc);
772   }
773 
774   if (status == HAL_OK)
775   {
776     hrtc->State = HAL_RTC_STATE_READY;
777   }
778 
779   /* Enable the write protection for RTC registers */
780   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
781 
782   /* Process Unlocked */
783   __HAL_UNLOCK(hrtc);
784 
785   return status;
786 }
787 
788 /**
789   * @brief  Gets RTC current time.
790   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
791   *                the configuration information for RTC.
792   * @param  sTime Pointer to Time structure
793   * @param  Format Specifies the format of the entered parameters.
794   *          This parameter can be one of the following values:
795   *            @arg RTC_FORMAT_BIN: Binary data format
796   *            @arg RTC_FORMAT_BCD: BCD data format
797   * @note  You can use SubSeconds and SecondFraction (sTime structure fields
798   *        returned) to convert SubSeconds value in second fraction ratio with
799   *        time unit following generic formula:
800   *        Second fraction ratio * time_unit =
801   *           [(SecondFraction - SubSeconds) / (SecondFraction + 1)] * time_unit
802   *        This conversion can be performed only if no shift operation is pending
803   *        (ie. SHFP=0) when PREDIV_S >= SS
804   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
805   *        values in the higher-order calendar shadow registers to ensure
806   *        consistency between the time and date values.
807   *        Reading RTC current time locks the values in calendar shadow registers
808   *        until current date is read to ensure consistency between the time and
809   *        date values.
810   * @retval HAL status
811   */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)812 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
813 {
814   uint32_t tmpreg = 0U;
815 
816   /* Check the parameters */
817   assert_param(IS_RTC_FORMAT(Format));
818 
819   /* Get subseconds value from the corresponding register */
820   sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
821 
822   /* Get SecondFraction structure field from the corresponding register field*/
823   sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
824 
825   /* Get the TR register */
826   tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
827 
828   /* Fill the structure fields with the read parameters */
829   sTime->Hours      = (uint8_t)((tmpreg & (RTC_TR_HT  | RTC_TR_HU))  >> RTC_TR_HU_Pos);
830   sTime->Minutes    = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
831   sTime->Seconds    = (uint8_t)( tmpreg & (RTC_TR_ST  | RTC_TR_SU));
832   sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM))               >> RTC_TR_PM_Pos);
833 
834   /* Check the input parameters format */
835   if (Format == RTC_FORMAT_BIN)
836   {
837     /* Convert the time structure parameters to Binary format */
838     sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
839     sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
840     sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
841   }
842 
843   return HAL_OK;
844 }
845 
846 /**
847   * @brief  Sets RTC current date.
848   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
849   *                the configuration information for RTC.
850   * @param  sDate Pointer to date structure
851   * @param  Format specifies the format of the entered parameters.
852   *          This parameter can be one of the following values:
853   *            @arg RTC_FORMAT_BIN: Binary data format
854   *            @arg RTC_FORMAT_BCD: BCD data format
855   * @retval HAL status
856   */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)857 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
858 {
859   uint32_t datetmpreg = 0U;
860   HAL_StatusTypeDef status;
861 
862   /* Check the parameters */
863   assert_param(IS_RTC_FORMAT(Format));
864 
865   /* Process Locked */
866   __HAL_LOCK(hrtc);
867 
868   hrtc->State = HAL_RTC_STATE_BUSY;
869 
870   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
871   {
872     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
873   }
874 
875   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
876 
877   if (Format == RTC_FORMAT_BIN)
878   {
879     assert_param(IS_RTC_YEAR(sDate->Year));
880     assert_param(IS_RTC_MONTH(sDate->Month));
881     assert_param(IS_RTC_DATE(sDate->Date));
882 
883     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year)  << RTC_DR_YU_Pos) | \
884                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
885                   ((uint32_t)RTC_ByteToBcd2(sDate->Date))                   | \
886                   ((uint32_t)sDate->WeekDay               << RTC_DR_WDU_Pos));
887   }
888   else
889   {
890     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
891     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
892     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
893 
894     datetmpreg = ((((uint32_t)sDate->Year)    << RTC_DR_YU_Pos) | \
895                   (((uint32_t)sDate->Month)   << RTC_DR_MU_Pos) | \
896                   ((uint32_t) sDate->Date)                      | \
897                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
898   }
899 
900   /* Disable the write protection for RTC registers */
901   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
902 
903   /* Enter Initialization mode */
904   status = RTC_EnterInitMode(hrtc);
905 
906   if (status == HAL_OK)
907   {
908     /* Set the RTC_DR register */
909     hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
910 
911     /* Exit Initialization mode */
912     status = RTC_ExitInitMode(hrtc);
913   }
914 
915   if (status == HAL_OK)
916   {
917     hrtc->State = HAL_RTC_STATE_READY;
918   }
919 
920   /* Enable the write protection for RTC registers */
921   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
922 
923   /* Process Unlocked */
924   __HAL_UNLOCK(hrtc);
925 
926   return status;
927 }
928 
929 /**
930   * @brief  Gets RTC current date.
931   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
932   *                the configuration information for RTC.
933   * @param  sDate Pointer to Date structure
934   * @param  Format Specifies the format of the entered parameters.
935   *          This parameter can be one of the following values:
936   *            @arg RTC_FORMAT_BIN:  Binary data format
937   *            @arg RTC_FORMAT_BCD:  BCD data format
938   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
939   *        values in the higher-order calendar shadow registers to ensure
940   *        consistency between the time and date values.
941   *        Reading RTC current time locks the values in calendar shadow registers
942   *        until current date is read to ensure consistency between the time and
943   *        date values.
944   * @retval HAL status
945   */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)946 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
947 {
948   uint32_t datetmpreg = 0U;
949 
950   /* Check the parameters */
951   assert_param(IS_RTC_FORMAT(Format));
952 
953   /* Get the DR register */
954   datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
955 
956   /* Fill the structure fields with the read parameters */
957   sDate->Year    = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
958   sDate->Month   = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
959   sDate->Date    = (uint8_t) (datetmpreg & (RTC_DR_DT | RTC_DR_DU));
960   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU))            >> RTC_DR_WDU_Pos);
961 
962   /* Check the input parameters format */
963   if (Format == RTC_FORMAT_BIN)
964   {
965     /* Convert the date structure parameters to Binary format */
966     sDate->Year  = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
967     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
968     sDate->Date  = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
969   }
970   return HAL_OK;
971 }
972 
973 /**
974   * @}
975   */
976 
977 /** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions
978   * @brief    RTC Alarm functions
979   *
980 @verbatim
981  ===============================================================================
982                  ##### RTC Alarm functions #####
983  ===============================================================================
984 
985  [..] This section provides functions allowing to configure Alarm feature
986 
987 @endverbatim
988   * @{
989   */
990 /**
991   * @brief  Sets the specified RTC Alarm.
992   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
993   *                the configuration information for RTC.
994   * @param  sAlarm Pointer to Alarm structure
995   * @param  Format Specifies the format of the entered parameters.
996   *          This parameter can be one of the following values:
997   *             @arg RTC_FORMAT_BIN: Binary data format
998   *             @arg RTC_FORMAT_BCD: BCD data format
999   * @note   The Alarm register can only be written when the corresponding Alarm
1000   *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
1001   * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1002   * @retval HAL status
1003   */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1004 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1005 {
1006   uint32_t tickstart = 0U;
1007   uint32_t tmpreg = 0U;
1008   uint32_t subsecondtmpreg = 0U;
1009 
1010   /* Check the parameters */
1011   assert_param(IS_RTC_FORMAT(Format));
1012   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1013   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1014   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1015   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1016   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1017 
1018   /* Process Locked */
1019   __HAL_LOCK(hrtc);
1020 
1021   /* Change RTC state to BUSY */
1022   hrtc->State = HAL_RTC_STATE_BUSY;
1023 
1024   /* Check the data format (binary or BCD) and store the Alarm time and date
1025      configuration accordingly */
1026   if (Format == RTC_FORMAT_BIN)
1027   {
1028     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1029     {
1030       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1031       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1032     }
1033     else
1034     {
1035       sAlarm->AlarmTime.TimeFormat = 0x00U;
1036       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1037     }
1038     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1039     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1040 
1041     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1042     {
1043       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1044     }
1045     else
1046     {
1047       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1048     }
1049 
1050     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours)   << RTC_ALRMAR_HU_Pos)  | \
1051               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1052               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds))                       | \
1053               ((uint32_t)(sAlarm->AlarmTime.TimeFormat)            << RTC_TR_PM_Pos)      | \
1054               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay)  << RTC_ALRMAR_DU_Pos)  | \
1055               ((uint32_t)sAlarm->AlarmDateWeekDaySel)                                     | \
1056               ((uint32_t)sAlarm->AlarmMask));
1057   }
1058   else
1059   {
1060     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1061     {
1062       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1063       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1064     }
1065     else
1066     {
1067       sAlarm->AlarmTime.TimeFormat = 0x00U;
1068       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1069     }
1070 
1071     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1072     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1073 
1074     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1075     {
1076       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1077     }
1078     else
1079     {
1080       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1081     }
1082 
1083     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours)      << RTC_ALRMAR_HU_Pos)  | \
1084               ((uint32_t)(sAlarm->AlarmTime.Minutes)    << RTC_ALRMAR_MNU_Pos) | \
1085               ((uint32_t) sAlarm->AlarmTime.Seconds)                           | \
1086               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos)      | \
1087               ((uint32_t)(sAlarm->AlarmDateWeekDay)     << RTC_ALRMAR_DU_Pos)  | \
1088               ((uint32_t) sAlarm->AlarmDateWeekDaySel)                         | \
1089               ((uint32_t) sAlarm->AlarmMask));
1090   }
1091 
1092   /* Store the Alarm subseconds configuration */
1093   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1094                                (uint32_t)(sAlarm->AlarmSubSecondMask));
1095 
1096   /* Disable the write protection for RTC registers */
1097   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1098 
1099   /* Configure the Alarm register */
1100   if (sAlarm->Alarm == RTC_ALARM_A)
1101   {
1102     /* Disable the Alarm A */
1103     __HAL_RTC_ALARMA_DISABLE(hrtc);
1104 
1105     /* In case interrupt mode is used, the interrupt source must be disabled */
1106     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1107 
1108     /* Clear the Alarm flag */
1109     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1110 
1111     /* Get tick */
1112     tickstart = HAL_GetTick();
1113 
1114     /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1115     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1116     {
1117       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1118       {
1119         /* Enable the write protection for RTC registers */
1120         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1121 
1122         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1123 
1124         /* Process Unlocked */
1125         __HAL_UNLOCK(hrtc);
1126 
1127         return HAL_TIMEOUT;
1128       }
1129     }
1130 
1131     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1132     /* Configure the Alarm A Subseconds register */
1133     hrtc->Instance->ALRMASSR = subsecondtmpreg;
1134     /* Configure the Alarm state: Enable Alarm */
1135     __HAL_RTC_ALARMA_ENABLE(hrtc);
1136   }
1137   else
1138   {
1139     /* Disable the Alarm B */
1140     __HAL_RTC_ALARMB_DISABLE(hrtc);
1141 
1142     /* In case interrupt mode is used, the interrupt source must be disabled */
1143     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1144 
1145     /* Clear the Alarm flag */
1146     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1147 
1148     /* Get tick */
1149     tickstart = HAL_GetTick();
1150 
1151     /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1152     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1153     {
1154       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1155       {
1156         /* Enable the write protection for RTC registers */
1157         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1158 
1159         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1160 
1161         /* Process Unlocked */
1162         __HAL_UNLOCK(hrtc);
1163 
1164         return HAL_TIMEOUT;
1165       }
1166     }
1167 
1168     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1169     /* Configure the Alarm B Subseconds register */
1170     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1171     /* Configure the Alarm state: Enable Alarm */
1172     __HAL_RTC_ALARMB_ENABLE(hrtc);
1173   }
1174 
1175   /* Enable the write protection for RTC registers */
1176   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1177 
1178   /* Change RTC state back to READY */
1179   hrtc->State = HAL_RTC_STATE_READY;
1180 
1181   /* Process Unlocked */
1182   __HAL_UNLOCK(hrtc);
1183 
1184   return HAL_OK;
1185 }
1186 
1187 /**
1188   * @brief  Sets the specified RTC Alarm with Interrupt.
1189   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1190   *                the configuration information for RTC.
1191   * @param  sAlarm Pointer to Alarm structure
1192   * @param  Format Specifies the format of the entered parameters.
1193   *          This parameter can be one of the following values:
1194   *             @arg RTC_FORMAT_BIN: Binary data format
1195   *             @arg RTC_FORMAT_BCD: BCD data format
1196   * @note   The Alarm register can only be written when the corresponding Alarm
1197   *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
1198   * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1199   * @retval HAL status
1200   */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1201 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1202 {
1203   __IO uint32_t count  = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1204        uint32_t tmpreg = 0U;
1205        uint32_t subsecondtmpreg = 0U;
1206 
1207   /* Check the parameters */
1208   assert_param(IS_RTC_FORMAT(Format));
1209   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1210   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1211   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1212   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1213   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1214 
1215   /* Process Locked */
1216   __HAL_LOCK(hrtc);
1217 
1218   /* Change RTC state to BUSY */
1219   hrtc->State = HAL_RTC_STATE_BUSY;
1220 
1221   /* Check the data format (binary or BCD) and store the Alarm time and date
1222      configuration accordingly */
1223   if (Format == RTC_FORMAT_BIN)
1224   {
1225     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1226     {
1227       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1228       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1229     }
1230     else
1231     {
1232       sAlarm->AlarmTime.TimeFormat = 0x00U;
1233       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1234     }
1235     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1236     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1237 
1238     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1239     {
1240       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1241     }
1242     else
1243     {
1244       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1245     }
1246 
1247     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours)   << RTC_ALRMAR_HU_Pos)  | \
1248               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1249               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds))                       | \
1250               ((uint32_t)(sAlarm->AlarmTime.TimeFormat)            << RTC_TR_PM_Pos)      | \
1251               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay)  << RTC_ALRMAR_DU_Pos)  | \
1252               ((uint32_t)sAlarm->AlarmDateWeekDaySel)                                     | \
1253               ((uint32_t)sAlarm->AlarmMask));
1254   }
1255   else
1256   {
1257     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1258     {
1259       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1260       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1261     }
1262     else
1263     {
1264       sAlarm->AlarmTime.TimeFormat = 0x00U;
1265       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1266     }
1267 
1268     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1269     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1270 
1271     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1272     {
1273       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1274     }
1275     else
1276     {
1277       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1278     }
1279 
1280     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours)      << RTC_ALRMAR_HU_Pos)  | \
1281               ((uint32_t)(sAlarm->AlarmTime.Minutes)    << RTC_ALRMAR_MNU_Pos) | \
1282               ((uint32_t) sAlarm->AlarmTime.Seconds)                           | \
1283               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos)      | \
1284               ((uint32_t)(sAlarm->AlarmDateWeekDay)     << RTC_ALRMAR_DU_Pos)  | \
1285               ((uint32_t) sAlarm->AlarmDateWeekDaySel)                         | \
1286               ((uint32_t) sAlarm->AlarmMask));
1287   }
1288 
1289   /* Store the Alarm subseconds configuration */
1290   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1291                                (uint32_t)(sAlarm->AlarmSubSecondMask));
1292 
1293   /* Disable the write protection for RTC registers */
1294   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1295 
1296   /* Configure the Alarm register */
1297   if (sAlarm->Alarm == RTC_ALARM_A)
1298   {
1299     /* Disable the Alarm A */
1300     __HAL_RTC_ALARMA_DISABLE(hrtc);
1301 
1302     /* Clear the Alarm flag */
1303     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1304 
1305     /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1306     do
1307     {
1308       count = count - 1U;
1309       if (count == 0U)
1310       {
1311         /* Enable the write protection for RTC registers */
1312         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1313 
1314         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1315 
1316         /* Process Unlocked */
1317         __HAL_UNLOCK(hrtc);
1318 
1319         return HAL_TIMEOUT;
1320       }
1321     } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U);
1322 
1323     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1324     /* Configure the Alarm A Subseconds register */
1325     hrtc->Instance->ALRMASSR = subsecondtmpreg;
1326     /* Configure the Alarm state: Enable Alarm */
1327     __HAL_RTC_ALARMA_ENABLE(hrtc);
1328     /* Configure the Alarm interrupt */
1329     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
1330   }
1331   else
1332   {
1333     /* Disable the Alarm B */
1334     __HAL_RTC_ALARMB_DISABLE(hrtc);
1335 
1336     /* Clear the Alarm flag */
1337     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1338 
1339     /* Reload the counter */
1340     count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1341 
1342     /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1343     do
1344     {
1345       count = count - 1U;
1346       if (count == 0U)
1347       {
1348         /* Enable the write protection for RTC registers */
1349         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1350 
1351         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1352 
1353         /* Process Unlocked */
1354         __HAL_UNLOCK(hrtc);
1355 
1356         return HAL_TIMEOUT;
1357       }
1358     } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U);
1359 
1360     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1361     /* Configure the Alarm B Subseconds register */
1362     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1363     /* Configure the Alarm state: Enable Alarm */
1364     __HAL_RTC_ALARMB_ENABLE(hrtc);
1365     /* Configure the Alarm interrupt */
1366     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
1367   }
1368 
1369   /* RTC Alarm Interrupt Configuration: EXTI configuration */
1370   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1371   __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
1372 
1373   /* Enable the write protection for RTC registers */
1374   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1375 
1376   /* Change RTC state back to READY */
1377   hrtc->State = HAL_RTC_STATE_READY;
1378 
1379   /* Process Unlocked */
1380   __HAL_UNLOCK(hrtc);
1381 
1382   return HAL_OK;
1383 }
1384 
1385 /**
1386   * @brief  Deactivates the specified RTC Alarm.
1387   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1388   *                the configuration information for RTC.
1389   * @param  Alarm Specifies the Alarm.
1390   *          This parameter can be one of the following values:
1391   *            @arg RTC_ALARM_A: Alarm A
1392   *            @arg RTC_ALARM_B: Alarm B
1393   * @retval HAL status
1394   */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1395 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1396 {
1397   uint32_t tickstart = 0U;
1398 
1399   /* Check the parameters */
1400   assert_param(IS_RTC_ALARM(Alarm));
1401 
1402   /* Process Locked */
1403   __HAL_LOCK(hrtc);
1404 
1405   hrtc->State = HAL_RTC_STATE_BUSY;
1406 
1407   /* Disable the write protection for RTC registers */
1408   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1409 
1410   if (Alarm == RTC_ALARM_A)
1411   {
1412     /* Disable Alarm A */
1413     __HAL_RTC_ALARMA_DISABLE(hrtc);
1414 
1415     /* In case interrupt mode is used, the interrupt source must be disabled */
1416     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1417 
1418     /* Get tick */
1419     tickstart = HAL_GetTick();
1420 
1421     /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
1422     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1423     {
1424       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1425       {
1426         /* Enable the write protection for RTC registers */
1427         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1428 
1429         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1430 
1431         /* Process Unlocked */
1432         __HAL_UNLOCK(hrtc);
1433 
1434         return HAL_TIMEOUT;
1435       }
1436     }
1437   }
1438   else
1439   {
1440     /* Disable Alarm B */
1441     __HAL_RTC_ALARMB_DISABLE(hrtc);
1442 
1443     /* In case interrupt mode is used, the interrupt source must be disabled */
1444     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1445 
1446     /* Get tick */
1447     tickstart = HAL_GetTick();
1448 
1449     /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
1450     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1451     {
1452       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1453       {
1454         /* Enable the write protection for RTC registers */
1455         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1456 
1457         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1458 
1459         /* Process Unlocked */
1460         __HAL_UNLOCK(hrtc);
1461 
1462         return HAL_TIMEOUT;
1463       }
1464     }
1465   }
1466 
1467   /* Enable the write protection for RTC registers */
1468   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1469 
1470   hrtc->State = HAL_RTC_STATE_READY;
1471 
1472   /* Process Unlocked */
1473   __HAL_UNLOCK(hrtc);
1474 
1475   return HAL_OK;
1476 }
1477 
1478 /**
1479   * @brief  Gets the RTC Alarm value and masks.
1480   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1481   *                the configuration information for RTC.
1482   * @param  sAlarm Pointer to Date structure
1483   * @param  Alarm Specifies the Alarm.
1484   *          This parameter can be one of the following values:
1485   *            @arg RTC_ALARM_A: Alarm A
1486   *            @arg RTC_ALARM_B: Alarm B
1487   * @param  Format Specifies the format of the entered parameters.
1488   *          This parameter can be one of the following values:
1489   *             @arg RTC_FORMAT_BIN: Binary data format
1490   *             @arg RTC_FORMAT_BCD: BCD data format
1491   * @retval HAL status
1492   */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1493 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1494 {
1495   uint32_t tmpreg = 0U;
1496   uint32_t subsecondtmpreg = 0U;
1497 
1498   /* Check the parameters */
1499   assert_param(IS_RTC_FORMAT(Format));
1500   assert_param(IS_RTC_ALARM(Alarm));
1501 
1502   if (Alarm == RTC_ALARM_A)
1503   {
1504     sAlarm->Alarm = RTC_ALARM_A;
1505 
1506     tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
1507     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
1508   }
1509   else
1510   {
1511     sAlarm->Alarm = RTC_ALARM_B;
1512 
1513     tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
1514     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
1515   }
1516 
1517   /* Fill the structure with the read parameters */
1518   sAlarm->AlarmTime.Hours      = (uint8_t) ((tmpreg & (RTC_ALRMAR_HT  | RTC_ALRMAR_HU))  >> RTC_ALRMAR_HU_Pos);
1519   sAlarm->AlarmTime.Minutes    = (uint8_t) ((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1520   sAlarm->AlarmTime.Seconds    = (uint8_t) ( tmpreg & (RTC_ALRMAR_ST  | RTC_ALRMAR_SU));
1521   sAlarm->AlarmTime.TimeFormat = (uint8_t) ((tmpreg & RTC_ALRMAR_PM)                     >> RTC_TR_PM_Pos);
1522   sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1523   sAlarm->AlarmDateWeekDay     = (uint8_t) ((tmpreg & (RTC_ALRMAR_DT  | RTC_ALRMAR_DU))  >> RTC_ALRMAR_DU_Pos);
1524   sAlarm->AlarmDateWeekDaySel  = (uint32_t) (tmpreg & RTC_ALRMAR_WDSEL);
1525   sAlarm->AlarmMask            = (uint32_t) (tmpreg & RTC_ALARMMASK_ALL);
1526 
1527   if (Format == RTC_FORMAT_BIN)
1528   {
1529     sAlarm->AlarmTime.Hours   = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1530     sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1531     sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1532     sAlarm->AlarmDateWeekDay  = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1533   }
1534 
1535   return HAL_OK;
1536 }
1537 
1538 /**
1539   * @brief  Handles Alarm interrupt request.
1540   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1541   *                the configuration information for RTC.
1542   * @retval None
1543   */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1544 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1545 {
1546   /* Clear the EXTI's line Flag for RTC Alarm */
1547   __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
1548 
1549   /* Get the Alarm A interrupt source enable status */
1550   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
1551   {
1552     /* Get the pending status of the Alarm A Interrupt */
1553     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
1554     {
1555       /* Clear the Alarm A interrupt pending bit */
1556       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1557 
1558       /* Alarm A callback */
1559 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1560       hrtc->AlarmAEventCallback(hrtc);
1561 #else
1562       HAL_RTC_AlarmAEventCallback(hrtc);
1563 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1564     }
1565   }
1566 
1567   /* Get the Alarm B interrupt source enable status */
1568   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
1569   {
1570     /* Get the pending status of the Alarm B Interrupt */
1571     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
1572     {
1573       /* Clear the Alarm B interrupt pending bit */
1574       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1575 
1576       /* Alarm B callback */
1577 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1578       hrtc->AlarmBEventCallback(hrtc);
1579 #else
1580       HAL_RTCEx_AlarmBEventCallback(hrtc);
1581 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1582     }
1583   }
1584 
1585   /* Change RTC state */
1586   hrtc->State = HAL_RTC_STATE_READY;
1587 }
1588 
1589 /**
1590   * @brief  Alarm A callback.
1591   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1592   *                the configuration information for RTC.
1593   * @retval None
1594   */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)1595 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1596 {
1597   /* Prevent unused argument(s) compilation warning */
1598   UNUSED(hrtc);
1599 
1600   /* NOTE: This function should not be modified, when the callback is needed,
1601            the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1602    */
1603 }
1604 
1605 /**
1606   * @brief  Handles Alarm A Polling request.
1607   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1608   *                the configuration information for RTC.
1609   * @param  Timeout Timeout duration
1610   * @retval HAL status
1611   */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)1612 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1613 {
1614   uint32_t tickstart = 0U;
1615 
1616   /* Get tick */
1617   tickstart = HAL_GetTick();
1618 
1619   /* Wait till RTC ALRAF flag is set and if timeout is reached exit */
1620   while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
1621   {
1622     if (Timeout != HAL_MAX_DELAY)
1623     {
1624       if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
1625       {
1626         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1627         return HAL_TIMEOUT;
1628       }
1629     }
1630   }
1631 
1632   /* Clear the Alarm flag */
1633   __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1634 
1635   /* Change RTC state */
1636   hrtc->State = HAL_RTC_STATE_READY;
1637 
1638   return HAL_OK;
1639 }
1640 
1641 /**
1642   * @}
1643   */
1644 
1645 /** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions
1646   * @brief    Peripheral Control functions
1647   *
1648 @verbatim
1649  ===============================================================================
1650                      ##### Peripheral Control functions #####
1651  ===============================================================================
1652     [..]
1653     This subsection provides functions allowing to
1654       (+) Wait for RTC Time and Date Synchronization
1655       (+) Manage RTC Summer or Winter time change
1656 
1657 @endverbatim
1658   * @{
1659   */
1660 
1661 /**
1662   * @brief  Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
1663   *         synchronized with RTC APB clock.
1664   * @note   The RTC Resynchronization mode is write protected, use the
1665   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1666   * @note   To read the calendar through the shadow registers after Calendar
1667   *         initialization, calendar update or after wakeup from low power modes
1668   *         the software must first clear the RSF flag.
1669   *         The software must then wait until it is set again before reading
1670   *         the calendar, which means that the calendar registers have been
1671   *         correctly copied into the RTC_TR and RTC_DR shadow registers.
1672   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1673   *                the configuration information for RTC.
1674   * @retval HAL status
1675   */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)1676 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
1677 {
1678   uint32_t tickstart = 0U;
1679 
1680   /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
1681   hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK));
1682 
1683   /* Get tick */
1684   tickstart = HAL_GetTick();
1685 
1686   /* Wait the registers to be synchronised */
1687   while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
1688   {
1689     if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1690     {
1691       return HAL_TIMEOUT;
1692     }
1693   }
1694 
1695   return HAL_OK;
1696 }
1697 
1698 /**
1699   * @brief  Daylight Saving Time, adds one hour to the calendar in one
1700   *         single operation without going through the initialization procedure.
1701   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1702   *                the configuration information for RTC.
1703   * @retval None
1704   */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)1705 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
1706 {
1707   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1708   SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
1709   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1710 }
1711 
1712 /**
1713   * @brief  Daylight Saving Time, subtracts one hour from the calendar in one
1714   *         single operation without going through the initialization procedure.
1715   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1716   *                the configuration information for RTC.
1717   * @retval None
1718   */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)1719 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
1720 {
1721   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1722   SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
1723   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1724 }
1725 
1726 /**
1727   * @brief  Daylight Saving Time, sets the store operation bit.
1728   * @note   It can be used by the software in order to memorize the DST status.
1729   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1730   *                the configuration information for RTC.
1731   * @retval None
1732   */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)1733 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
1734 {
1735   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1736   SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1737   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1738 }
1739 
1740 /**
1741   * @brief  Daylight Saving Time, clears the store operation bit.
1742   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1743   *                the configuration information for RTC.
1744   * @retval None
1745   */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)1746 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
1747 {
1748   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1749   CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1750   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1751 }
1752 
1753 /**
1754   * @brief  Daylight Saving Time, reads the store operation bit.
1755   * @param  hrtc RTC handle
1756   * @retval operation see RTC_StoreOperation_Definitions
1757   */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)1758 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
1759 {
1760   return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1761 }
1762 
1763 /**
1764   * @}
1765   */
1766 
1767 /** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions
1768   * @brief    Peripheral State functions
1769   *
1770 @verbatim
1771  ===============================================================================
1772                      ##### Peripheral State functions #####
1773  ===============================================================================
1774     [..]
1775     This subsection provides functions allowing to
1776       (+) Get RTC state
1777 
1778 @endverbatim
1779   * @{
1780   */
1781 /**
1782   * @brief  Returns the RTC state.
1783   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1784   *                the configuration information for RTC.
1785   * @retval HAL state
1786   */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)1787 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
1788 {
1789   return hrtc->State;
1790 }
1791 
1792 /**
1793   * @}
1794   */
1795 
1796 
1797 /**
1798   * @}
1799   */
1800 
1801 /** @addtogroup RTC_Private_Functions
1802   * @{
1803   */
1804 
1805 /**
1806   * @brief  Enters the RTC Initialization mode.
1807   * @note   The RTC Initialization mode is write protected, use the
1808   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1809   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1810   *                the configuration information for RTC.
1811   * @retval HAL status
1812   */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)1813 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
1814 {
1815   uint32_t tickstart = 0U;
1816   HAL_StatusTypeDef status = HAL_OK;
1817 
1818   /* Check that Initialization mode is not already set */
1819   if (READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U)
1820   {
1821     /* Set INIT bit to enter Initialization mode */
1822     SET_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1823 
1824     /* Get tick */
1825     tickstart = HAL_GetTick();
1826 
1827     /* Wait till RTC is in INIT state and if timeout is reached exit */
1828     while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_ERROR))
1829     {
1830       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1831       {
1832         /* Set RTC state */
1833         hrtc->State = HAL_RTC_STATE_ERROR;
1834         status = HAL_ERROR;
1835       }
1836     }
1837   }
1838 
1839   return status;
1840 }
1841 
1842 /**
1843   * @brief  Exits the RTC Initialization mode.
1844   * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
1845   *                the configuration information for RTC.
1846   * @retval HAL status
1847   */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)1848 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
1849 {
1850   HAL_StatusTypeDef status = HAL_OK;
1851 
1852   /* Clear INIT bit to exit Initialization mode */
1853   CLEAR_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1854 
1855   /* If CR_BYPSHAD bit = 0, wait for synchro */
1856   if (READ_BIT(hrtc->Instance->CR, RTC_CR_BYPSHAD) == 0U)
1857   {
1858     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1859     {
1860       /* Set RTC state */
1861       hrtc->State = HAL_RTC_STATE_ERROR;
1862       status = HAL_ERROR;
1863     }
1864   }
1865 
1866   return status;
1867 }
1868 
1869 /**
1870   * @brief  Converts a 2-digit number from decimal to BCD format.
1871   * @param  number decimal-formatted number (from 0 to 99) to be converted
1872   * @retval Converted byte
1873   */
RTC_ByteToBcd2(uint8_t number)1874 uint8_t RTC_ByteToBcd2(uint8_t number)
1875 {
1876   uint32_t bcdhigh = 0U;
1877 
1878   while (number >= 10U)
1879   {
1880     bcdhigh++;
1881     number -= 10U;
1882   }
1883 
1884   return ((uint8_t)(bcdhigh << 4U) | number);
1885 }
1886 
1887 /**
1888   * @brief  Converts a 2-digit number from BCD to decimal format.
1889   * @param  number BCD-formatted number (from 00 to 99) to be converted
1890   * @retval Converted word
1891   */
RTC_Bcd2ToByte(uint8_t number)1892 uint8_t RTC_Bcd2ToByte(uint8_t number)
1893 {
1894   uint32_t tens = 0U;
1895   tens = (((uint32_t)number & 0xF0U) >> 4U) * 10U;
1896   return (uint8_t)(tens + ((uint32_t)number & 0x0FU));
1897 }
1898 
1899 /**
1900   * @}
1901   */
1902 
1903 #endif /* HAL_RTC_MODULE_ENABLED */
1904 /**
1905   * @}
1906   */
1907 
1908 /**
1909   * @}
1910   */
1911