1 /**
2   ******************************************************************************
3   * @file    stm32f4xx_hal_pwr.c
4   * @author  MCD Application Team
5   * @brief   PWR HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Power Controller (PWR) peripheral:
8   *           + Initialization and de-initialization functions
9   *           + Peripheral Control functions
10   *
11   ******************************************************************************
12   * @attention
13   *
14   * Copyright (c) 2017 STMicroelectronics.
15   * All rights reserved.
16   *
17   * This software is licensed under terms that can be found in the LICENSE file in
18   * the root directory of this software component.
19   * If no LICENSE file comes with this software, it is provided AS-IS.
20   ******************************************************************************
21   */
22 
23 /* Includes ------------------------------------------------------------------*/
24 #include "stm32f4xx_hal.h"
25 
26 /** @addtogroup STM32F4xx_HAL_Driver
27   * @{
28   */
29 
30 /** @defgroup PWR PWR
31   * @brief PWR HAL module driver
32   * @{
33   */
34 
35 #ifdef HAL_PWR_MODULE_ENABLED
36 
37 /* Private typedef -----------------------------------------------------------*/
38 /* Private define ------------------------------------------------------------*/
39 /** @addtogroup PWR_Private_Constants
40   * @{
41   */
42 
43 /** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask
44   * @{
45   */
46 #define PVD_MODE_IT               0x00010000U
47 #define PVD_MODE_EVT              0x00020000U
48 #define PVD_RISING_EDGE           0x00000001U
49 #define PVD_FALLING_EDGE          0x00000002U
50 /**
51   * @}
52   */
53 
54 /**
55   * @}
56   */
57 /* Private macro -------------------------------------------------------------*/
58 /* Private variables ---------------------------------------------------------*/
59 /* Private function prototypes -----------------------------------------------*/
60 /* Private functions ---------------------------------------------------------*/
61 
62 /** @defgroup PWR_Exported_Functions PWR Exported Functions
63   * @{
64   */
65 
66 /** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
67   *  @brief    Initialization and de-initialization functions
68   *
69 @verbatim
70  ===============================================================================
71               ##### Initialization and de-initialization functions #####
72  ===============================================================================
73     [..]
74       After reset, the backup domain (RTC registers, RTC backup data
75       registers and backup SRAM) is protected against possible unwanted
76       write accesses.
77       To enable access to the RTC Domain and RTC registers, proceed as follows:
78         (+) Enable the Power Controller (PWR) APB1 interface clock using the
79             __HAL_RCC_PWR_CLK_ENABLE() macro.
80         (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
81 
82 @endverbatim
83   * @{
84   */
85 
86 /**
87   * @brief Deinitializes the HAL PWR peripheral registers to their default reset values.
88   * @retval None
89   */
HAL_PWR_DeInit(void)90 void HAL_PWR_DeInit(void)
91 {
92   __HAL_RCC_PWR_FORCE_RESET();
93   __HAL_RCC_PWR_RELEASE_RESET();
94 }
95 
96 /**
97   * @brief Enables access to the backup domain (RTC registers, RTC
98   *         backup data registers and backup SRAM).
99   * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the
100   *         Backup Domain Access should be kept enabled.
101   * @note The following sequence is required to bypass the delay between
102   *         DBP bit programming and the effective enabling  of the backup domain.
103   *         Please check the Errata Sheet for more details under "Possible delay
104   *         in backup domain protection disabling/enabling after programming the
105   *         DBP bit" section.
106   * @retval None
107   */
HAL_PWR_EnableBkUpAccess(void)108 void HAL_PWR_EnableBkUpAccess(void)
109 {
110   __IO uint32_t dummyread;
111   *(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE;
112   dummyread = PWR->CR;
113   UNUSED(dummyread);
114 }
115 
116 /**
117   * @brief Disables access to the backup domain (RTC registers, RTC
118   *         backup data registers and backup SRAM).
119   * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the
120   *         Backup Domain Access should be kept enabled.
121   * @note The following sequence is required to bypass the delay between
122   *         DBP bit programming and the effective disabling  of the backup domain.
123   *         Please check the Errata Sheet for more details under "Possible delay
124   *         in backup domain protection disabling/enabling after programming the
125   *         DBP bit" section.
126   * @retval None
127   */
HAL_PWR_DisableBkUpAccess(void)128 void HAL_PWR_DisableBkUpAccess(void)
129 {
130   __IO uint32_t dummyread;
131   *(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE;
132   dummyread = PWR->CR;
133   UNUSED(dummyread);
134 }
135 
136 /**
137   * @}
138   */
139 
140 /** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
141   *  @brief Low Power modes configuration functions
142   *
143 @verbatim
144 
145  ===============================================================================
146                  ##### Peripheral Control functions #####
147  ===============================================================================
148 
149     *** PVD configuration ***
150     =========================
151     [..]
152       (+) The PVD is used to monitor the VDD power supply by comparing it to a
153           threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
154       (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
155           than the PVD threshold. This event is internally connected to the EXTI
156           line16 and can generate an interrupt if enabled. This is done through
157           __HAL_PWR_PVD_EXTI_ENABLE_IT() macro.
158       (+) The PVD is stopped in Standby mode.
159 
160     *** Wake-up pin configuration ***
161     ================================
162     [..]
163       (+) Wake-up pin is used to wake up the system from Standby mode. This pin is
164           forced in input pull-down configuration and is active on rising edges.
165       (+) There is one Wake-up pin: Wake-up Pin 1 on PA.00.
166 	   (++) For STM32F446xx there are two Wake-Up pins: Pin1 on PA.00 and Pin2 on PC.13
167            (++) For STM32F410xx/STM32F412xx/STM32F413xx/STM32F423xx  there are three Wake-Up pins: Pin1 on PA.00, Pin2 on PC.00 and Pin3 on PC.01
168 
169     *** Low Power modes configuration ***
170     =====================================
171     [..]
172       The devices feature 3 low-power modes:
173       (+) Sleep mode: Cortex-M4 core stopped, peripherals kept running.
174       (+) Stop mode: all clocks are stopped, regulator running, regulator
175           in low power mode
176       (+) Standby mode: 1.2V domain powered off.
177 
178    *** Sleep mode ***
179    ==================
180     [..]
181       (+) Entry:
182         The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(Regulator, SLEEPEntry)
183               functions with
184           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
185           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
186           (++) PWR_SLEEPENTRY_WFE_NO_EVT_CLEAR: Enter SLEEP mode with WFE instruction and
187                                                 no clear of pending event before.
188 
189       -@@- The Regulator parameter is not used for the STM32F4 family
190               and is kept as parameter just to maintain compatibility with the
191               lower power families (STM32L).
192       (+) Exit:
193         Any peripheral interrupt acknowledged by the nested vectored interrupt
194               controller (NVIC) can wake up the device from Sleep mode.
195 
196    *** Stop mode ***
197    =================
198     [..]
199       In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI,
200       and the HSE RC oscillators are disabled. Internal SRAM and register contents
201       are preserved.
202       The voltage regulator can be configured either in normal or low-power mode.
203       To minimize the consumption In Stop mode, FLASH can be powered off before
204       entering the Stop mode using the HAL_PWREx_EnableFlashPowerDown() function.
205       It can be switched on again by software after exiting the Stop mode using
206       the HAL_PWREx_DisableFlashPowerDown() function.
207 
208       (+) Entry:
209          The Stop mode is entered using the HAL_PWR_EnterSTOPMode(Regulator, STOPEntry)
210              function with:
211        (++) Regulator:
212         (+++) Main regulator ON.
213         (+++) Low Power regulator ON.
214        (++) STOPEntry:
215         (+++) PWR_STOPENTRY_WFI              : Enter STOP mode with WFI instruction.
216         (+++) PWR_STOPENTRY_WFE              : Enter STOP mode with WFE instruction and
217                                                clear of pending events before.
218         (+++) PWR_STOPENTRY_WFE_NO_EVT_CLEAR : Enter STOP mode with WFE instruction and
219                                                no clear of pending event before.
220       (+) Exit:
221         Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
222 
223    *** Standby mode ***
224    ====================
225     [..]
226     (+)
227       The Standby mode allows to achieve the lowest power consumption. It is based
228       on the Cortex-M4 deep sleep mode, with the voltage regulator disabled.
229       The 1.2V domain is consequently powered off. The PLL, the HSI oscillator and
230       the HSE oscillator are also switched off. SRAM and register contents are lost
231       except for the RTC registers, RTC backup registers, backup SRAM and Standby
232       circuitry.
233 
234       The voltage regulator is OFF.
235 
236       (++) Entry:
237         (+++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
238       (++) Exit:
239         (+++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wake-up,
240              tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
241 
242    *** Auto-wake-up (AWU) from low-power mode ***
243    =============================================
244     [..]
245 
246      (+) The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
247       Wake-up event, a tamper event or a time-stamp event, without depending on
248       an external interrupt (Auto-wake-up mode).
249 
250       (+) RTC auto-wake-up (AWU) from the Stop and Standby modes
251 
252         (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to
253               configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function.
254 
255         (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
256              is necessary to configure the RTC to detect the tamper or time stamp event using the
257                 HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions.
258 
259         (++) To wake up from the Stop mode with an RTC Wake-up event, it is necessary to
260               configure the RTC to generate the RTC Wake-up event using the HAL_RTCEx_SetWakeUpTimer_IT() function.
261 
262 @endverbatim
263   * @{
264   */
265 
266 /**
267   * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
268   * @param sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration
269   *        information for the PVD.
270   * @note Refer to the electrical characteristics of your device datasheet for
271   *         more details about the voltage threshold corresponding to each
272   *         detection level.
273   * @retval None
274   */
HAL_PWR_ConfigPVD(PWR_PVDTypeDef * sConfigPVD)275 void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
276 {
277   /* Check the parameters */
278   assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
279   assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
280 
281   /* Set PLS[7:5] bits according to PVDLevel value */
282   MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
283 
284   /* Clear any previous config. Keep it clear if no event or IT mode is selected */
285   __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
286   __HAL_PWR_PVD_EXTI_DISABLE_IT();
287   __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE();
288   __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE();
289 
290   /* Configure interrupt mode */
291   if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
292   {
293     __HAL_PWR_PVD_EXTI_ENABLE_IT();
294   }
295 
296   /* Configure event mode */
297   if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
298   {
299     __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
300   }
301 
302   /* Configure the edge */
303   if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
304   {
305     __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
306   }
307 
308   if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
309   {
310     __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
311   }
312 }
313 
314 /**
315   * @brief Enables the Power Voltage Detector(PVD).
316   * @retval None
317   */
HAL_PWR_EnablePVD(void)318 void HAL_PWR_EnablePVD(void)
319 {
320   *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE;
321 }
322 
323 /**
324   * @brief Disables the Power Voltage Detector(PVD).
325   * @retval None
326   */
HAL_PWR_DisablePVD(void)327 void HAL_PWR_DisablePVD(void)
328 {
329   *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE;
330 }
331 
332 /**
333   * @brief Enables the Wake-up PINx functionality.
334   * @param WakeUpPinx Specifies the Power Wake-Up pin to enable.
335   *         This parameter can be one of the following values:
336   *           @arg PWR_WAKEUP_PIN1
337   *           @arg PWR_WAKEUP_PIN2 available only on STM32F410xx/STM32F446xx/STM32F412xx/STM32F413xx/STM32F423xx devices
338   *           @arg PWR_WAKEUP_PIN3 available only on STM32F410xx/STM32F412xx/STM32F413xx/STM32F423xx devices
339   * @retval None
340   */
HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)341 void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
342 {
343   /* Check the parameter */
344   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
345 
346   /* Enable the wake up pin */
347   SET_BIT(PWR->CSR, WakeUpPinx);
348 }
349 
350 /**
351   * @brief Disables the Wake-up PINx functionality.
352   * @param WakeUpPinx Specifies the Power Wake-Up pin to disable.
353   *         This parameter can be one of the following values:
354   *           @arg PWR_WAKEUP_PIN1
355   *           @arg PWR_WAKEUP_PIN2 available only on STM32F410xx/STM32F446xx/STM32F412xx/STM32F413xx/STM32F423xx devices
356   *           @arg PWR_WAKEUP_PIN3 available only on STM32F410xx/STM32F412xx/STM32F413xx/STM32F423xx devices
357   * @retval None
358   */
HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)359 void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
360 {
361   /* Check the parameter */
362   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
363 
364   /* Disable the wake up pin */
365   CLEAR_BIT(PWR->CSR, WakeUpPinx);
366 }
367 
368 /**
369   * @brief Enters Sleep mode.
370   *
371   * @note In Sleep mode, all I/O pins keep the same state as in Run mode.
372   *
373   * @note In Sleep mode, the systick is stopped to avoid exit from this mode with
374   *       systick interrupt when used as time base for Timeout
375   *
376   * @param Regulator Specifies the regulator state in SLEEP mode.
377   *            This parameter can be one of the following values:
378   *            @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON
379   *            @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON
380   * @note This parameter is not used for the STM32F4 family and is kept as parameter
381   *       just to maintain compatibility with the lower power families.
382   * @param SLEEPEntry Specifies if SLEEP mode in entered with WFI or WFE instruction.
383   *          This parameter can be one of the following values:
384   *            @arg PWR_SLEEPENTRY_WFI              : Enter SLEEP mode with WFI instruction
385   *            @arg PWR_SLEEPENTRY_WFE              : Enter SLEEP mode with WFE instruction and
386   *                                                   clear of pending events before.
387   *            @arg PWR_SLEEPENTRY_WFE_NO_EVT_CLEAR : Enter SLEEP mode with WFE instruction and
388   *                                                   no clear of pending event before.
389   * @retval None
390   */
HAL_PWR_EnterSLEEPMode(uint32_t Regulator,uint8_t SLEEPEntry)391 void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
392 {
393   /* Prevent unused argument(s) compilation warning */
394   UNUSED(Regulator);
395 
396   /* Check the parameters */
397   assert_param(IS_PWR_REGULATOR(Regulator));
398   assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
399 
400   /* Clear SLEEPDEEP bit of Cortex System Control Register */
401   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
402 
403   /* Select SLEEP mode entry -------------------------------------------------*/
404   if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
405   {
406     /* Request Wait For Interrupt */
407     __WFI();
408   }
409   else
410   {
411     if(SLEEPEntry != PWR_SLEEPENTRY_WFE_NO_EVT_CLEAR)
412     {
413       /* Clear all pending event */
414       __SEV();
415       __WFE();
416     }
417 
418     /* Request Wait For Event */
419     __WFE();
420   }
421 }
422 
423 /**
424   * @brief Enters Stop mode.
425   * @note In Stop mode, all I/O pins keep the same state as in Run mode.
426   * @note When exiting Stop mode by issuing an interrupt or a wake-up event,
427   *         the HSI RC oscillator is selected as system clock.
428   * @note When the voltage regulator operates in low power mode, an additional
429   *         startup delay is incurred when waking up from Stop mode.
430   *         By keeping the internal regulator ON during Stop mode, the consumption
431   *         is higher although the startup time is reduced.
432   * @param Regulator Specifies the regulator state in Stop mode.
433   *          This parameter can be one of the following values:
434   *            @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
435   *            @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
436   * @param STOPEntry Specifies if Stop mode in entered with WFI or WFE instruction.
437   *          This parameter can be one of the following values:
438   *            @arg PWR_STOPENTRY_WFI              : Enter Stop mode with WFI instruction
439   *            @arg PWR_STOPENTRY_WFE              : Enter Stop mode with WFE instruction and
440   *                                                  clear of pending events before.
441   *            @arg PWR_STOPENTRY_WFE_NO_EVT_CLEAR : Enter STOP mode with WFE instruction and
442   *                                                  no clear of pending event before.
443   * @retval None
444   */
HAL_PWR_EnterSTOPMode(uint32_t Regulator,uint8_t STOPEntry)445 void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
446 {
447   /* Check the parameters */
448   assert_param(IS_PWR_REGULATOR(Regulator));
449   assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
450 
451   /* Select the regulator state in Stop mode: Set PDDS and LPDS bits according to PWR_Regulator value */
452   MODIFY_REG(PWR->CR, (PWR_CR_PDDS | PWR_CR_LPDS), Regulator);
453 
454   /* Set SLEEPDEEP bit of Cortex System Control Register */
455   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
456 
457   /* Select Stop mode entry --------------------------------------------------*/
458   if(STOPEntry == PWR_STOPENTRY_WFI)
459   {
460     /* Request Wait For Interrupt */
461     __WFI();
462   }
463   else
464   {
465     if(STOPEntry != PWR_STOPENTRY_WFE_NO_EVT_CLEAR)
466     {
467       /* Clear all pending event */
468       __SEV();
469       __WFE();
470     }
471     /* Request Wait For Event */
472     __WFE();
473   }
474   /* Reset SLEEPDEEP bit of Cortex System Control Register */
475   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
476 }
477 
478 /**
479   * @brief Enters Standby mode.
480   * @note In Standby mode, all I/O pins are high impedance except for:
481   *          - Reset pad (still available)
482   *          - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC
483   *            Alarm out, or RTC clock calibration out.
484   *          - RTC_AF2 pin (PI8) if configured for tamper or time-stamp.
485   *          - WKUP pin 1 (PA0) if enabled.
486   * @retval None
487   */
HAL_PWR_EnterSTANDBYMode(void)488 void HAL_PWR_EnterSTANDBYMode(void)
489 {
490   /* Select Standby mode */
491   SET_BIT(PWR->CR, PWR_CR_PDDS);
492 
493   /* Set SLEEPDEEP bit of Cortex System Control Register */
494   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
495 
496   /* This option is used to ensure that store operations are completed */
497 #if defined ( __CC_ARM)
498   __force_stores();
499 #endif
500   /* Request Wait For Interrupt */
501   __WFI();
502 }
503 
504 /**
505   * @brief This function handles the PWR PVD interrupt request.
506   * @note This API should be called under the PVD_IRQHandler().
507   * @retval None
508   */
HAL_PWR_PVD_IRQHandler(void)509 void HAL_PWR_PVD_IRQHandler(void)
510 {
511   /* Check PWR Exti flag */
512   if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
513   {
514     /* PWR PVD interrupt user callback */
515     HAL_PWR_PVDCallback();
516 
517     /* Clear PWR Exti pending bit */
518     __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
519   }
520 }
521 
522 /**
523   * @brief  PWR PVD interrupt callback
524   * @retval None
525   */
HAL_PWR_PVDCallback(void)526 __weak void HAL_PWR_PVDCallback(void)
527 {
528   /* NOTE : This function Should not be modified, when the callback is needed,
529             the HAL_PWR_PVDCallback could be implemented in the user file
530    */
531 }
532 
533 /**
534   * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
535   * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
536   *       re-enters SLEEP mode when an interruption handling is over.
537   *       Setting this bit is useful when the processor is expected to run only on
538   *       interruptions handling.
539   * @retval None
540   */
HAL_PWR_EnableSleepOnExit(void)541 void HAL_PWR_EnableSleepOnExit(void)
542 {
543   /* Set SLEEPONEXIT bit of Cortex System Control Register */
544   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
545 }
546 
547 /**
548   * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
549   * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
550   *       re-enters SLEEP mode when an interruption handling is over.
551   * @retval None
552   */
HAL_PWR_DisableSleepOnExit(void)553 void HAL_PWR_DisableSleepOnExit(void)
554 {
555   /* Clear SLEEPONEXIT bit of Cortex System Control Register */
556   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
557 }
558 
559 /**
560   * @brief Enables CORTEX M4 SEVONPEND bit.
561   * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
562   *       WFE to wake up when an interrupt moves from inactive to pended.
563   * @retval None
564   */
HAL_PWR_EnableSEVOnPend(void)565 void HAL_PWR_EnableSEVOnPend(void)
566 {
567   /* Set SEVONPEND bit of Cortex System Control Register */
568   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
569 }
570 
571 /**
572   * @brief Disables CORTEX M4 SEVONPEND bit.
573   * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
574   *       WFE to wake up when an interrupt moves from inactive to pended.
575   * @retval None
576   */
HAL_PWR_DisableSEVOnPend(void)577 void HAL_PWR_DisableSEVOnPend(void)
578 {
579   /* Clear SEVONPEND bit of Cortex System Control Register */
580   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
581 }
582 
583 /**
584   * @}
585   */
586 
587 /**
588   * @}
589   */
590 
591 #endif /* HAL_PWR_MODULE_ENABLED */
592 /**
593   * @}
594   */
595 
596 /**
597   * @}
598   */
599