1 /**
2   ******************************************************************************
3   * @file    stm32f3xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2016 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32f3xx_ll_tim.h"
22 #include "stm32f3xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32F3xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM18) || defined (TIM19) || defined (TIM20)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #if defined(TIM_CCMR1_OC1M_3)
58 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM1) \
71                                      || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM2))
72 #else
73 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
74                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
75                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
76                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
77                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
78                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
79                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
80                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2))
81 #endif /* TIM_CCMR1_OC1M_3 */
82 
83 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
84                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
85 
86 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
87                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
88 
89 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
90                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
91 
92 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
93                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
94                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
95 
96 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
97                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
98                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
99                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
100 
101 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
106                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
107                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
108                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
109                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
110                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
111                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
112                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
113                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
114                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
115                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
116                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
117 
118 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
119                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
120                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
121 
122 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
123                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
124                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
125 
126 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
127                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
128 
129 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
130                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
131 
132 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
133                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
134 
135 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
136                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
137                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
138                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
139 
140 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
141                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
142 
143 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
144                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
145 #if defined(TIM_BDTR_BKF)
146 
147 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
151                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
152                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
153                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
154                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
155                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
156                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
157                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
158                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
159                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
160                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
161                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
162                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
163 #endif /* TIM_BDTR_BKF */
164 #if defined(TIM_BDTR_BK2E)
165 
166 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
167                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
168 
169 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
170                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
171 
172 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
174                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
175                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
176                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
177                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
178                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
179                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
180                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
181                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
182                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
183                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
184                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
185                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
186                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
187                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
188 #endif /* TIM_BDTR_BK2E */
189 
190 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
191                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
192 /**
193   * @}
194   */
195 
196 
197 /* Private function prototypes -----------------------------------------------*/
198 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
199   * @{
200   */
201 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
202 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
203 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
204 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
205 #if defined(TIM_CCER_CC5E)
206 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
207 #endif /* TIM_CCER_CC5E */
208 #if defined(TIM_CCER_CC6E)
209 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
210 #endif /* TIM_CCER_CC6E */
211 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
212 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
213 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
214 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
215 /**
216   * @}
217   */
218 
219 /* Exported functions --------------------------------------------------------*/
220 /** @addtogroup TIM_LL_Exported_Functions
221   * @{
222   */
223 
224 /** @addtogroup TIM_LL_EF_Init
225   * @{
226   */
227 
228 /**
229   * @brief  Set TIMx registers to their reset values.
230   * @param  TIMx Timer instance
231   * @retval An ErrorStatus enumeration value:
232   *          - SUCCESS: TIMx registers are de-initialized
233   *          - ERROR: invalid TIMx instance
234   */
LL_TIM_DeInit(const TIM_TypeDef * TIMx)235 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx)
236 {
237   ErrorStatus result = SUCCESS;
238 
239   /* Check the parameters */
240   assert_param(IS_TIM_INSTANCE(TIMx));
241 
242 
243   if (TIMx == TIM2)
244   {
245     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
246     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
247   }
248 
249 #if defined(TIM1)
250   else if (TIMx == TIM1)
251   {
252     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
253     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
254   }
255 #endif /* TIM1 */
256 #if defined(TIM3)
257   else if (TIMx == TIM3)
258   {
259     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
260     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
261   }
262 #endif /* TIM3 */
263 #if defined(TIM4)
264   else if (TIMx == TIM4)
265   {
266     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
267     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
268   }
269 #endif /* TIM4 */
270 #if defined(TIM5)
271   else if (TIMx == TIM5)
272   {
273     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
274     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
275   }
276 #endif /* TIM5 */
277 #if defined(TIM6)
278   else if (TIMx == TIM6)
279   {
280     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
281     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
282   }
283 #endif /* TIM6 */
284 #if defined(TIM7)
285   else if (TIMx == TIM7)
286   {
287     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
288     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
289   }
290 #endif /* TIM7 */
291 #if defined(TIM8)
292   else if (TIMx == TIM8)
293   {
294     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
295     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
296   }
297 #endif /* TIM8 */
298 #if defined(TIM12)
299   else if (TIMx == TIM12)
300   {
301     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
302     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
303   }
304 #endif /* TIM12 */
305 #if defined(TIM13)
306   else if (TIMx == TIM13)
307   {
308     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
309     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
310   }
311 #endif /* TIM13 */
312 #if defined(TIM14)
313   else if (TIMx == TIM14)
314   {
315     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
316     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
317   }
318 #endif /* TIM14 */
319 #if defined(TIM15)
320   else if (TIMx == TIM15)
321   {
322     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
323     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
324   }
325 #endif /* TIM15 */
326 #if defined(TIM16)
327   else if (TIMx == TIM16)
328   {
329     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
330     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
331   }
332 #endif /* TIM16 */
333 #if defined(TIM17)
334   else if (TIMx == TIM17)
335   {
336     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
337     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
338   }
339 #endif /* TIM17 */
340 #if defined(TIM18)
341   else if (TIMx == TIM18)
342   {
343     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM18);
344     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM18);
345   }
346 #endif /* TIM18 */
347 #if defined(TIM19)
348   else if (TIMx == TIM19)
349   {
350     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM19);
351     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM19);
352   }
353 #endif /* TIM19 */
354 #if defined(TIM20)
355   else if (TIMx == TIM20)
356   {
357     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM20);
358     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM20);
359   }
360 #endif /* TIM20 */
361   else
362   {
363     result = ERROR;
364   }
365 
366   return result;
367 }
368 
369 /**
370   * @brief  Set the fields of the time base unit configuration data structure
371   *         to their default values.
372   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
373   * @retval None
374   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)375 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
376 {
377   /* Set the default configuration */
378   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
379   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
380   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
381   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
382   TIM_InitStruct->RepetitionCounter = 0x00000000U;
383 }
384 
385 /**
386   * @brief  Configure the TIMx time base unit.
387   * @param  TIMx Timer Instance
388   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
389   *         (TIMx time base unit configuration data structure)
390   * @retval An ErrorStatus enumeration value:
391   *          - SUCCESS: TIMx registers are de-initialized
392   *          - ERROR: not applicable
393   */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)394 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
395 {
396   uint32_t tmpcr1;
397 
398   /* Check the parameters */
399   assert_param(IS_TIM_INSTANCE(TIMx));
400   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
401   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
402 
403   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
404 
405   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
406   {
407     /* Select the Counter Mode */
408     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
409   }
410 
411   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
412   {
413     /* Set the clock division */
414     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
415   }
416 
417   /* Write to TIMx CR1 */
418   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
419 
420   /* Set the Autoreload value */
421   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
422 
423   /* Set the Prescaler value */
424   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
425 
426   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
427   {
428     /* Set the Repetition Counter value */
429     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
430   }
431 
432   /* Generate an update event to reload the Prescaler
433      and the repetition counter value (if applicable) immediately */
434   LL_TIM_GenerateEvent_UPDATE(TIMx);
435 
436   return SUCCESS;
437 }
438 
439 /**
440   * @brief  Set the fields of the TIMx output channel configuration data
441   *         structure to their default values.
442   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
443   *         (the output channel configuration data structure)
444   * @retval None
445   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)446 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
447 {
448   /* Set the default configuration */
449   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
450   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
451   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
452   TIM_OC_InitStruct->CompareValue = 0x00000000U;
453   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
454   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
455   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
456   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
457 }
458 
459 /**
460   * @brief  Configure the TIMx output channel.
461   * @param  TIMx Timer Instance
462   * @param  Channel This parameter can be one of the following values:
463   *         @arg @ref LL_TIM_CHANNEL_CH1
464   *         @arg @ref LL_TIM_CHANNEL_CH2
465   *         @arg @ref LL_TIM_CHANNEL_CH3
466   *         @arg @ref LL_TIM_CHANNEL_CH4
467   *         @arg @ref LL_TIM_CHANNEL_CH5
468   *         @arg @ref LL_TIM_CHANNEL_CH6
469   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
470   *         data structure)
471   * @note   OC5 and OC6 are not available for all F3 devices
472   * @retval An ErrorStatus enumeration value:
473   *          - SUCCESS: TIMx output channel is initialized
474   *          - ERROR: TIMx output channel is not initialized
475   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)476 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
477 {
478   ErrorStatus result = ERROR;
479 
480   switch (Channel)
481   {
482     case LL_TIM_CHANNEL_CH1:
483       result = OC1Config(TIMx, TIM_OC_InitStruct);
484       break;
485     case LL_TIM_CHANNEL_CH2:
486       result = OC2Config(TIMx, TIM_OC_InitStruct);
487       break;
488     case LL_TIM_CHANNEL_CH3:
489       result = OC3Config(TIMx, TIM_OC_InitStruct);
490       break;
491     case LL_TIM_CHANNEL_CH4:
492       result = OC4Config(TIMx, TIM_OC_InitStruct);
493       break;
494 #if defined(TIM_CCER_CC5E)
495     case LL_TIM_CHANNEL_CH5:
496       result = OC5Config(TIMx, TIM_OC_InitStruct);
497       break;
498 #endif /* TIM_CCER_CC5E */
499 #if defined(TIM_CCER_CC6E)
500     case LL_TIM_CHANNEL_CH6:
501       result = OC6Config(TIMx, TIM_OC_InitStruct);
502       break;
503 #endif /* TIM_CCER_CC6E */
504     default:
505       break;
506   }
507 
508   return result;
509 }
510 
511 /**
512   * @brief  Set the fields of the TIMx input channel configuration data
513   *         structure to their default values.
514   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
515   *         data structure)
516   * @retval None
517   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)518 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
519 {
520   /* Set the default configuration */
521   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
522   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
523   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
524   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
525 }
526 
527 /**
528   * @brief  Configure the TIMx input channel.
529   * @param  TIMx Timer Instance
530   * @param  Channel This parameter can be one of the following values:
531   *         @arg @ref LL_TIM_CHANNEL_CH1
532   *         @arg @ref LL_TIM_CHANNEL_CH2
533   *         @arg @ref LL_TIM_CHANNEL_CH3
534   *         @arg @ref LL_TIM_CHANNEL_CH4
535   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
536   *         structure)
537   * @retval An ErrorStatus enumeration value:
538   *          - SUCCESS: TIMx output channel is initialized
539   *          - ERROR: TIMx output channel is not initialized
540   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)541 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
542 {
543   ErrorStatus result = ERROR;
544 
545   switch (Channel)
546   {
547     case LL_TIM_CHANNEL_CH1:
548       result = IC1Config(TIMx, TIM_IC_InitStruct);
549       break;
550     case LL_TIM_CHANNEL_CH2:
551       result = IC2Config(TIMx, TIM_IC_InitStruct);
552       break;
553     case LL_TIM_CHANNEL_CH3:
554       result = IC3Config(TIMx, TIM_IC_InitStruct);
555       break;
556     case LL_TIM_CHANNEL_CH4:
557       result = IC4Config(TIMx, TIM_IC_InitStruct);
558       break;
559     default:
560       break;
561   }
562 
563   return result;
564 }
565 
566 /**
567   * @brief  Fills each TIM_EncoderInitStruct field with its default value
568   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
569   *         configuration data structure)
570   * @retval None
571   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)572 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
573 {
574   /* Set the default configuration */
575   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
576   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
577   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
578   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
579   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
580   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
581   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
582   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
583   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
584 }
585 
586 /**
587   * @brief  Configure the encoder interface of the timer instance.
588   * @param  TIMx Timer Instance
589   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
590   *         configuration data structure)
591   * @retval An ErrorStatus enumeration value:
592   *          - SUCCESS: TIMx registers are de-initialized
593   *          - ERROR: not applicable
594   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)595 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
596 {
597   uint32_t tmpccmr1;
598   uint32_t tmpccer;
599 
600   /* Check the parameters */
601   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
602   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
603   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
604   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
605   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
606   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
607   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
608   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
609   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
610   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
611 
612   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
613   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
614 
615   /* Get the TIMx CCMR1 register value */
616   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
617 
618   /* Get the TIMx CCER register value */
619   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
620 
621   /* Configure TI1 */
622   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
623   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
624   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
625   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
626 
627   /* Configure TI2 */
628   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
629   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
630   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
631   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
632 
633   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
634   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
635   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
636   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
637   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
638 
639   /* Set encoder mode */
640   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
641 
642   /* Write to TIMx CCMR1 */
643   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
644 
645   /* Write to TIMx CCER */
646   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
647 
648   return SUCCESS;
649 }
650 
651 #if defined TIM_CR2_MMS2
652 /**
653   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
654   *         structure to their default values.
655   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
656   *         configuration data structure)
657   * @retval None
658   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)659 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
660 {
661   /* Set the default configuration */
662   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
663   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
664   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
665   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
666 }
667 
668 /**
669   * @brief  Configure the Hall sensor interface of the timer instance.
670   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
671   *       to the TI1 input channel
672   * @note TIMx slave mode controller is configured in reset mode.
673           Selected internal trigger is TI1F_ED.
674   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
675   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
676   *       between 2 changes on the inputs. It gives information about motor speed.
677   * @note Channel 2 is configured in output PWM 2 mode.
678   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
679   * @note OC2REF is selected as trigger output on TRGO.
680   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
681   *       when TIMx operates in Hall sensor interface mode.
682   * @param  TIMx Timer Instance
683   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
684   *         interface configuration data structure)
685   * @retval An ErrorStatus enumeration value:
686   *          - SUCCESS: TIMx registers are de-initialized
687   *          - ERROR: not applicable
688   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)689 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
690 {
691   uint32_t tmpcr2;
692   uint32_t tmpccmr1;
693   uint32_t tmpccer;
694   uint32_t tmpsmcr;
695 
696   /* Check the parameters */
697   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
698   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
699   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
700   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
701 
702   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
703   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
704 
705   /* Get the TIMx CR2 register value */
706   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
707 
708   /* Get the TIMx CCMR1 register value */
709   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
710 
711   /* Get the TIMx CCER register value */
712   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
713 
714   /* Get the TIMx SMCR register value */
715   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
716 
717   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
718   tmpcr2 |= TIM_CR2_TI1S;
719 
720   /* OC2REF signal is used as trigger output (TRGO) */
721   tmpcr2 |= LL_TIM_TRGO_OC2REF;
722 
723   /* Configure the slave mode controller */
724   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
725   tmpsmcr |= LL_TIM_TS_TI1F_ED;
726   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
727 
728   /* Configure input channel 1 */
729   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
730   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
731   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
732   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
733 
734   /* Configure input channel 2 */
735   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
736   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
737 
738   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
739   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
740   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
741   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
742 
743   /* Write to TIMx CR2 */
744   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
745 
746   /* Write to TIMx SMCR */
747   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
748 
749   /* Write to TIMx CCMR1 */
750   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
751 
752   /* Write to TIMx CCER */
753   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
754 
755   /* Write to TIMx CCR2 */
756   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
757 
758   return SUCCESS;
759 }
760 #endif /* TIM_CR2_MMS2 */
761 
762 /**
763   * @brief  Set the fields of the Break and Dead Time configuration data structure
764   *         to their default values.
765   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
766   *         data structure)
767   * @retval None
768   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)769 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
770 {
771   /* Set the default configuration */
772   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
773   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
774   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
775   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
776   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
777   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
778 #if defined(TIM_BDTR_BKF)
779   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
780 #endif /* TIM_BDTR_BKF */
781 #if defined(TIM_BDTR_BK2E)
782   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
783   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
784   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
785 #endif /* TIM_BDTR_BK2E */
786   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
787 }
788 
789 /**
790   * @brief  Configure the Break and Dead Time feature of the timer instance.
791   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
792   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
793   *  can be necessary to configure all of them during the first write access to
794   *  the TIMx_BDTR register.
795   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
796   *       a timer instance provides a break input.
797   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
798   *       a timer instance provides a second break input.
799   * @param  TIMx Timer Instance
800   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
801   *         data structure)
802   * @retval An ErrorStatus enumeration value:
803   *          - SUCCESS: Break and Dead Time is initialized
804   *          - ERROR: not applicable
805   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)806 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
807 {
808   uint32_t tmpbdtr = 0;
809 
810   /* Check the parameters */
811   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
812   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
813   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
814   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
815   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
816   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
817   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
818 #if defined(TIM_BDTR_BKF)
819   assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
820 #endif /* TIM_BDTR_BKF */
821 
822   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
823   the OSSI State, the dead time value and the Automatic Output Enable Bit */
824 
825   /* Set the BDTR bits */
826   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
827   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
828   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
829   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
830   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
831   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
832   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
833 #if defined(TIM_BDTR_BKF)
834   MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
835 #endif /* TIM_BDTR_BKF */
836 #if defined(TIM_BDTR_BK2E)
837 
838   if (IS_TIM_BKIN2_INSTANCE(TIMx))
839   {
840     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
841     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
842     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
843 
844     /* Set the BREAK2 input related BDTR bit-fields */
845     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
846     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
847     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
848   }
849 #endif /* TIM_BDTR_BK2E */
850 
851   /* Set TIMx_BDTR */
852   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
853 
854   return SUCCESS;
855 }
856 /**
857   * @}
858   */
859 
860 /**
861   * @}
862   */
863 
864 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
865   *  @brief   Private functions
866   * @{
867   */
868 /**
869   * @brief  Configure the TIMx output channel 1.
870   * @param  TIMx Timer Instance
871   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
872   * @retval An ErrorStatus enumeration value:
873   *          - SUCCESS: TIMx registers are de-initialized
874   *          - ERROR: not applicable
875   */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)876 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
877 {
878   uint32_t tmpccmr1;
879   uint32_t tmpccer;
880   uint32_t tmpcr2;
881 
882   /* Check the parameters */
883   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
884   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
885   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
886   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
887 
888   /* Disable the Channel 1: Reset the CC1E Bit */
889   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
890 
891   /* Get the TIMx CCER register value */
892   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
893 
894   /* Get the TIMx CR2 register value */
895   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
896 
897   /* Get the TIMx CCMR1 register value */
898   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
899 
900   /* Reset Capture/Compare selection Bits */
901   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
902 
903   /* Set the Output Compare Mode */
904   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
905 
906   /* Set the Output Compare Polarity */
907   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
908 
909   /* Set the Output State */
910   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
911 
912   if (IS_TIM_BREAK_INSTANCE(TIMx))
913   {
914     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
915     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
916     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
917     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
918 
919     /* Set the complementary output Polarity */
920     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
921 
922     /* Set the complementary output State */
923     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
924 
925     /* Set the Output Idle state */
926     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
927 
928     /* Set the complementary output Idle state */
929     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
930   }
931 
932   /* Write to TIMx CR2 */
933   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
934 
935   /* Write to TIMx CCMR1 */
936   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
937 
938   /* Set the Capture Compare Register value */
939   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
940 
941   /* Write to TIMx CCER */
942   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
943 
944   return SUCCESS;
945 }
946 
947 /**
948   * @brief  Configure the TIMx output channel 2.
949   * @param  TIMx Timer Instance
950   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
951   * @retval An ErrorStatus enumeration value:
952   *          - SUCCESS: TIMx registers are de-initialized
953   *          - ERROR: not applicable
954   */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)955 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
956 {
957   uint32_t tmpccmr1;
958   uint32_t tmpccer;
959   uint32_t tmpcr2;
960 
961   /* Check the parameters */
962   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
963   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
964   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
965   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
966 
967   /* Disable the Channel 2: Reset the CC2E Bit */
968   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
969 
970   /* Get the TIMx CCER register value */
971   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
972 
973   /* Get the TIMx CR2 register value */
974   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
975 
976   /* Get the TIMx CCMR1 register value */
977   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
978 
979   /* Reset Capture/Compare selection Bits */
980   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
981 
982   /* Select the Output Compare Mode */
983   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
984 
985   /* Set the Output Compare Polarity */
986   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
987 
988   /* Set the Output State */
989   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
990 
991   if (IS_TIM_BREAK_INSTANCE(TIMx))
992   {
993     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
994     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
995     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
996     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
997 
998     /* Set the complementary output Polarity */
999     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
1000 
1001     /* Set the complementary output State */
1002     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
1003 
1004     /* Set the Output Idle state */
1005     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
1006 
1007 #if defined(STM32F373xC) || defined(STM32F378xx)
1008 #else
1009     /* Set the complementary output Idle state */
1010     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
1011 #endif
1012   }
1013 
1014   /* Write to TIMx CR2 */
1015   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1016 
1017   /* Write to TIMx CCMR1 */
1018   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
1019 
1020   /* Set the Capture Compare Register value */
1021   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
1022 
1023   /* Write to TIMx CCER */
1024   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1025 
1026   return SUCCESS;
1027 }
1028 
1029 /**
1030   * @brief  Configure the TIMx output channel 3.
1031   * @param  TIMx Timer Instance
1032   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
1033   * @retval An ErrorStatus enumeration value:
1034   *          - SUCCESS: TIMx registers are de-initialized
1035   *          - ERROR: not applicable
1036   */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1037 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1038 {
1039   uint32_t tmpccmr2;
1040   uint32_t tmpccer;
1041   uint32_t tmpcr2;
1042 
1043   /* Check the parameters */
1044   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1045   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1046   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1047   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1048 
1049   /* Disable the Channel 3: Reset the CC3E Bit */
1050   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
1051 
1052   /* Get the TIMx CCER register value */
1053   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
1054 
1055   /* Get the TIMx CR2 register value */
1056   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1057 
1058   /* Get the TIMx CCMR2 register value */
1059   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1060 
1061   /* Reset Capture/Compare selection Bits */
1062   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
1063 
1064   /* Select the Output Compare Mode */
1065   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
1066 
1067   /* Set the Output Compare Polarity */
1068   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
1069 
1070   /* Set the Output State */
1071   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
1072 
1073   if (IS_TIM_BREAK_INSTANCE(TIMx))
1074   {
1075     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1076     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1077     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1078     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1079 
1080     /* Set the complementary output Polarity */
1081     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
1082 
1083     /* Set the complementary output State */
1084     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
1085 
1086 #if defined(STM32F373xC) || defined(STM32F378xx)
1087 #else
1088     /* Set the Output Idle state */
1089     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
1090 
1091     /* Set the complementary output Idle state */
1092     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1093 #endif
1094   }
1095 
1096   /* Write to TIMx CR2 */
1097   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1098 
1099   /* Write to TIMx CCMR2 */
1100   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1101 
1102   /* Set the Capture Compare Register value */
1103   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1104 
1105   /* Write to TIMx CCER */
1106   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1107 
1108   return SUCCESS;
1109 }
1110 
1111 /**
1112   * @brief  Configure the TIMx output channel 4.
1113   * @param  TIMx Timer Instance
1114   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1115   * @retval An ErrorStatus enumeration value:
1116   *          - SUCCESS: TIMx registers are de-initialized
1117   *          - ERROR: not applicable
1118   */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1119 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1120 {
1121   uint32_t tmpccmr2;
1122   uint32_t tmpccer;
1123   uint32_t tmpcr2;
1124 
1125   /* Check the parameters */
1126   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1127   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1128   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1129   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1130 
1131   /* Disable the Channel 4: Reset the CC4E Bit */
1132   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1133 
1134   /* Get the TIMx CCER register value */
1135   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1136 
1137   /* Get the TIMx CR2 register value */
1138   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1139 
1140   /* Get the TIMx CCMR2 register value */
1141   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1142 
1143   /* Reset Capture/Compare selection Bits */
1144   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1145 
1146   /* Select the Output Compare Mode */
1147   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1148 
1149   /* Set the Output Compare Polarity */
1150   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1151 
1152   /* Set the Output State */
1153   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1154 
1155   if (IS_TIM_BREAK_INSTANCE(TIMx))
1156   {
1157     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1158 
1159 #if defined(STM32F373xC) || defined(STM32F378xx)
1160 #else
1161     /* Set the Output Idle state */
1162     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1163 #endif
1164   }
1165 
1166   /* Write to TIMx CR2 */
1167   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1168 
1169   /* Write to TIMx CCMR2 */
1170   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1171 
1172   /* Set the Capture Compare Register value */
1173   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1174 
1175   /* Write to TIMx CCER */
1176   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1177 
1178   return SUCCESS;
1179 }
1180 
1181 #if defined(TIM_CCER_CC5E)
1182 /**
1183   * @brief  Configure the TIMx output channel 5.
1184   * @param  TIMx Timer Instance
1185   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1186   * @note   OC5 is not available for all F3 devices
1187   * @retval An ErrorStatus enumeration value:
1188   *          - SUCCESS: TIMx registers are de-initialized
1189   *          - ERROR: not applicable
1190   */
OC5Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1191 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1192 {
1193   uint32_t tmpccmr3;
1194   uint32_t tmpccer;
1195 
1196   /* Check the parameters */
1197   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1198   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1199   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1200   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1201   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1202   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1203 
1204   /* Disable the Channel 5: Reset the CC5E Bit */
1205   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1206 
1207   /* Get the TIMx CCER register value */
1208   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1209 
1210   /* Get the TIMx CCMR3 register value */
1211   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1212 
1213   /* Select the Output Compare Mode */
1214   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1215 
1216   /* Set the Output Compare Polarity */
1217   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1218 
1219   /* Set the Output State */
1220   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1221 
1222   if (IS_TIM_BREAK_INSTANCE(TIMx))
1223   {
1224     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1225     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1226 
1227     /* Set the Output Idle state */
1228     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1229 
1230   }
1231 
1232   /* Write to TIMx CCMR3 */
1233   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1234 
1235   /* Set the Capture Compare Register value */
1236   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1237 
1238   /* Write to TIMx CCER */
1239   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1240 
1241   return SUCCESS;
1242 }
1243 #endif /* TIM_CCER_CC5E */
1244 
1245 #if defined(TIM_CCER_CC6E)
1246 /**
1247   * @brief  Configure the TIMx output channel 6.
1248   * @param  TIMx Timer Instance
1249   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1250   * @note   OC6 is not available for all F3 devices
1251   * @retval An ErrorStatus enumeration value:
1252   *          - SUCCESS: TIMx registers are de-initialized
1253   *          - ERROR: not applicable
1254   */
OC6Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1255 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1256 {
1257   uint32_t tmpccmr3;
1258   uint32_t tmpccer;
1259 
1260   /* Check the parameters */
1261   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1262   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1263   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1264   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1265   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1266   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1267 
1268   /* Disable the Channel 5: Reset the CC6E Bit */
1269   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1270 
1271   /* Get the TIMx CCER register value */
1272   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1273 
1274   /* Get the TIMx CCMR3 register value */
1275   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1276 
1277   /* Select the Output Compare Mode */
1278   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1279 
1280   /* Set the Output Compare Polarity */
1281   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1282 
1283   /* Set the Output State */
1284   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1285 
1286   if (IS_TIM_BREAK_INSTANCE(TIMx))
1287   {
1288     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1289     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1290 
1291     /* Set the Output Idle state */
1292     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1293   }
1294 
1295   /* Write to TIMx CCMR3 */
1296   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1297 
1298   /* Set the Capture Compare Register value */
1299   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1300 
1301   /* Write to TIMx CCER */
1302   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1303 
1304   return SUCCESS;
1305 }
1306 #endif /* TIM_CCER_CC6E */
1307 
1308 /**
1309   * @brief  Configure the TIMx input channel 1.
1310   * @param  TIMx Timer Instance
1311   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1312   * @retval An ErrorStatus enumeration value:
1313   *          - SUCCESS: TIMx registers are de-initialized
1314   *          - ERROR: not applicable
1315   */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1316 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1317 {
1318   /* Check the parameters */
1319   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1320   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1321   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1322   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1323   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1324 
1325   /* Disable the Channel 1: Reset the CC1E Bit */
1326   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1327 
1328   /* Select the Input and set the filter and the prescaler value */
1329   MODIFY_REG(TIMx->CCMR1,
1330              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1331              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1332 
1333   /* Select the Polarity and set the CC1E Bit */
1334   MODIFY_REG(TIMx->CCER,
1335              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1336              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1337 
1338   return SUCCESS;
1339 }
1340 
1341 /**
1342   * @brief  Configure the TIMx input channel 2.
1343   * @param  TIMx Timer Instance
1344   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1345   * @retval An ErrorStatus enumeration value:
1346   *          - SUCCESS: TIMx registers are de-initialized
1347   *          - ERROR: not applicable
1348   */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1349 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1350 {
1351   /* Check the parameters */
1352   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1353   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1354   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1355   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1356   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1357 
1358   /* Disable the Channel 2: Reset the CC2E Bit */
1359   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1360 
1361   /* Select the Input and set the filter and the prescaler value */
1362   MODIFY_REG(TIMx->CCMR1,
1363              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1364              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1365 
1366   /* Select the Polarity and set the CC2E Bit */
1367   MODIFY_REG(TIMx->CCER,
1368              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1369              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1370 
1371   return SUCCESS;
1372 }
1373 
1374 /**
1375   * @brief  Configure the TIMx input channel 3.
1376   * @param  TIMx Timer Instance
1377   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1378   * @retval An ErrorStatus enumeration value:
1379   *          - SUCCESS: TIMx registers are de-initialized
1380   *          - ERROR: not applicable
1381   */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1382 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1383 {
1384   /* Check the parameters */
1385   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1386   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1387   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1388   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1389   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1390 
1391   /* Disable the Channel 3: Reset the CC3E Bit */
1392   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1393 
1394   /* Select the Input and set the filter and the prescaler value */
1395   MODIFY_REG(TIMx->CCMR2,
1396              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1397              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1398 
1399   /* Select the Polarity and set the CC3E Bit */
1400   MODIFY_REG(TIMx->CCER,
1401              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1402              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1403 
1404   return SUCCESS;
1405 }
1406 
1407 /**
1408   * @brief  Configure the TIMx input channel 4.
1409   * @param  TIMx Timer Instance
1410   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1411   * @retval An ErrorStatus enumeration value:
1412   *          - SUCCESS: TIMx registers are de-initialized
1413   *          - ERROR: not applicable
1414   */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1415 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1416 {
1417   /* Check the parameters */
1418   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1419   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1420   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1421   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1422   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1423 
1424   /* Disable the Channel 4: Reset the CC4E Bit */
1425   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1426 
1427   /* Select the Input and set the filter and the prescaler value */
1428   MODIFY_REG(TIMx->CCMR2,
1429              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1430              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1431 
1432   /* Select the Polarity and set the CC4E Bit */
1433   MODIFY_REG(TIMx->CCER,
1434              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1435              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1436 
1437   return SUCCESS;
1438 }
1439 
1440 
1441 /**
1442   * @}
1443   */
1444 
1445 /**
1446   * @}
1447   */
1448 
1449 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM12 || TIM13 || TIM14 || TIM15 || TIM16 || TIM17 || TIM18 || TIM19 || TIM20 */
1450 
1451 /**
1452   * @}
1453   */
1454 
1455 #endif /* USE_FULL_LL_DRIVER */
1456 
1457