1 /**
2 ******************************************************************************
3 * @file stm32f3xx_hal_rtc.c
4 * @author MCD Application Team
5 * @brief RTC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Real-Time Clock (RTC) peripheral:
8 * + Initialization and de-initialization functions
9 * + Calendar (Time and Date) configuration functions
10 * + Alarms (Alarm A and Alarm B) configuration functions
11 * + Peripheral Control functions
12 * + Peripheral State functions
13 *
14 ******************************************************************************
15 * @attention
16 *
17 * Copyright (c) 2016 STMicroelectronics.
18 * All rights reserved.
19 *
20 * This software is licensed under terms that can be found in the LICENSE file
21 * in the root directory of this software component.
22 * If no LICENSE file comes with this software, it is provided AS-IS.
23 *
24 ******************************************************************************
25 @verbatim
26 ==============================================================================
27 ##### RTC and Backup Domain Operating Condition #####
28 ==============================================================================
29 [..] The real-time clock (RTC) and the RTC backup registers can be powered
30 from the VBAT voltage when the main VDD supply is powered off.
31 To retain the content of the RTC backup registers and supply the RTC when
32 VDD is turned off, VBAT pin can be connected to an optional standby
33 voltage supplied by a battery or by another source.
34
35 [..] To allow the RTC operating even when the main digital supply (VDD) is turned
36 off, the VBAT pin powers the following blocks:
37 (#) The RTC
38 (#) The LSE oscillator
39 (#) PC13 to PC15 I/Os, plus PA0 and PE6 I/Os (when available)
40
41 [..] When the backup domain is supplied by VDD (analog switch connected to VDD),
42 the following pins are available:
43 (#) PC14 and PC15 can be used as either GPIO or LSE pins
44 (#) PC13 can be used as a GPIO or as the RTC_AF1 pin
45 (#) PA0 can be used as a GPIO or as the RTC_AF2 pin
46 (#) PE6 can be used as a GPIO or as the RTC_AF3 pin
47
48 [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
49 because VDD is not present), the following pins are available:
50 (#) PC14 and PC15 can be used as LSE pins only
51 (#) PC13 can be used as the RTC_AF1 pin
52 (#) PA0 can be used as the RTC_AF2 pin
53 (#) PE6 can be used as the RTC_AF3 pin
54
55 ##### Backup Domain Reset #####
56 ==================================================================
57 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
58 to their reset values.
59 [..] A backup domain reset is generated when one of the following events occurs:
60 (#) Software reset, triggered by setting the BDRST bit in the
61 RCC Backup domain control register (RCC_BDCR).
62 (#) VDD or VBAT power on, if both supplies have previously been powered off.
63
64 ##### Backup Domain Access #####
65 ==================================================================
66 [..] After reset, the backup domain (RTC registers and RTC backup data registers)
67 is protected against possible unwanted write accesses.
68 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
69 (+) Enable the Power Controller (PWR) APB1 interface clock using the
70 __HAL_RCC_PWR_CLK_ENABLE() macro.
71 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
72 (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() macro.
73 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
74
75 ==============================================================================
76 ##### How to use this driver #####
77 ==============================================================================
78 [..]
79 (+) Enable the RTC domain access (see description in the section above).
80 (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
81 format using the HAL_RTC_Init() function.
82
83 *** Time and Date configuration ***
84 ===================================
85 [..]
86 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
87 and HAL_RTC_SetDate() functions.
88 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate()
89 functions.
90 (+) To manage the RTC summer or winter time change, use the following
91 functions:
92 (++) HAL_RTC_DST_Add1Hour() or HAL_RTC_DST_Sub1Hour to add or subtract
93 1 hour from the calendar time.
94 (++) HAL_RTC_DST_SetStoreOperation() or HAL_RTC_DST_ClearStoreOperation
95 to memorize whether the time change has been performed or not.
96
97 *** Alarm configuration ***
98 ===========================
99 [..]
100 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
101 You can also configure the RTC Alarm with interrupt mode using the
102 HAL_RTC_SetAlarm_IT() function.
103 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
104
105 ##### RTC and low power modes #####
106 ==================================================================
107 [..] The MCU can be woken up from a low power mode by an RTC alternate
108 function.
109 [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
110 RTC wakeup, RTC tamper event detection and RTC timestamp event detection.
111 These RTC alternate functions can wake up the system from the Stop and
112 Standby low power modes.
113 [..] The system can also wake up from low power modes without depending
114 on an external interrupt (Auto-wakeup mode), by using the RTC alarm
115 or the RTC wakeup events.
116 [..] The RTC provides a programmable time base for waking up from the
117 Stop or Standby mode at regular intervals.
118 Wakeup from STOP and STANDBY modes is possible only when the RTC clock
119 source is LSE or LSI.
120
121 *** Callback registration ***
122 =============================================
123 [..]
124 When the compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
125 not defined, the callback registration feature is not available and all
126 callbacks are set to the corresponding weak functions.
127 This is the recommended configuration in order to optimize memory/code
128 consumption footprint/performances.
129 [..]
130 The compilation define USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
131 allows the user to configure dynamically the driver callbacks.
132 Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
133 [..]
134 Function HAL_RTC_RegisterCallback() allows to register following callbacks:
135 (+) AlarmAEventCallback : RTC Alarm A Event callback.
136 (+) AlarmBEventCallback : RTC Alarm B Event callback.
137 (+) TimeStampEventCallback : RTC Timestamp Event callback.
138 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
139 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
140 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
141 (+) Tamper3EventCallback : RTC Tamper 3 Event callback. (*)
142 (+) MspInitCallback : RTC MspInit callback.
143 (+) MspDeInitCallback : RTC MspDeInit callback.
144
145 (*) value not applicable to all devices.
146 [..]
147 This function takes as parameters the HAL peripheral handle, the Callback ID
148 and a pointer to the user callback function.
149 [..]
150 Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
151 weak function.
152 HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
153 and the Callback ID.
154 This function allows to reset following callbacks:
155 (+) AlarmAEventCallback : RTC Alarm A Event callback.
156 (+) AlarmBEventCallback : RTC Alarm B Event callback.
157 (+) TimeStampEventCallback : RTC Timestamp Event callback.
158 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
159 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
160 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
161 (+) Tamper3EventCallback : RTC Tamper 3 Event callback. (*)
162 (+) MspInitCallback : RTC MspInit callback.
163 (+) MspDeInitCallback : RTC MspDeInit callback.
164
165 (*) value not applicable to all devices.
166 [..]
167 By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
168 all callbacks are set to the corresponding weak functions:
169 examples AlarmAEventCallback(), TimeStampEventCallback().
170 Exception done for MspInit() and MspDeInit() callbacks that are reset to the
171 legacy weak function in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these
172 callbacks are null (not registered beforehand).
173 If not, MspInit() or MspDeInit() are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
174 keep and use the user MspInit()/MspDeInit() callbacks (registered beforehand).
175 [..]
176 Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
177 Exception done for MspInit() and MspDeInit() that can be registered/unregistered
178 in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state.
179 Thus registered (user) MspInit()/MspDeInit() callbacks can be used during the
180 Init/DeInit.
181 In that case first register the MspInit()/MspDeInit() user callbacks using
182 HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit() or HAL_RTC_Init()
183 functions.
184
185 @endverbatim
186 ******************************************************************************
187 */
188
189 /* Includes ------------------------------------------------------------------*/
190 #include "stm32f3xx_hal.h"
191
192 /** @addtogroup STM32F3xx_HAL_Driver
193 * @{
194 */
195
196 /** @defgroup RTC RTC
197 * @brief RTC HAL module driver
198 * @{
199 */
200
201 #ifdef HAL_RTC_MODULE_ENABLED
202
203 /* Private typedef -----------------------------------------------------------*/
204 /* Private define ------------------------------------------------------------*/
205 /* Private macro -------------------------------------------------------------*/
206 /* Private variables ---------------------------------------------------------*/
207 /* Private function prototypes -----------------------------------------------*/
208 /* Exported functions --------------------------------------------------------*/
209
210 /** @defgroup RTC_Exported_Functions RTC Exported Functions
211 * @{
212 */
213
214 /** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions
215 * @brief Initialization and Configuration functions
216 *
217 @verbatim
218 ===============================================================================
219 ##### Initialization and de-initialization functions #####
220 ===============================================================================
221 [..] This section provides functions allowing to initialize and configure the
222 RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
223 RTC registers Write protection, enter and exit the RTC initialization mode,
224 RTC registers synchronization check and reference clock detection enable.
225 (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
226 It is split into 2 programmable prescalers to minimize power consumption.
227 (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
228 (++) When both prescalers are used, it is recommended to configure the
229 asynchronous prescaler to a high value to minimize power consumption.
230 (#) All RTC registers are Write protected. Writing to the RTC registers
231 is enabled by writing a key into the Write Protection register, RTC_WPR.
232 (#) To configure the RTC Calendar, user application should enter
233 initialization mode. In this mode, the calendar counter is stopped
234 and its value can be updated. When the initialization sequence is
235 complete, the calendar restarts counting after 4 RTCCLK cycles.
236 (#) To read the calendar through the shadow registers after Calendar
237 initialization, calendar update or after wakeup from low power modes
238 the software must first clear the RSF flag. The software must then
239 wait until it is set again before reading the calendar, which means
240 that the calendar registers have been correctly copied into the
241 RTC_TR and RTC_DR shadow registers. The HAL_RTC_WaitForSynchro() function
242 implements the above software sequence (RSF clear and RSF check).
243
244 @endverbatim
245 * @{
246 */
247
248 /**
249 * @brief Initializes the RTC peripheral
250 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
251 * the configuration information for RTC.
252 * @retval HAL status
253 */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)254 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
255 {
256 HAL_StatusTypeDef status = HAL_ERROR;
257
258 /* Check RTC handler validity */
259 if (hrtc == NULL)
260 {
261 return HAL_ERROR;
262 }
263
264 /* Check the parameters */
265 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
266 assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
267 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
268 assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
269 assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
270 assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
271 assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
272
273 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
274 if (hrtc->State == HAL_RTC_STATE_RESET)
275 {
276 /* Allocate lock resource and initialize it */
277 hrtc->Lock = HAL_UNLOCKED;
278
279 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
280 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
281 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
282 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
283 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
284 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
285 #if defined(RTC_TAMPER3_SUPPORT)
286 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
287 #endif /* RTC_TAMPER3_SUPPORT */
288
289 if (hrtc->MspInitCallback == NULL)
290 {
291 hrtc->MspInitCallback = HAL_RTC_MspInit;
292 }
293 /* Init the low level hardware */
294 hrtc->MspInitCallback(hrtc);
295
296 if (hrtc->MspDeInitCallback == NULL)
297 {
298 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
299 }
300 }
301 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
302 if (hrtc->State == HAL_RTC_STATE_RESET)
303 {
304 /* Allocate lock resource and initialize it */
305 hrtc->Lock = HAL_UNLOCKED;
306
307 /* Initialize RTC MSP */
308 HAL_RTC_MspInit(hrtc);
309 }
310 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
311
312 /* Set RTC state */
313 hrtc->State = HAL_RTC_STATE_BUSY;
314
315 /* Check whether the calendar needs to be initialized */
316 if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
317 {
318 /* Disable the write protection for RTC registers */
319 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
320
321 /* Enter Initialization mode */
322 status = RTC_EnterInitMode(hrtc);
323
324 if (status == HAL_OK)
325 {
326 /* Clear RTC_CR FMT, OSEL and POL Bits */
327 hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
328 /* Set RTC_CR register */
329 hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
330
331 /* Configure the RTC PRER */
332 hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
333 hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
334
335 /* Exit Initialization mode */
336 status = RTC_ExitInitMode(hrtc);
337 }
338
339 if (status == HAL_OK)
340 {
341 hrtc->Instance->TAFCR &= (uint32_t)~RTC_OUTPUT_TYPE_PUSHPULL;
342 hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
343 }
344
345 /* Enable the write protection for RTC registers */
346 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
347 }
348 else
349 {
350 /* The calendar is already initialized */
351 status = HAL_OK;
352 }
353
354 if (status == HAL_OK)
355 {
356 hrtc->State = HAL_RTC_STATE_READY;
357 }
358
359 return status;
360 }
361
362 /**
363 * @brief DeInitializes the RTC peripheral
364 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
365 * the configuration information for RTC.
366 * @note This function does not reset the RTC Backup Data registers.
367 * @retval HAL status
368 */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)369 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
370 {
371 HAL_StatusTypeDef status = HAL_ERROR;
372
373 /* Check the parameters */
374 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
375
376 /* Set RTC state */
377 hrtc->State = HAL_RTC_STATE_BUSY;
378
379 /* Disable the write protection for RTC registers */
380 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
381
382 /* Enter Initialization mode */
383 status = RTC_EnterInitMode(hrtc);
384
385 if (status == HAL_OK)
386 {
387 /* Reset RTC registers */
388 hrtc->Instance->TR = 0x00000000U;
389 hrtc->Instance->DR = (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0);
390 hrtc->Instance->CR &= 0x00000000U;
391 hrtc->Instance->WUTR = RTC_WUTR_WUT;
392 hrtc->Instance->PRER = (uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU);
393 hrtc->Instance->ALRMAR = 0x00000000U;
394 hrtc->Instance->ALRMBR = 0x00000000U;
395 hrtc->Instance->CALR = 0x00000000U;
396 hrtc->Instance->SHIFTR = 0x00000000U;
397 hrtc->Instance->ALRMASSR = 0x00000000U;
398 hrtc->Instance->ALRMBSSR = 0x00000000U;
399
400 /* Exit Initialization mode */
401 status = RTC_ExitInitMode(hrtc);
402 }
403
404 /* Enable the write protection for RTC registers */
405 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
406
407 if (status == HAL_OK)
408 {
409 /* Reset Tamper and alternate functions configuration register */
410 hrtc->Instance->TAFCR = 0x00000000U;
411
412 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
413 if (hrtc->MspDeInitCallback == NULL)
414 {
415 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
416 }
417
418 /* DeInit the low level hardware: CLOCK, NVIC.*/
419 hrtc->MspDeInitCallback(hrtc);
420 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
421 /* De-Initialize RTC MSP */
422 HAL_RTC_MspDeInit(hrtc);
423 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
424
425 hrtc->State = HAL_RTC_STATE_RESET;
426 }
427
428 /* Release Lock */
429 __HAL_UNLOCK(hrtc);
430
431 return status;
432 }
433
434 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
435 /**
436 * @brief Registers a User RTC Callback
437 * To be used instead of the weak predefined callback
438 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
439 * the configuration information for RTC.
440 * @param CallbackID ID of the callback to be registered
441 * This parameter can be one of the following values:
442 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
443 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
444 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
445 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
446 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Event Callback ID
447 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Event Callback ID
448 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Event Callback ID (*)
449 * @arg @ref HAL_RTC_MSPINIT_CB_ID MSP Init callback ID
450 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID MSP DeInit callback ID
451 *
452 * (*) value not applicable to all devices.
453 * @param pCallback pointer to the Callback function
454 * @retval HAL status
455 */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)456 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
457 {
458 HAL_StatusTypeDef status = HAL_OK;
459
460 if (pCallback == NULL)
461 {
462 return HAL_ERROR;
463 }
464
465 /* Process locked */
466 __HAL_LOCK(hrtc);
467
468 if (HAL_RTC_STATE_READY == hrtc->State)
469 {
470 switch (CallbackID)
471 {
472 case HAL_RTC_ALARM_A_EVENT_CB_ID :
473 hrtc->AlarmAEventCallback = pCallback;
474 break;
475
476 case HAL_RTC_ALARM_B_EVENT_CB_ID :
477 hrtc->AlarmBEventCallback = pCallback;
478 break;
479
480 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
481 hrtc->TimeStampEventCallback = pCallback;
482 break;
483
484 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
485 hrtc->WakeUpTimerEventCallback = pCallback;
486 break;
487
488 case HAL_RTC_TAMPER1_EVENT_CB_ID :
489 hrtc->Tamper1EventCallback = pCallback;
490 break;
491
492 case HAL_RTC_TAMPER2_EVENT_CB_ID :
493 hrtc->Tamper2EventCallback = pCallback;
494 break;
495
496 #if defined(RTC_TAMPER3_SUPPORT)
497 case HAL_RTC_TAMPER3_EVENT_CB_ID :
498 hrtc->Tamper3EventCallback = pCallback;
499 break;
500 #endif /* RTC_TAMPER3_SUPPORT */
501
502 case HAL_RTC_MSPINIT_CB_ID :
503 hrtc->MspInitCallback = pCallback;
504 break;
505
506 case HAL_RTC_MSPDEINIT_CB_ID :
507 hrtc->MspDeInitCallback = pCallback;
508 break;
509
510 default :
511 /* Return error status */
512 status = HAL_ERROR;
513 break;
514 }
515 }
516 else if (HAL_RTC_STATE_RESET == hrtc->State)
517 {
518 switch (CallbackID)
519 {
520 case HAL_RTC_MSPINIT_CB_ID :
521 hrtc->MspInitCallback = pCallback;
522 break;
523
524 case HAL_RTC_MSPDEINIT_CB_ID :
525 hrtc->MspDeInitCallback = pCallback;
526 break;
527
528 default :
529 /* Return error status */
530 status = HAL_ERROR;
531 break;
532 }
533 }
534 else
535 {
536 /* Return error status */
537 status = HAL_ERROR;
538 }
539
540 /* Release Lock */
541 __HAL_UNLOCK(hrtc);
542
543 return status;
544 }
545
546 /**
547 * @brief Unregisters an RTC Callback
548 * RTC callback is redirected to the weak predefined callback
549 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
550 * the configuration information for RTC.
551 * @param CallbackID ID of the callback to be unregistered
552 * This parameter can be one of the following values:
553 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
554 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
555 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
556 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
557 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Event Callback ID
558 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Event Callback ID
559 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Event Callback ID (*)
560 * @arg @ref HAL_RTC_MSPINIT_CB_ID MSP Init callback ID
561 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID MSP DeInit callback ID
562 *
563 * (*) value not applicable to all devices.
564 * @retval HAL status
565 */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)566 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
567 {
568 HAL_StatusTypeDef status = HAL_OK;
569
570 /* Process locked */
571 __HAL_LOCK(hrtc);
572
573 if (HAL_RTC_STATE_READY == hrtc->State)
574 {
575 switch (CallbackID)
576 {
577 case HAL_RTC_ALARM_A_EVENT_CB_ID :
578 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
579 break;
580
581 case HAL_RTC_ALARM_B_EVENT_CB_ID :
582 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
583 break;
584
585 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
586 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
587 break;
588
589 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
590 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
591 break;
592
593 case HAL_RTC_TAMPER1_EVENT_CB_ID :
594 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
595 break;
596
597 case HAL_RTC_TAMPER2_EVENT_CB_ID :
598 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
599 break;
600
601 #if defined(RTC_TAMPER3_SUPPORT)
602 case HAL_RTC_TAMPER3_EVENT_CB_ID :
603 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
604 break;
605 #endif /* RTC_TAMPER3_SUPPORT */
606
607 case HAL_RTC_MSPINIT_CB_ID :
608 hrtc->MspInitCallback = HAL_RTC_MspInit;
609 break;
610
611 case HAL_RTC_MSPDEINIT_CB_ID :
612 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
613 break;
614
615 default :
616 /* Return error status */
617 status = HAL_ERROR;
618 break;
619 }
620 }
621 else if (HAL_RTC_STATE_RESET == hrtc->State)
622 {
623 switch (CallbackID)
624 {
625 case HAL_RTC_MSPINIT_CB_ID :
626 hrtc->MspInitCallback = HAL_RTC_MspInit;
627 break;
628
629 case HAL_RTC_MSPDEINIT_CB_ID :
630 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
631 break;
632
633 default :
634 /* Return error status */
635 status = HAL_ERROR;
636 break;
637 }
638 }
639 else
640 {
641 /* Return error status */
642 status = HAL_ERROR;
643 }
644
645 /* Release Lock */
646 __HAL_UNLOCK(hrtc);
647
648 return status;
649 }
650 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
651
652 /**
653 * @brief Initializes the RTC MSP.
654 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
655 * the configuration information for RTC.
656 * @retval None
657 */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)658 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
659 {
660 /* Prevent unused argument(s) compilation warning */
661 UNUSED(hrtc);
662
663 /* NOTE: This function should not be modified, when the callback is needed,
664 the HAL_RTC_MspInit could be implemented in the user file
665 */
666 }
667
668 /**
669 * @brief DeInitializes the RTC MSP.
670 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
671 * the configuration information for RTC.
672 * @retval None
673 */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)674 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
675 {
676 /* Prevent unused argument(s) compilation warning */
677 UNUSED(hrtc);
678
679 /* NOTE: This function should not be modified, when the callback is needed,
680 the HAL_RTC_MspDeInit could be implemented in the user file
681 */
682 }
683
684 /**
685 * @}
686 */
687
688 /** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions
689 * @brief RTC Time and Date functions
690 *
691 @verbatim
692 ===============================================================================
693 ##### RTC Time and Date functions #####
694 ===============================================================================
695
696 [..] This section provides functions allowing to configure Time and Date features
697
698 @endverbatim
699 * @{
700 */
701
702 /**
703 * @brief Sets RTC current time.
704 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
705 * the configuration information for RTC.
706 * @param sTime Pointer to Time structure
707 * @note DayLightSaving and StoreOperation interfaces are deprecated.
708 * To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions.
709 * @param Format Specifies the format of the entered parameters.
710 * This parameter can be one of the following values:
711 * @arg RTC_FORMAT_BIN: Binary data format
712 * @arg RTC_FORMAT_BCD: BCD data format
713 * @retval HAL status
714 */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)715 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
716 {
717 uint32_t tmpreg = 0U;
718 HAL_StatusTypeDef status;
719
720 /* Check the parameters */
721 assert_param(IS_RTC_FORMAT(Format));
722 assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
723 assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
724
725 /* Process Locked */
726 __HAL_LOCK(hrtc);
727
728 hrtc->State = HAL_RTC_STATE_BUSY;
729
730 if (Format == RTC_FORMAT_BIN)
731 {
732 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
733 {
734 assert_param(IS_RTC_HOUR12(sTime->Hours));
735 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
736 }
737 else
738 {
739 sTime->TimeFormat = 0x00U;
740 assert_param(IS_RTC_HOUR24(sTime->Hours));
741 }
742 assert_param(IS_RTC_MINUTES(sTime->Minutes));
743 assert_param(IS_RTC_SECONDS(sTime->Seconds));
744
745 tmpreg = (uint32_t)(( (uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
746 ( (uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
747 ( (uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
748 (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
749 }
750 else
751 {
752 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
753 {
754 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
755 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
756 }
757 else
758 {
759 sTime->TimeFormat = 0x00U;
760 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
761 }
762 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
763 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
764 tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
765 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
766 ((uint32_t) sTime->Seconds) | \
767 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
768 }
769
770 /* Disable the write protection for RTC registers */
771 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
772
773 /* Enter Initialization mode */
774 status = RTC_EnterInitMode(hrtc);
775
776 if (status == HAL_OK)
777 {
778 /* Set the RTC_TR register */
779 hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
780
781 /* Clear the bits to be configured (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
782 hrtc->Instance->CR &= (uint32_t)~RTC_CR_BKP;
783
784 /* Configure the RTC_CR register (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
785 hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
786
787 /* Exit Initialization mode */
788 status = RTC_ExitInitMode(hrtc);
789 }
790
791 if (status == HAL_OK)
792 {
793 hrtc->State = HAL_RTC_STATE_READY;
794 }
795
796 /* Enable the write protection for RTC registers */
797 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
798
799 /* Process Unlocked */
800 __HAL_UNLOCK(hrtc);
801
802 return status;
803 }
804
805 /**
806 * @brief Gets RTC current time.
807 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
808 * the configuration information for RTC.
809 * @param sTime Pointer to Time structure
810 * @param Format Specifies the format of the entered parameters.
811 * This parameter can be one of the following values:
812 * @arg RTC_FORMAT_BIN: Binary data format
813 * @arg RTC_FORMAT_BCD: BCD data format
814 * @note You can use SubSeconds and SecondFraction (sTime structure fields
815 * returned) to convert SubSeconds value in second fraction ratio with
816 * time unit following generic formula:
817 * Second fraction ratio * time_unit =
818 * [(SecondFraction - SubSeconds) / (SecondFraction + 1)] * time_unit
819 * This conversion can be performed only if no shift operation is pending
820 * (ie. SHFP=0) when PREDIV_S >= SS
821 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
822 * values in the higher-order calendar shadow registers to ensure
823 * consistency between the time and date values.
824 * Reading RTC current time locks the values in calendar shadow registers
825 * until current date is read to ensure consistency between the time and
826 * date values.
827 * @retval HAL status
828 */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)829 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
830 {
831 uint32_t tmpreg = 0U;
832
833 /* Check the parameters */
834 assert_param(IS_RTC_FORMAT(Format));
835
836 /* Get subseconds value from the corresponding register */
837 sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
838
839 /* Get SecondFraction structure field from the corresponding register field*/
840 sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
841
842 /* Get the TR register */
843 tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
844
845 /* Fill the structure fields with the read parameters */
846 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
847 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
848 sTime->Seconds = (uint8_t)( tmpreg & (RTC_TR_ST | RTC_TR_SU));
849 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
850
851 /* Check the input parameters format */
852 if (Format == RTC_FORMAT_BIN)
853 {
854 /* Convert the time structure parameters to Binary format */
855 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
856 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
857 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
858 }
859
860 return HAL_OK;
861 }
862
863 /**
864 * @brief Sets RTC current date.
865 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
866 * the configuration information for RTC.
867 * @param sDate Pointer to date structure
868 * @param Format specifies the format of the entered parameters.
869 * This parameter can be one of the following values:
870 * @arg RTC_FORMAT_BIN: Binary data format
871 * @arg RTC_FORMAT_BCD: BCD data format
872 * @retval HAL status
873 */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)874 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
875 {
876 uint32_t datetmpreg = 0U;
877 HAL_StatusTypeDef status;
878
879 /* Check the parameters */
880 assert_param(IS_RTC_FORMAT(Format));
881
882 /* Process Locked */
883 __HAL_LOCK(hrtc);
884
885 hrtc->State = HAL_RTC_STATE_BUSY;
886
887 if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
888 {
889 sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
890 }
891
892 assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
893
894 if (Format == RTC_FORMAT_BIN)
895 {
896 assert_param(IS_RTC_YEAR(sDate->Year));
897 assert_param(IS_RTC_MONTH(sDate->Month));
898 assert_param(IS_RTC_DATE(sDate->Date));
899
900 datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
901 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
902 ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
903 ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
904 }
905 else
906 {
907 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
908 assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
909 assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
910
911 datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
912 (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
913 ((uint32_t) sDate->Date) | \
914 (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
915 }
916
917 /* Disable the write protection for RTC registers */
918 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
919
920 /* Enter Initialization mode */
921 status = RTC_EnterInitMode(hrtc);
922
923 if (status == HAL_OK)
924 {
925 /* Set the RTC_DR register */
926 hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
927
928 /* Exit Initialization mode */
929 status = RTC_ExitInitMode(hrtc);
930 }
931
932 if (status == HAL_OK)
933 {
934 hrtc->State = HAL_RTC_STATE_READY;
935 }
936
937 /* Enable the write protection for RTC registers */
938 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
939
940 /* Process Unlocked */
941 __HAL_UNLOCK(hrtc);
942
943 return status;
944 }
945
946 /**
947 * @brief Gets RTC current date.
948 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
949 * the configuration information for RTC.
950 * @param sDate Pointer to Date structure
951 * @param Format Specifies the format of the entered parameters.
952 * This parameter can be one of the following values:
953 * @arg RTC_FORMAT_BIN: Binary data format
954 * @arg RTC_FORMAT_BCD: BCD data format
955 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
956 * values in the higher-order calendar shadow registers to ensure
957 * consistency between the time and date values.
958 * Reading RTC current time locks the values in calendar shadow registers
959 * until current date is read to ensure consistency between the time and
960 * date values.
961 * @retval HAL status
962 */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)963 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
964 {
965 uint32_t datetmpreg = 0U;
966
967 /* Check the parameters */
968 assert_param(IS_RTC_FORMAT(Format));
969
970 /* Get the DR register */
971 datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
972
973 /* Fill the structure fields with the read parameters */
974 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
975 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
976 sDate->Date = (uint8_t) (datetmpreg & (RTC_DR_DT | RTC_DR_DU));
977 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
978
979 /* Check the input parameters format */
980 if (Format == RTC_FORMAT_BIN)
981 {
982 /* Convert the date structure parameters to Binary format */
983 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
984 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
985 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
986 }
987 return HAL_OK;
988 }
989
990 /**
991 * @}
992 */
993
994 /** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions
995 * @brief RTC Alarm functions
996 *
997 @verbatim
998 ===============================================================================
999 ##### RTC Alarm functions #####
1000 ===============================================================================
1001
1002 [..] This section provides functions allowing to configure Alarm feature
1003
1004 @endverbatim
1005 * @{
1006 */
1007 /**
1008 * @brief Sets the specified RTC Alarm.
1009 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1010 * the configuration information for RTC.
1011 * @param sAlarm Pointer to Alarm structure
1012 * @param Format Specifies the format of the entered parameters.
1013 * This parameter can be one of the following values:
1014 * @arg RTC_FORMAT_BIN: Binary data format
1015 * @arg RTC_FORMAT_BCD: BCD data format
1016 * @note The Alarm register can only be written when the corresponding Alarm
1017 * is disabled (Use the HAL_RTC_DeactivateAlarm()).
1018 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1019 * @retval HAL status
1020 */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1021 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1022 {
1023 uint32_t tickstart = 0U;
1024 uint32_t tmpreg = 0U;
1025 uint32_t subsecondtmpreg = 0U;
1026
1027 /* Check the parameters */
1028 assert_param(IS_RTC_FORMAT(Format));
1029 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1030 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1031 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1032 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1033 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1034
1035 /* Process Locked */
1036 __HAL_LOCK(hrtc);
1037
1038 /* Change RTC state to BUSY */
1039 hrtc->State = HAL_RTC_STATE_BUSY;
1040
1041 /* Check the data format (binary or BCD) and store the Alarm time and date
1042 configuration accordingly */
1043 if (Format == RTC_FORMAT_BIN)
1044 {
1045 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1046 {
1047 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1048 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1049 }
1050 else
1051 {
1052 sAlarm->AlarmTime.TimeFormat = 0x00U;
1053 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1054 }
1055 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1056 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1057
1058 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1059 {
1060 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1061 }
1062 else
1063 {
1064 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1065 }
1066
1067 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1068 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1069 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
1070 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1071 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1072 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1073 ((uint32_t)sAlarm->AlarmMask));
1074 }
1075 else
1076 {
1077 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1078 {
1079 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1080 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1081 }
1082 else
1083 {
1084 sAlarm->AlarmTime.TimeFormat = 0x00U;
1085 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1086 }
1087
1088 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1089 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1090
1091 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1092 {
1093 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1094 }
1095 else
1096 {
1097 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1098 }
1099
1100 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1101 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1102 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
1103 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1104 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1105 ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
1106 ((uint32_t) sAlarm->AlarmMask));
1107 }
1108
1109 /* Store the Alarm subseconds configuration */
1110 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1111 (uint32_t)(sAlarm->AlarmSubSecondMask));
1112
1113 /* Disable the write protection for RTC registers */
1114 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1115
1116 if (sAlarm->Alarm == RTC_ALARM_A)
1117 {
1118 /* Disable Alarm A */
1119 __HAL_RTC_ALARMA_DISABLE(hrtc);
1120
1121 /* In case interrupt mode is used, the interrupt source must be disabled */
1122 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1123
1124 /* Clear Alarm A flag */
1125 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1126
1127 /* Get tick */
1128 tickstart = HAL_GetTick();
1129
1130 /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1131 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1132 {
1133 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1134 {
1135 /* Enable the write protection for RTC registers */
1136 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1137
1138 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1139
1140 /* Process Unlocked */
1141 __HAL_UNLOCK(hrtc);
1142
1143 return HAL_TIMEOUT;
1144 }
1145 }
1146
1147 /* Configure Alarm A register */
1148 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1149 /* Configure Alarm A Subseconds register */
1150 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1151 /* Enable Alarm A */
1152 __HAL_RTC_ALARMA_ENABLE(hrtc);
1153 }
1154 else
1155 {
1156 /* Disable Alarm B */
1157 __HAL_RTC_ALARMB_DISABLE(hrtc);
1158
1159 /* In case interrupt mode is used, the interrupt source must be disabled */
1160 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1161
1162 /* Clear Alarm B flag */
1163 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1164
1165 /* Get tick */
1166 tickstart = HAL_GetTick();
1167
1168 /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1169 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1170 {
1171 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1172 {
1173 /* Enable the write protection for RTC registers */
1174 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1175
1176 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1177
1178 /* Process Unlocked */
1179 __HAL_UNLOCK(hrtc);
1180
1181 return HAL_TIMEOUT;
1182 }
1183 }
1184
1185 /* Configure Alarm B register */
1186 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1187 /* Configure Alarm B Subseconds register */
1188 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1189 /* Enable Alarm B */
1190 __HAL_RTC_ALARMB_ENABLE(hrtc);
1191 }
1192
1193 /* Enable the write protection for RTC registers */
1194 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1195
1196 /* Change RTC state back to READY */
1197 hrtc->State = HAL_RTC_STATE_READY;
1198
1199 /* Process Unlocked */
1200 __HAL_UNLOCK(hrtc);
1201
1202 return HAL_OK;
1203 }
1204
1205 /**
1206 * @brief Sets the specified RTC Alarm with Interrupt.
1207 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1208 * the configuration information for RTC.
1209 * @param sAlarm Pointer to Alarm structure
1210 * @param Format Specifies the format of the entered parameters.
1211 * This parameter can be one of the following values:
1212 * @arg RTC_FORMAT_BIN: Binary data format
1213 * @arg RTC_FORMAT_BCD: BCD data format
1214 * @note The Alarm register can only be written when the corresponding Alarm
1215 * is disabled (Use the HAL_RTC_DeactivateAlarm()).
1216 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1217 * @retval HAL status
1218 */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1219 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1220 {
1221 __IO uint32_t count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1222 uint32_t tmpreg = 0U;
1223 uint32_t subsecondtmpreg = 0U;
1224
1225 /* Check the parameters */
1226 assert_param(IS_RTC_FORMAT(Format));
1227 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1228 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1229 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1230 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1231 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1232
1233 /* Process Locked */
1234 __HAL_LOCK(hrtc);
1235
1236 /* Change RTC state to BUSY */
1237 hrtc->State = HAL_RTC_STATE_BUSY;
1238
1239 /* Check the data format (binary or BCD) and store the Alarm time and date
1240 configuration accordingly */
1241 if (Format == RTC_FORMAT_BIN)
1242 {
1243 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1244 {
1245 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1246 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1247 }
1248 else
1249 {
1250 sAlarm->AlarmTime.TimeFormat = 0x00U;
1251 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1252 }
1253 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1254 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1255
1256 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1257 {
1258 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1259 }
1260 else
1261 {
1262 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1263 }
1264
1265 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1266 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1267 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
1268 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1269 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1270 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1271 ((uint32_t)sAlarm->AlarmMask));
1272 }
1273 else
1274 {
1275 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1276 {
1277 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1278 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1279 }
1280 else
1281 {
1282 sAlarm->AlarmTime.TimeFormat = 0x00U;
1283 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1284 }
1285
1286 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1287 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1288
1289 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1290 {
1291 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1292 }
1293 else
1294 {
1295 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1296 }
1297
1298 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1299 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1300 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
1301 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1302 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1303 ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
1304 ((uint32_t) sAlarm->AlarmMask));
1305 }
1306
1307 /* Store the Alarm subseconds configuration */
1308 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1309 (uint32_t)(sAlarm->AlarmSubSecondMask));
1310
1311 /* Disable the write protection for RTC registers */
1312 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1313
1314 if (sAlarm->Alarm == RTC_ALARM_A)
1315 {
1316 /* Disable Alarm A */
1317 __HAL_RTC_ALARMA_DISABLE(hrtc);
1318
1319 /* Clear Alarm A flag */
1320 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1321
1322 /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1323 do
1324 {
1325 count = count - 1U;
1326 if (count == 0U)
1327 {
1328 /* Enable the write protection for RTC registers */
1329 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1330
1331 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1332
1333 /* Process Unlocked */
1334 __HAL_UNLOCK(hrtc);
1335
1336 return HAL_TIMEOUT;
1337 }
1338 } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U);
1339
1340 /* Configure Alarm A register */
1341 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1342 /* Configure Alarm A Subseconds register */
1343 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1344 /* Enable Alarm A */
1345 __HAL_RTC_ALARMA_ENABLE(hrtc);
1346 /* Enable Alarm A interrupt */
1347 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
1348 }
1349 else
1350 {
1351 /* Disable Alarm B */
1352 __HAL_RTC_ALARMB_DISABLE(hrtc);
1353
1354 /* Clear Alarm B flag */
1355 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1356
1357 /* Reload the counter */
1358 count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1359
1360 /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1361 do
1362 {
1363 count = count - 1U;
1364 if (count == 0U)
1365 {
1366 /* Enable the write protection for RTC registers */
1367 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1368
1369 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1370
1371 /* Process Unlocked */
1372 __HAL_UNLOCK(hrtc);
1373
1374 return HAL_TIMEOUT;
1375 }
1376 } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U);
1377
1378 /* Configure Alarm B register */
1379 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1380 /* Configure Alarm B Subseconds register */
1381 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1382 /* Enable Alarm B */
1383 __HAL_RTC_ALARMB_ENABLE(hrtc);
1384 /* Enable Alarm B interrupt */
1385 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
1386 }
1387
1388 /* Enable and configure the EXTI line associated to the RTC Alarm interrupt */
1389 __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1390 __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
1391
1392 /* Enable the write protection for RTC registers */
1393 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1394
1395 /* Change RTC state back to READY */
1396 hrtc->State = HAL_RTC_STATE_READY;
1397
1398 /* Process Unlocked */
1399 __HAL_UNLOCK(hrtc);
1400
1401 return HAL_OK;
1402 }
1403
1404 /**
1405 * @brief Deactivates the specified RTC Alarm.
1406 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1407 * the configuration information for RTC.
1408 * @param Alarm Specifies the Alarm.
1409 * This parameter can be one of the following values:
1410 * @arg RTC_ALARM_A: Alarm A
1411 * @arg RTC_ALARM_B: Alarm B
1412 * @retval HAL status
1413 */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1414 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1415 {
1416 uint32_t tickstart = 0U;
1417
1418 /* Check the parameters */
1419 assert_param(IS_RTC_ALARM(Alarm));
1420
1421 /* Process Locked */
1422 __HAL_LOCK(hrtc);
1423
1424 hrtc->State = HAL_RTC_STATE_BUSY;
1425
1426 /* Disable the write protection for RTC registers */
1427 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1428
1429 if (Alarm == RTC_ALARM_A)
1430 {
1431 /* Disable Alarm A */
1432 __HAL_RTC_ALARMA_DISABLE(hrtc);
1433
1434 /* In case interrupt mode is used, the interrupt source must be disabled */
1435 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1436
1437 /* Get tick */
1438 tickstart = HAL_GetTick();
1439
1440 /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1441 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1442 {
1443 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1444 {
1445 /* Enable the write protection for RTC registers */
1446 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1447
1448 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1449
1450 /* Process Unlocked */
1451 __HAL_UNLOCK(hrtc);
1452
1453 return HAL_TIMEOUT;
1454 }
1455 }
1456 }
1457 else
1458 {
1459 /* Disable Alarm B */
1460 __HAL_RTC_ALARMB_DISABLE(hrtc);
1461
1462 /* In case interrupt mode is used, the interrupt source must be disabled */
1463 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1464
1465 /* Get tick */
1466 tickstart = HAL_GetTick();
1467
1468 /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1469 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1470 {
1471 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1472 {
1473 /* Enable the write protection for RTC registers */
1474 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1475
1476 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1477
1478 /* Process Unlocked */
1479 __HAL_UNLOCK(hrtc);
1480
1481 return HAL_TIMEOUT;
1482 }
1483 }
1484 }
1485
1486 /* Enable the write protection for RTC registers */
1487 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1488
1489 hrtc->State = HAL_RTC_STATE_READY;
1490
1491 /* Process Unlocked */
1492 __HAL_UNLOCK(hrtc);
1493
1494 return HAL_OK;
1495 }
1496
1497 /**
1498 * @brief Gets the RTC Alarm value and masks.
1499 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1500 * the configuration information for RTC.
1501 * @param sAlarm Pointer to Date structure
1502 * @param Alarm Specifies the Alarm.
1503 * This parameter can be one of the following values:
1504 * @arg RTC_ALARM_A: Alarm A
1505 * @arg RTC_ALARM_B: Alarm B
1506 * @param Format Specifies the format of the entered parameters.
1507 * This parameter can be one of the following values:
1508 * @arg RTC_FORMAT_BIN: Binary data format
1509 * @arg RTC_FORMAT_BCD: BCD data format
1510 * @retval HAL status
1511 */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1512 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1513 {
1514 uint32_t tmpreg = 0U;
1515 uint32_t subsecondtmpreg = 0U;
1516
1517 /* Check the parameters */
1518 assert_param(IS_RTC_FORMAT(Format));
1519 assert_param(IS_RTC_ALARM(Alarm));
1520
1521 if (Alarm == RTC_ALARM_A)
1522 {
1523 sAlarm->Alarm = RTC_ALARM_A;
1524
1525 tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
1526 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
1527 }
1528 else
1529 {
1530 sAlarm->Alarm = RTC_ALARM_B;
1531
1532 tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
1533 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
1534 }
1535
1536 /* Fill the structure with the read parameters */
1537 sAlarm->AlarmTime.Hours = (uint8_t) ((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1538 sAlarm->AlarmTime.Minutes = (uint8_t) ((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1539 sAlarm->AlarmTime.Seconds = (uint8_t) ( tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
1540 sAlarm->AlarmTime.TimeFormat = (uint8_t) ((tmpreg & RTC_ALRMAR_PM) >> RTC_TR_PM_Pos);
1541 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1542 sAlarm->AlarmDateWeekDay = (uint8_t) ((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1543 sAlarm->AlarmDateWeekDaySel = (uint32_t) (tmpreg & RTC_ALRMAR_WDSEL);
1544 sAlarm->AlarmMask = (uint32_t) (tmpreg & RTC_ALARMMASK_ALL);
1545
1546 if (Format == RTC_FORMAT_BIN)
1547 {
1548 sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1549 sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1550 sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1551 sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1552 }
1553
1554 return HAL_OK;
1555 }
1556
1557 /**
1558 * @brief Handles Alarm interrupt request.
1559 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1560 * the configuration information for RTC.
1561 * @retval None
1562 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1563 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1564 {
1565 /* Clear the EXTI flag associated to the RTC Alarm interrupt */
1566 __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
1567
1568 /* Get the Alarm A interrupt source enable status */
1569 if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
1570 {
1571 /* Get the pending status of the Alarm A Interrupt */
1572 if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
1573 {
1574 /* Clear the Alarm A interrupt pending bit */
1575 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1576
1577 /* Alarm A callback */
1578 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1579 hrtc->AlarmAEventCallback(hrtc);
1580 #else
1581 HAL_RTC_AlarmAEventCallback(hrtc);
1582 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1583 }
1584 }
1585
1586 /* Get the Alarm B interrupt source enable status */
1587 if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
1588 {
1589 /* Get the pending status of the Alarm B Interrupt */
1590 if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
1591 {
1592 /* Clear the Alarm B interrupt pending bit */
1593 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1594
1595 /* Alarm B callback */
1596 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1597 hrtc->AlarmBEventCallback(hrtc);
1598 #else
1599 HAL_RTCEx_AlarmBEventCallback(hrtc);
1600 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1601 }
1602 }
1603
1604 /* Change RTC state */
1605 hrtc->State = HAL_RTC_STATE_READY;
1606 }
1607
1608 /**
1609 * @brief Alarm A callback.
1610 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1611 * the configuration information for RTC.
1612 * @retval None
1613 */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)1614 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1615 {
1616 /* Prevent unused argument(s) compilation warning */
1617 UNUSED(hrtc);
1618
1619 /* NOTE: This function should not be modified, when the callback is needed,
1620 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1621 */
1622 }
1623
1624 /**
1625 * @brief Handles Alarm A Polling request.
1626 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1627 * the configuration information for RTC.
1628 * @param Timeout Timeout duration
1629 * @retval HAL status
1630 */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)1631 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1632 {
1633 uint32_t tickstart = 0U;
1634
1635 /* Get tick */
1636 tickstart = HAL_GetTick();
1637
1638 /* Wait till RTC ALRAF flag is set and if timeout is reached exit */
1639 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
1640 {
1641 if (Timeout != HAL_MAX_DELAY)
1642 {
1643 if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
1644 {
1645 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1646 return HAL_TIMEOUT;
1647 }
1648 }
1649 }
1650
1651 /* Clear the Alarm flag */
1652 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1653
1654 /* Change RTC state */
1655 hrtc->State = HAL_RTC_STATE_READY;
1656
1657 return HAL_OK;
1658 }
1659
1660 /**
1661 * @}
1662 */
1663
1664 /** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions
1665 * @brief Peripheral Control functions
1666 *
1667 @verbatim
1668 ===============================================================================
1669 ##### Peripheral Control functions #####
1670 ===============================================================================
1671 [..]
1672 This subsection provides functions allowing to
1673 (+) Wait for RTC Time and Date Synchronization
1674 (+) Manage RTC Summer or Winter time change
1675
1676 @endverbatim
1677 * @{
1678 */
1679
1680 /**
1681 * @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
1682 * synchronized with RTC APB clock.
1683 * @note The RTC Resynchronization mode is write protected, use the
1684 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1685 * @note To read the calendar through the shadow registers after Calendar
1686 * initialization, calendar update or after wakeup from low power modes
1687 * the software must first clear the RSF flag.
1688 * The software must then wait until it is set again before reading
1689 * the calendar, which means that the calendar registers have been
1690 * correctly copied into the RTC_TR and RTC_DR shadow registers.
1691 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1692 * the configuration information for RTC.
1693 * @retval HAL status
1694 */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)1695 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
1696 {
1697 uint32_t tickstart = 0U;
1698
1699 /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
1700 hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK));
1701
1702 /* Get tick */
1703 tickstart = HAL_GetTick();
1704
1705 /* Wait the registers to be synchronised */
1706 while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
1707 {
1708 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1709 {
1710 return HAL_TIMEOUT;
1711 }
1712 }
1713
1714 return HAL_OK;
1715 }
1716
1717 /**
1718 * @brief Daylight Saving Time, adds one hour to the calendar in one
1719 * single operation without going through the initialization procedure.
1720 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1721 * the configuration information for RTC.
1722 * @retval None
1723 */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)1724 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
1725 {
1726 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1727 SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
1728 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1729 }
1730
1731 /**
1732 * @brief Daylight Saving Time, subtracts one hour from the calendar in one
1733 * single operation without going through the initialization procedure.
1734 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1735 * the configuration information for RTC.
1736 * @retval None
1737 */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)1738 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
1739 {
1740 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1741 SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
1742 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1743 }
1744
1745 /**
1746 * @brief Daylight Saving Time, sets the store operation bit.
1747 * @note It can be used by the software in order to memorize the DST status.
1748 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1749 * the configuration information for RTC.
1750 * @retval None
1751 */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)1752 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
1753 {
1754 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1755 SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1756 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1757 }
1758
1759 /**
1760 * @brief Daylight Saving Time, clears the store operation bit.
1761 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1762 * the configuration information for RTC.
1763 * @retval None
1764 */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)1765 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
1766 {
1767 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1768 CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1769 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1770 }
1771
1772 /**
1773 * @brief Daylight Saving Time, reads the store operation bit.
1774 * @param hrtc RTC handle
1775 * @retval operation see RTC_StoreOperation_Definitions
1776 */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)1777 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
1778 {
1779 return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1780 }
1781
1782 /**
1783 * @}
1784 */
1785
1786 /** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions
1787 * @brief Peripheral State functions
1788 *
1789 @verbatim
1790 ===============================================================================
1791 ##### Peripheral State functions #####
1792 ===============================================================================
1793 [..]
1794 This subsection provides functions allowing to
1795 (+) Get RTC state
1796
1797 @endverbatim
1798 * @{
1799 */
1800 /**
1801 * @brief Returns the RTC state.
1802 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1803 * the configuration information for RTC.
1804 * @retval HAL state
1805 */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)1806 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
1807 {
1808 return hrtc->State;
1809 }
1810
1811 /**
1812 * @}
1813 */
1814
1815
1816 /**
1817 * @}
1818 */
1819
1820 /** @addtogroup RTC_Private_Functions
1821 * @{
1822 */
1823
1824 /**
1825 * @brief Enters the RTC Initialization mode.
1826 * @note The RTC Initialization mode is write protected, use the
1827 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1828 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1829 * the configuration information for RTC.
1830 * @retval HAL status
1831 */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)1832 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
1833 {
1834 uint32_t tickstart = 0U;
1835 HAL_StatusTypeDef status = HAL_OK;
1836
1837 /* Check that Initialization mode is not already set */
1838 if (READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U)
1839 {
1840 /* Set INIT bit to enter Initialization mode */
1841 SET_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1842
1843 /* Get tick */
1844 tickstart = HAL_GetTick();
1845
1846 /* Wait till RTC is in INIT state and if timeout is reached exit */
1847 while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_ERROR))
1848 {
1849 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1850 {
1851 /* Set RTC state */
1852 hrtc->State = HAL_RTC_STATE_ERROR;
1853 status = HAL_ERROR;
1854 }
1855 }
1856 }
1857
1858 return status;
1859 }
1860
1861 /**
1862 * @brief Exits the RTC Initialization mode.
1863 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1864 * the configuration information for RTC.
1865 * @retval HAL status
1866 */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)1867 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
1868 {
1869 HAL_StatusTypeDef status = HAL_OK;
1870
1871 /* Clear INIT bit to exit Initialization mode */
1872 CLEAR_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1873
1874 /* If CR_BYPSHAD bit = 0, wait for synchro */
1875 if (READ_BIT(hrtc->Instance->CR, RTC_CR_BYPSHAD) == 0U)
1876 {
1877 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1878 {
1879 /* Set RTC state */
1880 hrtc->State = HAL_RTC_STATE_ERROR;
1881 status = HAL_ERROR;
1882 }
1883 }
1884
1885 return status;
1886 }
1887
1888 /**
1889 * @brief Converts a 2-digit number from decimal to BCD format.
1890 * @param number decimal-formatted number (from 0 to 99) to be converted
1891 * @retval Converted byte
1892 */
RTC_ByteToBcd2(uint8_t number)1893 uint8_t RTC_ByteToBcd2(uint8_t number)
1894 {
1895 uint32_t bcdhigh = 0U;
1896
1897 while (number >= 10U)
1898 {
1899 bcdhigh++;
1900 number -= 10U;
1901 }
1902
1903 return ((uint8_t)(bcdhigh << 4U) | number);
1904 }
1905
1906 /**
1907 * @brief Converts a 2-digit number from BCD to decimal format.
1908 * @param number BCD-formatted number (from 00 to 99) to be converted
1909 * @retval Converted word
1910 */
RTC_Bcd2ToByte(uint8_t number)1911 uint8_t RTC_Bcd2ToByte(uint8_t number)
1912 {
1913 uint32_t tens = 0U;
1914 tens = (((uint32_t)number & 0xF0U) >> 4U) * 10U;
1915 return (uint8_t)(tens + ((uint32_t)number & 0x0FU));
1916 }
1917
1918 /**
1919 * @}
1920 */
1921
1922 #endif /* HAL_RTC_MODULE_ENABLED */
1923 /**
1924 * @}
1925 */
1926
1927 /**
1928 * @}
1929 */
1930