1 /**
2   ******************************************************************************
3   * @file    stm32f2xx_hal_uart.c
4   * @author  MCD Application Team
5   * @brief   UART HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8   *           + Initialization and de-initialization functions
9   *           + IO operation functions
10   *           + Peripheral Control functions
11   *           + Peripheral State and Errors functions
12   *
13   ******************************************************************************
14   * @attention
15   *
16   * Copyright (c) 2016 STMicroelectronics.
17   * All rights reserved.
18   *
19   * This software is licensed under terms that can be found in the LICENSE file
20   * in the root directory of this software component.
21   * If no LICENSE file comes with this software, it is provided AS-IS.
22   *
23   ******************************************************************************
24   @verbatim
25   ==============================================================================
26                         ##### How to use this driver #####
27   ==============================================================================
28   [..]
29     The UART HAL driver can be used as follows:
30 
31     (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
32     (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
33         (##) Enable the USARTx interface clock.
34         (##) UART pins configuration:
35             (+++) Enable the clock for the UART GPIOs.
36             (+++) Configure the UART TX/RX pins as alternate function pull-up.
37         (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
38              and HAL_UART_Receive_IT() APIs):
39             (+++) Configure the USARTx interrupt priority.
40             (+++) Enable the NVIC USART IRQ handle.
41         (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
42              and HAL_UART_Receive_DMA() APIs):
43             (+++) Declare a DMA handle structure for the Tx/Rx stream.
44             (+++) Enable the DMAx interface clock.
45             (+++) Configure the declared DMA handle structure with the required
46                   Tx/Rx parameters.
47             (+++) Configure the DMA Tx/Rx stream.
48             (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
49             (+++) Configure the priority and enable the NVIC for the transfer complete
50                   interrupt on the DMA Tx/Rx stream.
51             (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle
52                   (used for last byte sending completion detection in DMA non circular mode)
53 
54     (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
55         flow control and Mode(Receiver/Transmitter) in the huart Init structure.
56 
57     (#) For the UART asynchronous mode, initialize the UART registers by calling
58         the HAL_UART_Init() API.
59 
60     (#) For the UART Half duplex mode, initialize the UART registers by calling
61         the HAL_HalfDuplex_Init() API.
62 
63     (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.
64 
65     (#) For the Multi-Processor mode, initialize the UART registers by calling
66         the HAL_MultiProcessor_Init() API.
67 
68      [..]
69        (@) The specific UART interrupts (Transmission complete interrupt,
70             RXNE interrupt and Error Interrupts) will be managed using the macros
71             __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit
72             and receive process.
73 
74      [..]
75        (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the
76             low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized
77             HAL_UART_MspInit() API.
78 
79     ##### Callback registration #####
80     ==================================
81 
82     [..]
83     The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
84     allows the user to configure dynamically the driver callbacks.
85 
86     [..]
87     Use Function HAL_UART_RegisterCallback() to register a user callback.
88     Function HAL_UART_RegisterCallback() allows to register following callbacks:
89     (+) TxHalfCpltCallback        : Tx Half Complete Callback.
90     (+) TxCpltCallback            : Tx Complete Callback.
91     (+) RxHalfCpltCallback        : Rx Half Complete Callback.
92     (+) RxCpltCallback            : Rx Complete Callback.
93     (+) ErrorCallback             : Error Callback.
94     (+) AbortCpltCallback         : Abort Complete Callback.
95     (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
96     (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
97     (+) MspInitCallback           : UART MspInit.
98     (+) MspDeInitCallback         : UART MspDeInit.
99     This function takes as parameters the HAL peripheral handle, the Callback ID
100     and a pointer to the user callback function.
101 
102     [..]
103     Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
104     weak (surcharged) function.
105     HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
106     and the Callback ID.
107     This function allows to reset following callbacks:
108     (+) TxHalfCpltCallback        : Tx Half Complete Callback.
109     (+) TxCpltCallback            : Tx Complete Callback.
110     (+) RxHalfCpltCallback        : Rx Half Complete Callback.
111     (+) RxCpltCallback            : Rx Complete Callback.
112     (+) ErrorCallback             : Error Callback.
113     (+) AbortCpltCallback         : Abort Complete Callback.
114     (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
115     (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
116     (+) MspInitCallback           : UART MspInit.
117     (+) MspDeInitCallback         : UART MspDeInit.
118 
119     [..]
120     For specific callback RxEventCallback, use dedicated registration/reset functions:
121     respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
122 
123     [..]
124     By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
125     all callbacks are set to the corresponding weak (surcharged) functions:
126     examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
127     Exception done for MspInit and MspDeInit functions that are respectively
128     reset to the legacy weak (surcharged) functions in the HAL_UART_Init()
129     and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
130     If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
131     keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
132 
133     [..]
134     Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
135     Exception done MspInit/MspDeInit that can be registered/unregistered
136     in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
137     MspInit/DeInit callbacks can be used during the Init/DeInit.
138     In that case first register the MspInit/MspDeInit user callbacks
139     using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
140     or HAL_UART_Init() function.
141 
142     [..]
143     When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
144     not defined, the callback registration feature is not available
145     and weak (surcharged) callbacks are used.
146 
147      [..]
148         Three operation modes are available within this driver :
149 
150      *** Polling mode IO operation ***
151      =================================
152      [..]
153        (+) Send an amount of data in blocking mode using HAL_UART_Transmit()
154        (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
155 
156      *** Interrupt mode IO operation ***
157      ===================================
158      [..]
159        (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT()
160        (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
161             add his own code by customization of function pointer HAL_UART_TxCpltCallback
162        (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT()
163        (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
164             add his own code by customization of function pointer HAL_UART_RxCpltCallback
165        (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
166             add his own code by customization of function pointer HAL_UART_ErrorCallback
167 
168      *** DMA mode IO operation ***
169      ==============================
170      [..]
171        (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA()
172        (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can
173             add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback
174        (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
175             add his own code by customization of function pointer HAL_UART_TxCpltCallback
176        (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA()
177        (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can
178             add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback
179        (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
180             add his own code by customization of function pointer HAL_UART_RxCpltCallback
181        (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
182             add his own code by customization of function pointer HAL_UART_ErrorCallback
183        (+) Pause the DMA Transfer using HAL_UART_DMAPause()
184        (+) Resume the DMA Transfer using HAL_UART_DMAResume()
185        (+) Stop the DMA Transfer using HAL_UART_DMAStop()
186 
187 
188     [..] This subsection also provides a set of additional functions providing enhanced reception
189     services to user. (For example, these functions allow application to handle use cases
190     where number of data to be received is unknown).
191 
192     (#) Compared to standard reception services which only consider number of received
193         data elements as reception completion criteria, these functions also consider additional events
194         as triggers for updating reception status to caller :
195        (+) Detection of inactivity period (RX line has not been active for a given period).
196           (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
197                for 1 frame time, after last received byte.
198 
199     (#) There are two mode of transfer:
200        (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
201            or till IDLE event occurs. Reception is handled only during function execution.
202            When function exits, no data reception could occur. HAL status and number of actually received data elements,
203            are returned by function after finishing transfer.
204        (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
205            These API's return the HAL status.
206            The end of the data processing will be indicated through the
207            dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
208            The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
209            The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
210 
211     (#) Blocking mode API:
212         (+) HAL_UARTEx_ReceiveToIdle()
213 
214     (#) Non-Blocking mode API with Interrupt:
215         (+) HAL_UARTEx_ReceiveToIdle_IT()
216 
217     (#) Non-Blocking mode API with DMA:
218         (+) HAL_UARTEx_ReceiveToIdle_DMA()
219 
220 
221      *** UART HAL driver macros list ***
222      =============================================
223      [..]
224        Below the list of most used macros in UART HAL driver.
225 
226       (+) __HAL_UART_ENABLE: Enable the UART peripheral
227       (+) __HAL_UART_DISABLE: Disable the UART peripheral
228       (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
229       (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
230       (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
231       (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
232       (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not
233 
234      [..]
235        (@) You can refer to the UART HAL driver header file for more useful macros
236 
237   @endverbatim
238      [..]
239        (@) Additional remark: If the parity is enabled, then the MSB bit of the data written
240            in the data register is transmitted but is changed by the parity bit.
241            Depending on the frame length defined by the M bit (8-bits or 9-bits),
242            the possible UART frame formats are as listed in the following table:
243     +-------------------------------------------------------------+
244     |   M bit |  PCE bit  |            UART frame                 |
245     |---------------------|---------------------------------------|
246     |    0    |    0      |    | SB | 8 bit data | STB |          |
247     |---------|-----------|---------------------------------------|
248     |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
249     |---------|-----------|---------------------------------------|
250     |    1    |    0      |    | SB | 9 bit data | STB |          |
251     |---------|-----------|---------------------------------------|
252     |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
253     +-------------------------------------------------------------+
254   ******************************************************************************
255   */
256 
257 /* Includes ------------------------------------------------------------------*/
258 #include "stm32f2xx_hal.h"
259 
260 /** @addtogroup STM32F2xx_HAL_Driver
261   * @{
262   */
263 
264 /** @defgroup UART UART
265   * @brief HAL UART module driver
266   * @{
267   */
268 #ifdef HAL_UART_MODULE_ENABLED
269 
270 /* Private typedef -----------------------------------------------------------*/
271 /* Private define ------------------------------------------------------------*/
272 /** @addtogroup UART_Private_Constants
273   * @{
274   */
275 /**
276   * @}
277   */
278 /* Private macro -------------------------------------------------------------*/
279 /* Private variables ---------------------------------------------------------*/
280 /* Private function prototypes -----------------------------------------------*/
281 /** @addtogroup UART_Private_Functions  UART Private Functions
282   * @{
283   */
284 
285 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
286 void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart);
287 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
288 static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
289 static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
290 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
291 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
292 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
293 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
294 static void UART_DMAError(DMA_HandleTypeDef *hdma);
295 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
296 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
297 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
298 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
299 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
300 static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
301 static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
302 static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
303 static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
304                                                      uint32_t Tickstart, uint32_t Timeout);
305 static void UART_SetConfig(UART_HandleTypeDef *huart);
306 
307 /**
308   * @}
309   */
310 
311 /* Exported functions ---------------------------------------------------------*/
312 /** @defgroup UART_Exported_Functions UART Exported Functions
313   * @{
314   */
315 
316 /** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
317   *  @brief    Initialization and Configuration functions
318   *
319 @verbatim
320  ===============================================================================
321             ##### Initialization and Configuration functions #####
322  ===============================================================================
323     [..]
324     This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
325     in asynchronous mode.
326       (+) For the asynchronous mode only these parameters can be configured:
327         (++) Baud Rate
328         (++) Word Length
329         (++) Stop Bit
330         (++) Parity: If the parity is enabled, then the MSB bit of the data written
331              in the data register is transmitted but is changed by the parity bit.
332              Depending on the frame length defined by the M bit (8-bits or 9-bits),
333              please refer to Reference manual for possible UART frame formats.
334         (++) Hardware flow control
335         (++) Receiver/transmitter modes
336         (++) Over Sampling Method
337     [..]
338     The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs
339     follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor configuration
340     procedures (details for the procedures are available in reference manual (RM0033)).
341 
342 @endverbatim
343   * @{
344   */
345 
346 /**
347   * @brief  Initializes the UART mode according to the specified parameters in
348   *         the UART_InitTypeDef and create the associated handle.
349   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
350   *                the configuration information for the specified UART module.
351   * @retval HAL status
352   */
HAL_UART_Init(UART_HandleTypeDef * huart)353 HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
354 {
355   /* Check the UART handle allocation */
356   if (huart == NULL)
357   {
358     return HAL_ERROR;
359   }
360 
361   /* Check the parameters */
362   if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
363   {
364     /* The hardware flow control is available only for USART1, USART2, USART3 and USART6 */
365     assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
366     assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
367   }
368   else
369   {
370     assert_param(IS_UART_INSTANCE(huart->Instance));
371   }
372   assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
373   assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
374 
375   if (huart->gState == HAL_UART_STATE_RESET)
376   {
377     /* Allocate lock resource and initialize it */
378     huart->Lock = HAL_UNLOCKED;
379 
380 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
381     UART_InitCallbacksToDefault(huart);
382 
383     if (huart->MspInitCallback == NULL)
384     {
385       huart->MspInitCallback = HAL_UART_MspInit;
386     }
387 
388     /* Init the low level hardware */
389     huart->MspInitCallback(huart);
390 #else
391     /* Init the low level hardware : GPIO, CLOCK */
392     HAL_UART_MspInit(huart);
393 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
394   }
395 
396   huart->gState = HAL_UART_STATE_BUSY;
397 
398   /* Disable the peripheral */
399   __HAL_UART_DISABLE(huart);
400 
401   /* Set the UART Communication parameters */
402   UART_SetConfig(huart);
403 
404   /* In asynchronous mode, the following bits must be kept cleared:
405      - LINEN and CLKEN bits in the USART_CR2 register,
406      - SCEN, HDSEL and IREN  bits in the USART_CR3 register.*/
407   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
408   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
409 
410   /* Enable the peripheral */
411   __HAL_UART_ENABLE(huart);
412 
413   /* Initialize the UART state */
414   huart->ErrorCode = HAL_UART_ERROR_NONE;
415   huart->gState = HAL_UART_STATE_READY;
416   huart->RxState = HAL_UART_STATE_READY;
417   huart->RxEventType = HAL_UART_RXEVENT_TC;
418 
419   return HAL_OK;
420 }
421 
422 /**
423   * @brief  Initializes the half-duplex mode according to the specified
424   *         parameters in the UART_InitTypeDef and create the associated handle.
425   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
426   *                the configuration information for the specified UART module.
427   * @retval HAL status
428   */
HAL_HalfDuplex_Init(UART_HandleTypeDef * huart)429 HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
430 {
431   /* Check the UART handle allocation */
432   if (huart == NULL)
433   {
434     return HAL_ERROR;
435   }
436 
437   /* Check the parameters */
438   assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
439   assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
440   assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
441 
442   if (huart->gState == HAL_UART_STATE_RESET)
443   {
444     /* Allocate lock resource and initialize it */
445     huart->Lock = HAL_UNLOCKED;
446 
447 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
448     UART_InitCallbacksToDefault(huart);
449 
450     if (huart->MspInitCallback == NULL)
451     {
452       huart->MspInitCallback = HAL_UART_MspInit;
453     }
454 
455     /* Init the low level hardware */
456     huart->MspInitCallback(huart);
457 #else
458     /* Init the low level hardware : GPIO, CLOCK */
459     HAL_UART_MspInit(huart);
460 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
461   }
462 
463   huart->gState = HAL_UART_STATE_BUSY;
464 
465   /* Disable the peripheral */
466   __HAL_UART_DISABLE(huart);
467 
468   /* Set the UART Communication parameters */
469   UART_SetConfig(huart);
470 
471   /* In half-duplex mode, the following bits must be kept cleared:
472      - LINEN and CLKEN bits in the USART_CR2 register,
473      - SCEN and IREN bits in the USART_CR3 register.*/
474   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
475   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
476 
477   /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
478   SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
479 
480   /* Enable the peripheral */
481   __HAL_UART_ENABLE(huart);
482 
483   /* Initialize the UART state*/
484   huart->ErrorCode = HAL_UART_ERROR_NONE;
485   huart->gState = HAL_UART_STATE_READY;
486   huart->RxState = HAL_UART_STATE_READY;
487   huart->RxEventType = HAL_UART_RXEVENT_TC;
488 
489   return HAL_OK;
490 }
491 
492 /**
493   * @brief  Initializes the LIN mode according to the specified
494   *         parameters in the UART_InitTypeDef and create the associated handle.
495   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
496   *                the configuration information for the specified UART module.
497   * @param  BreakDetectLength Specifies the LIN break detection length.
498   *         This parameter can be one of the following values:
499   *            @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
500   *            @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
501   * @retval HAL status
502   */
HAL_LIN_Init(UART_HandleTypeDef * huart,uint32_t BreakDetectLength)503 HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
504 {
505   /* Check the UART handle allocation */
506   if (huart == NULL)
507   {
508     return HAL_ERROR;
509   }
510 
511   /* Check the LIN UART instance */
512   assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
513 
514   /* Check the Break detection length parameter */
515   assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
516   assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
517   assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
518 
519   if (huart->gState == HAL_UART_STATE_RESET)
520   {
521     /* Allocate lock resource and initialize it */
522     huart->Lock = HAL_UNLOCKED;
523 
524 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
525     UART_InitCallbacksToDefault(huart);
526 
527     if (huart->MspInitCallback == NULL)
528     {
529       huart->MspInitCallback = HAL_UART_MspInit;
530     }
531 
532     /* Init the low level hardware */
533     huart->MspInitCallback(huart);
534 #else
535     /* Init the low level hardware : GPIO, CLOCK */
536     HAL_UART_MspInit(huart);
537 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
538   }
539 
540   huart->gState = HAL_UART_STATE_BUSY;
541 
542   /* Disable the peripheral */
543   __HAL_UART_DISABLE(huart);
544 
545   /* Set the UART Communication parameters */
546   UART_SetConfig(huart);
547 
548   /* In LIN mode, the following bits must be kept cleared:
549      - CLKEN bits in the USART_CR2 register,
550      - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
551   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_CLKEN));
552   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
553 
554   /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
555   SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
556 
557   /* Set the USART LIN Break detection length. */
558   CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL);
559   SET_BIT(huart->Instance->CR2, BreakDetectLength);
560 
561   /* Enable the peripheral */
562   __HAL_UART_ENABLE(huart);
563 
564   /* Initialize the UART state*/
565   huart->ErrorCode = HAL_UART_ERROR_NONE;
566   huart->gState = HAL_UART_STATE_READY;
567   huart->RxState = HAL_UART_STATE_READY;
568   huart->RxEventType = HAL_UART_RXEVENT_TC;
569 
570   return HAL_OK;
571 }
572 
573 /**
574   * @brief  Initializes the Multi-Processor mode according to the specified
575   *         parameters in the UART_InitTypeDef and create the associated handle.
576   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
577   *                the configuration information for the specified UART module.
578   * @param  Address USART address
579   * @param  WakeUpMethod specifies the USART wake-up method.
580   *         This parameter can be one of the following values:
581   *            @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection
582   *            @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark
583   * @retval HAL status
584   */
HAL_MultiProcessor_Init(UART_HandleTypeDef * huart,uint8_t Address,uint32_t WakeUpMethod)585 HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
586 {
587   /* Check the UART handle allocation */
588   if (huart == NULL)
589   {
590     return HAL_ERROR;
591   }
592 
593   /* Check the parameters */
594   assert_param(IS_UART_INSTANCE(huart->Instance));
595 
596   /* Check the Address & wake up method parameters */
597   assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
598   assert_param(IS_UART_ADDRESS(Address));
599   assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
600   assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
601 
602   if (huart->gState == HAL_UART_STATE_RESET)
603   {
604     /* Allocate lock resource and initialize it */
605     huart->Lock = HAL_UNLOCKED;
606 
607 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
608     UART_InitCallbacksToDefault(huart);
609 
610     if (huart->MspInitCallback == NULL)
611     {
612       huart->MspInitCallback = HAL_UART_MspInit;
613     }
614 
615     /* Init the low level hardware */
616     huart->MspInitCallback(huart);
617 #else
618     /* Init the low level hardware : GPIO, CLOCK */
619     HAL_UART_MspInit(huart);
620 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
621   }
622 
623   huart->gState = HAL_UART_STATE_BUSY;
624 
625   /* Disable the peripheral */
626   __HAL_UART_DISABLE(huart);
627 
628   /* Set the UART Communication parameters */
629   UART_SetConfig(huart);
630 
631   /* In Multi-Processor mode, the following bits must be kept cleared:
632      - LINEN and CLKEN bits in the USART_CR2 register,
633      - SCEN, HDSEL and IREN  bits in the USART_CR3 register */
634   CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
635   CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
636 
637   /* Set the USART address node */
638   CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD);
639   SET_BIT(huart->Instance->CR2, Address);
640 
641   /* Set the wake up method by setting the WAKE bit in the CR1 register */
642   CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE);
643   SET_BIT(huart->Instance->CR1, WakeUpMethod);
644 
645   /* Enable the peripheral */
646   __HAL_UART_ENABLE(huart);
647 
648   /* Initialize the UART state */
649   huart->ErrorCode = HAL_UART_ERROR_NONE;
650   huart->gState = HAL_UART_STATE_READY;
651   huart->RxState = HAL_UART_STATE_READY;
652   huart->RxEventType = HAL_UART_RXEVENT_TC;
653 
654   return HAL_OK;
655 }
656 
657 /**
658   * @brief  DeInitializes the UART peripheral.
659   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
660   *                the configuration information for the specified UART module.
661   * @retval HAL status
662   */
HAL_UART_DeInit(UART_HandleTypeDef * huart)663 HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
664 {
665   /* Check the UART handle allocation */
666   if (huart == NULL)
667   {
668     return HAL_ERROR;
669   }
670 
671   /* Check the parameters */
672   assert_param(IS_UART_INSTANCE(huart->Instance));
673 
674   huart->gState = HAL_UART_STATE_BUSY;
675 
676   /* Disable the Peripheral */
677   __HAL_UART_DISABLE(huart);
678 
679 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
680   if (huart->MspDeInitCallback == NULL)
681   {
682     huart->MspDeInitCallback = HAL_UART_MspDeInit;
683   }
684   /* DeInit the low level hardware */
685   huart->MspDeInitCallback(huart);
686 #else
687   /* DeInit the low level hardware */
688   HAL_UART_MspDeInit(huart);
689 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
690 
691   huart->ErrorCode = HAL_UART_ERROR_NONE;
692   huart->gState = HAL_UART_STATE_RESET;
693   huart->RxState = HAL_UART_STATE_RESET;
694   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
695   huart->RxEventType = HAL_UART_RXEVENT_TC;
696 
697   /* Process Unlock */
698   __HAL_UNLOCK(huart);
699 
700   return HAL_OK;
701 }
702 
703 /**
704   * @brief  UART MSP Init.
705   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
706   *                the configuration information for the specified UART module.
707   * @retval None
708   */
HAL_UART_MspInit(UART_HandleTypeDef * huart)709 __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
710 {
711   /* Prevent unused argument(s) compilation warning */
712   UNUSED(huart);
713   /* NOTE: This function should not be modified, when the callback is needed,
714            the HAL_UART_MspInit could be implemented in the user file
715    */
716 }
717 
718 /**
719   * @brief  UART MSP DeInit.
720   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
721   *                the configuration information for the specified UART module.
722   * @retval None
723   */
HAL_UART_MspDeInit(UART_HandleTypeDef * huart)724 __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
725 {
726   /* Prevent unused argument(s) compilation warning */
727   UNUSED(huart);
728   /* NOTE: This function should not be modified, when the callback is needed,
729            the HAL_UART_MspDeInit could be implemented in the user file
730    */
731 }
732 
733 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
734 /**
735   * @brief  Register a User UART Callback
736   *         To be used instead of the weak predefined callback
737   * @note   The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(),
738   *         HAL_MultiProcessor_Init() to register callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
739   * @param  huart uart handle
740   * @param  CallbackID ID of the callback to be registered
741   *         This parameter can be one of the following values:
742   *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
743   *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
744   *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
745   *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
746   *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
747   *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
748   *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
749   *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
750   *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
751   *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
752   * @param  pCallback pointer to the Callback function
753   * @retval HAL status
754   */
HAL_UART_RegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID,pUART_CallbackTypeDef pCallback)755 HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
756                                             pUART_CallbackTypeDef pCallback)
757 {
758   HAL_StatusTypeDef status = HAL_OK;
759 
760   if (pCallback == NULL)
761   {
762     /* Update the error code */
763     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
764 
765     return HAL_ERROR;
766   }
767 
768   if (huart->gState == HAL_UART_STATE_READY)
769   {
770     switch (CallbackID)
771     {
772       case HAL_UART_TX_HALFCOMPLETE_CB_ID :
773         huart->TxHalfCpltCallback = pCallback;
774         break;
775 
776       case HAL_UART_TX_COMPLETE_CB_ID :
777         huart->TxCpltCallback = pCallback;
778         break;
779 
780       case HAL_UART_RX_HALFCOMPLETE_CB_ID :
781         huart->RxHalfCpltCallback = pCallback;
782         break;
783 
784       case HAL_UART_RX_COMPLETE_CB_ID :
785         huart->RxCpltCallback = pCallback;
786         break;
787 
788       case HAL_UART_ERROR_CB_ID :
789         huart->ErrorCallback = pCallback;
790         break;
791 
792       case HAL_UART_ABORT_COMPLETE_CB_ID :
793         huart->AbortCpltCallback = pCallback;
794         break;
795 
796       case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
797         huart->AbortTransmitCpltCallback = pCallback;
798         break;
799 
800       case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
801         huart->AbortReceiveCpltCallback = pCallback;
802         break;
803 
804       case HAL_UART_MSPINIT_CB_ID :
805         huart->MspInitCallback = pCallback;
806         break;
807 
808       case HAL_UART_MSPDEINIT_CB_ID :
809         huart->MspDeInitCallback = pCallback;
810         break;
811 
812       default :
813         /* Update the error code */
814         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
815 
816         /* Return error status */
817         status =  HAL_ERROR;
818         break;
819     }
820   }
821   else if (huart->gState == HAL_UART_STATE_RESET)
822   {
823     switch (CallbackID)
824     {
825       case HAL_UART_MSPINIT_CB_ID :
826         huart->MspInitCallback = pCallback;
827         break;
828 
829       case HAL_UART_MSPDEINIT_CB_ID :
830         huart->MspDeInitCallback = pCallback;
831         break;
832 
833       default :
834         /* Update the error code */
835         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
836 
837         /* Return error status */
838         status =  HAL_ERROR;
839         break;
840     }
841   }
842   else
843   {
844     /* Update the error code */
845     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
846 
847     /* Return error status */
848     status =  HAL_ERROR;
849   }
850 
851   return status;
852 }
853 
854 /**
855   * @brief  Unregister an UART Callback
856   *         UART callaback is redirected to the weak predefined callback
857   * @note   The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
858   *         HAL_LIN_Init(), HAL_MultiProcessor_Init() to un-register callbacks for HAL_UART_MSPINIT_CB_ID
859   *         and HAL_UART_MSPDEINIT_CB_ID
860   * @param  huart uart handle
861   * @param  CallbackID ID of the callback to be unregistered
862   *         This parameter can be one of the following values:
863   *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
864   *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
865   *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
866   *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
867   *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
868   *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
869   *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
870   *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
871   *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
872   *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
873   * @retval HAL status
874   */
HAL_UART_UnRegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID)875 HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
876 {
877   HAL_StatusTypeDef status = HAL_OK;
878 
879   if (HAL_UART_STATE_READY == huart->gState)
880   {
881     switch (CallbackID)
882     {
883       case HAL_UART_TX_HALFCOMPLETE_CB_ID :
884         huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback;               /* Legacy weak  TxHalfCpltCallback       */
885         break;
886 
887       case HAL_UART_TX_COMPLETE_CB_ID :
888         huart->TxCpltCallback = HAL_UART_TxCpltCallback;                       /* Legacy weak TxCpltCallback            */
889         break;
890 
891       case HAL_UART_RX_HALFCOMPLETE_CB_ID :
892         huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback;               /* Legacy weak RxHalfCpltCallback        */
893         break;
894 
895       case HAL_UART_RX_COMPLETE_CB_ID :
896         huart->RxCpltCallback = HAL_UART_RxCpltCallback;                       /* Legacy weak RxCpltCallback            */
897         break;
898 
899       case HAL_UART_ERROR_CB_ID :
900         huart->ErrorCallback = HAL_UART_ErrorCallback;                         /* Legacy weak ErrorCallback             */
901         break;
902 
903       case HAL_UART_ABORT_COMPLETE_CB_ID :
904         huart->AbortCpltCallback = HAL_UART_AbortCpltCallback;                 /* Legacy weak AbortCpltCallback         */
905         break;
906 
907       case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
908         huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
909         break;
910 
911       case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
912         huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback;   /* Legacy weak AbortReceiveCpltCallback  */
913         break;
914 
915       case HAL_UART_MSPINIT_CB_ID :
916         huart->MspInitCallback = HAL_UART_MspInit;                             /* Legacy weak MspInitCallback           */
917         break;
918 
919       case HAL_UART_MSPDEINIT_CB_ID :
920         huart->MspDeInitCallback = HAL_UART_MspDeInit;                         /* Legacy weak MspDeInitCallback         */
921         break;
922 
923       default :
924         /* Update the error code */
925         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
926 
927         /* Return error status */
928         status =  HAL_ERROR;
929         break;
930     }
931   }
932   else if (HAL_UART_STATE_RESET == huart->gState)
933   {
934     switch (CallbackID)
935     {
936       case HAL_UART_MSPINIT_CB_ID :
937         huart->MspInitCallback = HAL_UART_MspInit;
938         break;
939 
940       case HAL_UART_MSPDEINIT_CB_ID :
941         huart->MspDeInitCallback = HAL_UART_MspDeInit;
942         break;
943 
944       default :
945         /* Update the error code */
946         huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
947 
948         /* Return error status */
949         status =  HAL_ERROR;
950         break;
951     }
952   }
953   else
954   {
955     /* Update the error code */
956     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
957 
958     /* Return error status */
959     status =  HAL_ERROR;
960   }
961 
962   return status;
963 }
964 
965 /**
966   * @brief  Register a User UART Rx Event Callback
967   *         To be used instead of the weak predefined callback
968   * @param  huart     Uart handle
969   * @param  pCallback Pointer to the Rx Event Callback function
970   * @retval HAL status
971   */
HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef * huart,pUART_RxEventCallbackTypeDef pCallback)972 HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
973 {
974   HAL_StatusTypeDef status = HAL_OK;
975 
976   if (pCallback == NULL)
977   {
978     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
979 
980     return HAL_ERROR;
981   }
982 
983   /* Process locked */
984   __HAL_LOCK(huart);
985 
986   if (huart->gState == HAL_UART_STATE_READY)
987   {
988     huart->RxEventCallback = pCallback;
989   }
990   else
991   {
992     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
993 
994     status =  HAL_ERROR;
995   }
996 
997   /* Release Lock */
998   __HAL_UNLOCK(huart);
999 
1000   return status;
1001 }
1002 
1003 /**
1004   * @brief  UnRegister the UART Rx Event Callback
1005   *         UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
1006   * @param  huart     Uart handle
1007   * @retval HAL status
1008   */
HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef * huart)1009 HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
1010 {
1011   HAL_StatusTypeDef status = HAL_OK;
1012 
1013   /* Process locked */
1014   __HAL_LOCK(huart);
1015 
1016   if (huart->gState == HAL_UART_STATE_READY)
1017   {
1018     huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback  */
1019   }
1020   else
1021   {
1022     huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
1023 
1024     status =  HAL_ERROR;
1025   }
1026 
1027   /* Release Lock */
1028   __HAL_UNLOCK(huart);
1029   return status;
1030 }
1031 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1032 
1033 /**
1034   * @}
1035   */
1036 
1037 /** @defgroup UART_Exported_Functions_Group2 IO operation functions
1038   *  @brief UART Transmit and Receive functions
1039   *
1040 @verbatim
1041  ===============================================================================
1042                       ##### IO operation functions #####
1043  ===============================================================================
1044     This subsection provides a set of functions allowing to manage the UART asynchronous
1045     and Half duplex data transfers.
1046 
1047     (#) There are two modes of transfer:
1048        (+) Blocking mode: The communication is performed in polling mode.
1049            The HAL status of all data processing is returned by the same function
1050            after finishing transfer.
1051        (+) Non-Blocking mode: The communication is performed using Interrupts
1052            or DMA, these API's return the HAL status.
1053            The end of the data processing will be indicated through the
1054            dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
1055            using DMA mode.
1056            The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
1057            will be executed respectively at the end of the transmit or receive process
1058            The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected.
1059 
1060     (#) Blocking mode API's are :
1061         (+) HAL_UART_Transmit()
1062         (+) HAL_UART_Receive()
1063 
1064     (#) Non-Blocking mode API's with Interrupt are :
1065         (+) HAL_UART_Transmit_IT()
1066         (+) HAL_UART_Receive_IT()
1067         (+) HAL_UART_IRQHandler()
1068 
1069     (#) Non-Blocking mode API's with DMA are :
1070         (+) HAL_UART_Transmit_DMA()
1071         (+) HAL_UART_Receive_DMA()
1072         (+) HAL_UART_DMAPause()
1073         (+) HAL_UART_DMAResume()
1074         (+) HAL_UART_DMAStop()
1075 
1076     (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
1077         (+) HAL_UART_TxHalfCpltCallback()
1078         (+) HAL_UART_TxCpltCallback()
1079         (+) HAL_UART_RxHalfCpltCallback()
1080         (+) HAL_UART_RxCpltCallback()
1081         (+) HAL_UART_ErrorCallback()
1082 
1083     (#) Non-Blocking mode transfers could be aborted using Abort API's :
1084         (+) HAL_UART_Abort()
1085         (+) HAL_UART_AbortTransmit()
1086         (+) HAL_UART_AbortReceive()
1087         (+) HAL_UART_Abort_IT()
1088         (+) HAL_UART_AbortTransmit_IT()
1089         (+) HAL_UART_AbortReceive_IT()
1090 
1091     (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
1092         (+) HAL_UART_AbortCpltCallback()
1093         (+) HAL_UART_AbortTransmitCpltCallback()
1094         (+) HAL_UART_AbortReceiveCpltCallback()
1095 
1096     (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced reception services:
1097         (+) HAL_UARTEx_RxEventCallback()
1098 
1099     (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
1100         Errors are handled as follows :
1101        (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
1102            to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
1103            Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
1104            and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side.
1105            If user wants to abort it, Abort services should be called by user.
1106        (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
1107            This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
1108            Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
1109 
1110     -@- In the Half duplex communication, it is forbidden to run the transmit
1111         and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
1112 
1113 @endverbatim
1114   * @{
1115   */
1116 
1117 /**
1118   * @brief  Sends an amount of data in blocking mode.
1119   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1120   *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1121   *         of u16 provided through pData.
1122   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1123   *               the configuration information for the specified UART module.
1124   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1125   * @param  Size  Amount of data elements (u8 or u16) to be sent
1126   * @param  Timeout Timeout duration
1127   * @retval HAL status
1128   */
HAL_UART_Transmit(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size,uint32_t Timeout)1129 HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
1130 {
1131   const uint8_t  *pdata8bits;
1132   const uint16_t *pdata16bits;
1133   uint32_t tickstart = 0U;
1134 
1135   /* Check that a Tx process is not already ongoing */
1136   if (huart->gState == HAL_UART_STATE_READY)
1137   {
1138     if ((pData == NULL) || (Size == 0U))
1139     {
1140       return  HAL_ERROR;
1141     }
1142 
1143     huart->ErrorCode = HAL_UART_ERROR_NONE;
1144     huart->gState = HAL_UART_STATE_BUSY_TX;
1145 
1146     /* Init tickstart for timeout management */
1147     tickstart = HAL_GetTick();
1148 
1149     huart->TxXferSize = Size;
1150     huart->TxXferCount = Size;
1151 
1152     /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
1153     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1154     {
1155       pdata8bits  = NULL;
1156       pdata16bits = (const uint16_t *) pData;
1157     }
1158     else
1159     {
1160       pdata8bits  = pData;
1161       pdata16bits = NULL;
1162     }
1163 
1164     while (huart->TxXferCount > 0U)
1165     {
1166       if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
1167       {
1168         huart->gState = HAL_UART_STATE_READY;
1169 
1170         return HAL_TIMEOUT;
1171       }
1172       if (pdata8bits == NULL)
1173       {
1174         huart->Instance->DR = (uint16_t)(*pdata16bits & 0x01FFU);
1175         pdata16bits++;
1176       }
1177       else
1178       {
1179         huart->Instance->DR = (uint8_t)(*pdata8bits & 0xFFU);
1180         pdata8bits++;
1181       }
1182       huart->TxXferCount--;
1183     }
1184 
1185     if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
1186     {
1187       huart->gState = HAL_UART_STATE_READY;
1188 
1189       return HAL_TIMEOUT;
1190     }
1191 
1192     /* At end of Tx process, restore huart->gState to Ready */
1193     huart->gState = HAL_UART_STATE_READY;
1194 
1195     return HAL_OK;
1196   }
1197   else
1198   {
1199     return HAL_BUSY;
1200   }
1201 }
1202 
1203 /**
1204   * @brief  Receives an amount of data in blocking mode.
1205   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1206   *         the received data is handled as a set of u16. In this case, Size must indicate the number
1207   *         of u16 available through pData.
1208   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1209   *               the configuration information for the specified UART module.
1210   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1211   * @param  Size  Amount of data elements (u8 or u16) to be received.
1212   * @param  Timeout Timeout duration
1213   * @retval HAL status
1214   */
HAL_UART_Receive(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint32_t Timeout)1215 HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1216 {
1217   uint8_t  *pdata8bits;
1218   uint16_t *pdata16bits;
1219   uint32_t tickstart = 0U;
1220 
1221   /* Check that a Rx process is not already ongoing */
1222   if (huart->RxState == HAL_UART_STATE_READY)
1223   {
1224     if ((pData == NULL) || (Size == 0U))
1225     {
1226       return  HAL_ERROR;
1227     }
1228 
1229     huart->ErrorCode = HAL_UART_ERROR_NONE;
1230     huart->RxState = HAL_UART_STATE_BUSY_RX;
1231     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1232 
1233     /* Init tickstart for timeout management */
1234     tickstart = HAL_GetTick();
1235 
1236     huart->RxXferSize = Size;
1237     huart->RxXferCount = Size;
1238 
1239     /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
1240     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1241     {
1242       pdata8bits  = NULL;
1243       pdata16bits = (uint16_t *) pData;
1244     }
1245     else
1246     {
1247       pdata8bits  = pData;
1248       pdata16bits = NULL;
1249     }
1250 
1251     /* Check the remain data to be received */
1252     while (huart->RxXferCount > 0U)
1253     {
1254       if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
1255       {
1256         huart->RxState = HAL_UART_STATE_READY;
1257 
1258         return HAL_TIMEOUT;
1259       }
1260       if (pdata8bits == NULL)
1261       {
1262         *pdata16bits = (uint16_t)(huart->Instance->DR & 0x01FF);
1263         pdata16bits++;
1264       }
1265       else
1266       {
1267         if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
1268         {
1269           *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
1270         }
1271         else
1272         {
1273           *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
1274         }
1275         pdata8bits++;
1276       }
1277       huart->RxXferCount--;
1278     }
1279 
1280     /* At end of Rx process, restore huart->RxState to Ready */
1281     huart->RxState = HAL_UART_STATE_READY;
1282 
1283     return HAL_OK;
1284   }
1285   else
1286   {
1287     return HAL_BUSY;
1288   }
1289 }
1290 
1291 /**
1292   * @brief  Sends an amount of data in non blocking mode.
1293   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1294   *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1295   *         of u16 provided through pData.
1296   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1297   *               the configuration information for the specified UART module.
1298   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1299   * @param  Size  Amount of data elements (u8 or u16) to be sent
1300   * @retval HAL status
1301   */
HAL_UART_Transmit_IT(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1302 HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1303 {
1304   /* Check that a Tx process is not already ongoing */
1305   if (huart->gState == HAL_UART_STATE_READY)
1306   {
1307     if ((pData == NULL) || (Size == 0U))
1308     {
1309       return HAL_ERROR;
1310     }
1311 
1312     huart->pTxBuffPtr = pData;
1313     huart->TxXferSize = Size;
1314     huart->TxXferCount = Size;
1315 
1316     huart->ErrorCode = HAL_UART_ERROR_NONE;
1317     huart->gState = HAL_UART_STATE_BUSY_TX;
1318 
1319     /* Enable the UART Transmit data register empty Interrupt */
1320     __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
1321 
1322     return HAL_OK;
1323   }
1324   else
1325   {
1326     return HAL_BUSY;
1327   }
1328 }
1329 
1330 /**
1331   * @brief  Receives an amount of data in non blocking mode.
1332   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1333   *         the received data is handled as a set of u16. In this case, Size must indicate the number
1334   *         of u16 available through pData.
1335   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1336   *               the configuration information for the specified UART module.
1337   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1338   * @param  Size  Amount of data elements (u8 or u16) to be received.
1339   * @retval HAL status
1340   */
HAL_UART_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1341 HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1342 {
1343   /* Check that a Rx process is not already ongoing */
1344   if (huart->RxState == HAL_UART_STATE_READY)
1345   {
1346     if ((pData == NULL) || (Size == 0U))
1347     {
1348       return HAL_ERROR;
1349     }
1350 
1351     /* Set Reception type to Standard reception */
1352     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1353 
1354     return (UART_Start_Receive_IT(huart, pData, Size));
1355   }
1356   else
1357   {
1358     return HAL_BUSY;
1359   }
1360 }
1361 
1362 /**
1363   * @brief  Sends an amount of data in DMA mode.
1364   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1365   *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1366   *         of u16 provided through pData.
1367   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1368   *                the configuration information for the specified UART module.
1369   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1370   * @param  Size  Amount of data elements (u8 or u16) to be sent
1371   * @retval HAL status
1372   */
HAL_UART_Transmit_DMA(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1373 HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1374 {
1375   const uint32_t *tmp;
1376 
1377   /* Check that a Tx process is not already ongoing */
1378   if (huart->gState == HAL_UART_STATE_READY)
1379   {
1380     if ((pData == NULL) || (Size == 0U))
1381     {
1382       return HAL_ERROR;
1383     }
1384 
1385     huart->pTxBuffPtr = pData;
1386     huart->TxXferSize = Size;
1387     huart->TxXferCount = Size;
1388 
1389     huart->ErrorCode = HAL_UART_ERROR_NONE;
1390     huart->gState = HAL_UART_STATE_BUSY_TX;
1391 
1392     /* Set the UART DMA transfer complete callback */
1393     huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
1394 
1395     /* Set the UART DMA Half transfer complete callback */
1396     huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
1397 
1398     /* Set the DMA error callback */
1399     huart->hdmatx->XferErrorCallback = UART_DMAError;
1400 
1401     /* Set the DMA abort callback */
1402     huart->hdmatx->XferAbortCallback = NULL;
1403 
1404     /* Enable the UART transmit DMA stream */
1405     tmp = (const uint32_t *)&pData;
1406     HAL_DMA_Start_IT(huart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size);
1407 
1408     /* Clear the TC flag in the SR register by writing 0 to it */
1409     __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
1410 
1411     /* Enable the DMA transfer for transmit request by setting the DMAT bit
1412        in the UART CR3 register */
1413     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1414 
1415     return HAL_OK;
1416   }
1417   else
1418   {
1419     return HAL_BUSY;
1420   }
1421 }
1422 
1423 /**
1424   * @brief  Receives an amount of data in DMA mode.
1425   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1426   *         the received data is handled as a set of u16. In this case, Size must indicate the number
1427   *         of u16 available through pData.
1428   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1429   *               the configuration information for the specified UART module.
1430   * @param  pData Pointer to data buffer (u8 or u16 data elements).
1431   * @param  Size  Amount of data elements (u8 or u16) to be received.
1432   * @note   When the UART parity is enabled (PCE = 1) the received data contains the parity bit.
1433   * @retval HAL status
1434   */
HAL_UART_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1435 HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1436 {
1437   /* Check that a Rx process is not already ongoing */
1438   if (huart->RxState == HAL_UART_STATE_READY)
1439   {
1440     if ((pData == NULL) || (Size == 0U))
1441     {
1442       return HAL_ERROR;
1443     }
1444 
1445     /* Set Reception type to Standard reception */
1446     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1447 
1448     return (UART_Start_Receive_DMA(huart, pData, Size));
1449   }
1450   else
1451   {
1452     return HAL_BUSY;
1453   }
1454 }
1455 
1456 /**
1457   * @brief Pauses the DMA Transfer.
1458   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1459   *                the configuration information for the specified UART module.
1460   * @retval HAL status
1461   */
HAL_UART_DMAPause(UART_HandleTypeDef * huart)1462 HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
1463 {
1464   uint32_t dmarequest = 0x00U;
1465 
1466   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1467   if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
1468   {
1469     /* Disable the UART DMA Tx request */
1470     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1471   }
1472 
1473   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1474   if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
1475   {
1476     /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1477     ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1478     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1479 
1480     /* Disable the UART DMA Rx request */
1481     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1482   }
1483 
1484   return HAL_OK;
1485 }
1486 
1487 /**
1488   * @brief Resumes the DMA Transfer.
1489   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1490   *                the configuration information for the specified UART module.
1491   * @retval HAL status
1492   */
HAL_UART_DMAResume(UART_HandleTypeDef * huart)1493 HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
1494 {
1495 
1496   if (huart->gState == HAL_UART_STATE_BUSY_TX)
1497   {
1498     /* Enable the UART DMA Tx request */
1499     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1500   }
1501 
1502   if (huart->RxState == HAL_UART_STATE_BUSY_RX)
1503   {
1504     /* Clear the Overrun flag before resuming the Rx transfer*/
1505     __HAL_UART_CLEAR_OREFLAG(huart);
1506 
1507     /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
1508     if (huart->Init.Parity != UART_PARITY_NONE)
1509     {
1510       ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1511     }
1512     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
1513 
1514     /* Enable the UART DMA Rx request */
1515     ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1516   }
1517 
1518   return HAL_OK;
1519 }
1520 
1521 /**
1522   * @brief Stops the DMA Transfer.
1523   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
1524   *                the configuration information for the specified UART module.
1525   * @retval HAL status
1526   */
HAL_UART_DMAStop(UART_HandleTypeDef * huart)1527 HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
1528 {
1529   uint32_t dmarequest = 0x00U;
1530   /* The Lock is not implemented on this API to allow the user application
1531      to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
1532      when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
1533      and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
1534      */
1535 
1536   /* Stop UART DMA Tx request if ongoing */
1537   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1538   if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
1539   {
1540     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1541 
1542     /* Abort the UART DMA Tx stream */
1543     if (huart->hdmatx != NULL)
1544     {
1545       HAL_DMA_Abort(huart->hdmatx);
1546     }
1547     UART_EndTxTransfer(huart);
1548   }
1549 
1550   /* Stop UART DMA Rx request if ongoing */
1551   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1552   if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
1553   {
1554     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1555 
1556     /* Abort the UART DMA Rx stream */
1557     if (huart->hdmarx != NULL)
1558     {
1559       HAL_DMA_Abort(huart->hdmarx);
1560     }
1561     UART_EndRxTransfer(huart);
1562   }
1563 
1564   return HAL_OK;
1565 }
1566 
1567 /**
1568   * @brief Receive an amount of data in blocking mode till either the expected number of data is received or an IDLE event occurs.
1569   * @note   HAL_OK is returned if reception is completed (expected number of data has been received)
1570   *         or if reception is stopped after IDLE event (less than the expected number of data has been received)
1571   *         In this case, RxLen output parameter indicates number of data available in reception buffer.
1572   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1573   *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1574   *         of uint16_t available through pData.
1575   * @param huart   UART handle.
1576   * @param pData   Pointer to data buffer (uint8_t or uint16_t data elements).
1577   * @param Size    Amount of data elements (uint8_t or uint16_t) to be received.
1578   * @param RxLen   Number of data elements finally received (could be lower than Size, in case reception ends on IDLE event)
1579   * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
1580   * @retval HAL status
1581   */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)1582 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
1583                                            uint32_t Timeout)
1584 {
1585   uint8_t  *pdata8bits;
1586   uint16_t *pdata16bits;
1587   uint32_t tickstart;
1588 
1589   /* Check that a Rx process is not already ongoing */
1590   if (huart->RxState == HAL_UART_STATE_READY)
1591   {
1592     if ((pData == NULL) || (Size == 0U))
1593     {
1594       return  HAL_ERROR;
1595     }
1596 
1597     huart->ErrorCode = HAL_UART_ERROR_NONE;
1598     huart->RxState = HAL_UART_STATE_BUSY_RX;
1599     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1600     huart->RxEventType = HAL_UART_RXEVENT_TC;
1601 
1602     /* Init tickstart for timeout management */
1603     tickstart = HAL_GetTick();
1604 
1605     huart->RxXferSize  = Size;
1606     huart->RxXferCount = Size;
1607 
1608     /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
1609     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1610     {
1611       pdata8bits  = NULL;
1612       pdata16bits = (uint16_t *) pData;
1613     }
1614     else
1615     {
1616       pdata8bits  = pData;
1617       pdata16bits = NULL;
1618     }
1619 
1620     /* Initialize output number of received elements */
1621     *RxLen = 0U;
1622 
1623     /* as long as data have to be received */
1624     while (huart->RxXferCount > 0U)
1625     {
1626       /* Check if IDLE flag is set */
1627       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
1628       {
1629         /* Clear IDLE flag in ISR */
1630         __HAL_UART_CLEAR_IDLEFLAG(huart);
1631 
1632         /* If Set, but no data ever received, clear flag without exiting loop */
1633         /* If Set, and data has already been received, this means Idle Event is valid : End reception */
1634         if (*RxLen > 0U)
1635         {
1636           huart->RxEventType = HAL_UART_RXEVENT_IDLE;
1637           huart->RxState = HAL_UART_STATE_READY;
1638 
1639           return HAL_OK;
1640         }
1641       }
1642 
1643       /* Check if RXNE flag is set */
1644       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
1645       {
1646         if (pdata8bits == NULL)
1647         {
1648           *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
1649           pdata16bits++;
1650         }
1651         else
1652         {
1653           if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
1654           {
1655             *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
1656           }
1657           else
1658           {
1659             *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
1660           }
1661 
1662           pdata8bits++;
1663         }
1664         /* Increment number of received elements */
1665         *RxLen += 1U;
1666         huart->RxXferCount--;
1667       }
1668 
1669       /* Check for the Timeout */
1670       if (Timeout != HAL_MAX_DELAY)
1671       {
1672         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1673         {
1674           huart->RxState = HAL_UART_STATE_READY;
1675 
1676           return HAL_TIMEOUT;
1677         }
1678       }
1679     }
1680 
1681     /* Set number of received elements in output parameter : RxLen */
1682     *RxLen = huart->RxXferSize - huart->RxXferCount;
1683     /* At end of Rx process, restore huart->RxState to Ready */
1684     huart->RxState = HAL_UART_STATE_READY;
1685 
1686     return HAL_OK;
1687   }
1688   else
1689   {
1690     return HAL_BUSY;
1691   }
1692 }
1693 
1694 /**
1695   * @brief Receive an amount of data in interrupt mode till either the expected number of data is received or an IDLE event occurs.
1696   * @note   Reception is initiated by this function call. Further progress of reception is achieved thanks
1697   *         to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
1698   *         number of received data elements.
1699   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1700   *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1701   *         of uint16_t available through pData.
1702   * @param huart UART handle.
1703   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
1704   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
1705   * @retval HAL status
1706   */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1707 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1708 {
1709   HAL_StatusTypeDef status;
1710 
1711   /* Check that a Rx process is not already ongoing */
1712   if (huart->RxState == HAL_UART_STATE_READY)
1713   {
1714     if ((pData == NULL) || (Size == 0U))
1715     {
1716       return HAL_ERROR;
1717     }
1718 
1719     /* Set Reception type to reception till IDLE Event*/
1720     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1721     huart->RxEventType = HAL_UART_RXEVENT_TC;
1722 
1723     status =  UART_Start_Receive_IT(huart, pData, Size);
1724 
1725     /* Check Rx process has been successfully started */
1726     if (status == HAL_OK)
1727     {
1728       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1729       {
1730         __HAL_UART_CLEAR_IDLEFLAG(huart);
1731         ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
1732       }
1733       else
1734       {
1735         /* In case of errors already pending when reception is started,
1736            Interrupts may have already been raised and lead to reception abortion.
1737            (Overrun error for instance).
1738            In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
1739         status = HAL_ERROR;
1740       }
1741     }
1742 
1743     return status;
1744   }
1745   else
1746   {
1747     return HAL_BUSY;
1748   }
1749 }
1750 
1751 /**
1752   * @brief Receive an amount of data in DMA mode till either the expected number of data is received or an IDLE event occurs.
1753   * @note   Reception is initiated by this function call. Further progress of reception is achieved thanks
1754   *         to DMA services, transferring automatically received data elements in user reception buffer and
1755   *         calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
1756   *         reception phase as ended. In all cases, callback execution will indicate number of received data elements.
1757   * @note   When the UART parity is enabled (PCE = 1), the received data contain
1758   *         the parity bit (MSB position).
1759   * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
1760   *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
1761   *         of uint16_t available through pData.
1762   * @param huart UART handle.
1763   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
1764   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
1765   * @retval HAL status
1766   */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1767 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1768 {
1769   HAL_StatusTypeDef status;
1770 
1771   /* Check that a Rx process is not already ongoing */
1772   if (huart->RxState == HAL_UART_STATE_READY)
1773   {
1774     if ((pData == NULL) || (Size == 0U))
1775     {
1776       return HAL_ERROR;
1777     }
1778 
1779     /* Set Reception type to reception till IDLE Event*/
1780     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
1781     huart->RxEventType = HAL_UART_RXEVENT_TC;
1782 
1783     status =  UART_Start_Receive_DMA(huart, pData, Size);
1784 
1785     /* Check Rx process has been successfully started */
1786     if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1787     {
1788       __HAL_UART_CLEAR_IDLEFLAG(huart);
1789       ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
1790     }
1791     else
1792     {
1793       /* In case of errors already pending when reception is started,
1794          Interrupts may have already been raised and lead to reception abortion.
1795          (Overrun error for instance).
1796          In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
1797       status = HAL_ERROR;
1798     }
1799 
1800     return status;
1801   }
1802   else
1803   {
1804     return HAL_BUSY;
1805   }
1806 }
1807 
1808 /**
1809   * @brief Provide Rx Event type that has lead to RxEvent callback execution.
1810   * @note  When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
1811   *        of reception process is provided to application through calls of Rx Event callback (either default one
1812   *        HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
1813   *        Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
1814   *        to Rx Event callback execution.
1815   * @note  This function is expected to be called within the user implementation of Rx Event Callback,
1816   *        in order to provide the accurate value :
1817   *        In Interrupt Mode :
1818   *           - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1819   *           - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1820   *             received data is lower than expected one)
1821   *        In DMA Mode :
1822   *           - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1823   *           - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
1824   *           - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1825   *             received data is lower than expected one).
1826   *        In DMA mode, RxEvent callback could be called several times;
1827   *        When DMA is configured in Normal Mode, HT event does not stop Reception process;
1828   *        When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
1829   * @param  huart UART handle.
1830   * @retval Rx Event Type (returned value will be a value of @ref UART_RxEvent_Type_Values)
1831   */
HAL_UARTEx_GetRxEventType(UART_HandleTypeDef * huart)1832 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
1833 {
1834   /* Return Rx Event type value, as stored in UART handle */
1835   return(huart->RxEventType);
1836 }
1837 
1838 /**
1839   * @brief  Abort ongoing transfers (blocking mode).
1840   * @param  huart UART handle.
1841   * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1842   *         This procedure performs following operations :
1843   *           - Disable UART Interrupts (Tx and Rx)
1844   *           - Disable the DMA transfer in the peripheral register (if enabled)
1845   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1846   *           - Set handle State to READY
1847   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1848   * @retval HAL status
1849   */
HAL_UART_Abort(UART_HandleTypeDef * huart)1850 HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
1851 {
1852   /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1853   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
1854   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1855 
1856   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1857   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1858   {
1859     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1860   }
1861 
1862   /* Disable the UART DMA Tx request if enabled */
1863   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1864   {
1865     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1866 
1867     /* Abort the UART DMA Tx stream: use blocking DMA Abort API (no callback) */
1868     if (huart->hdmatx != NULL)
1869     {
1870       /* Set the UART DMA Abort callback to Null.
1871          No call back execution at end of DMA abort procedure */
1872       huart->hdmatx->XferAbortCallback = NULL;
1873 
1874       if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1875       {
1876         if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1877         {
1878           /* Set error code to DMA */
1879           huart->ErrorCode = HAL_UART_ERROR_DMA;
1880 
1881           return HAL_TIMEOUT;
1882         }
1883       }
1884     }
1885   }
1886 
1887   /* Disable the UART DMA Rx request if enabled */
1888   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1889   {
1890     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1891 
1892     /* Abort the UART DMA Rx stream: use blocking DMA Abort API (no callback) */
1893     if (huart->hdmarx != NULL)
1894     {
1895       /* Set the UART DMA Abort callback to Null.
1896          No call back execution at end of DMA abort procedure */
1897       huart->hdmarx->XferAbortCallback = NULL;
1898 
1899       if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1900       {
1901         if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1902         {
1903           /* Set error code to DMA */
1904           huart->ErrorCode = HAL_UART_ERROR_DMA;
1905 
1906           return HAL_TIMEOUT;
1907         }
1908       }
1909     }
1910   }
1911 
1912   /* Reset Tx and Rx transfer counters */
1913   huart->TxXferCount = 0x00U;
1914   huart->RxXferCount = 0x00U;
1915 
1916   /* Reset ErrorCode */
1917   huart->ErrorCode = HAL_UART_ERROR_NONE;
1918 
1919   /* Restore huart->RxState and huart->gState to Ready */
1920   huart->RxState = HAL_UART_STATE_READY;
1921   huart->gState = HAL_UART_STATE_READY;
1922   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1923 
1924   return HAL_OK;
1925 }
1926 
1927 /**
1928   * @brief  Abort ongoing Transmit transfer (blocking mode).
1929   * @param  huart UART handle.
1930   * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1931   *         This procedure performs following operations :
1932   *           - Disable UART Interrupts (Tx)
1933   *           - Disable the DMA transfer in the peripheral register (if enabled)
1934   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1935   *           - Set handle State to READY
1936   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1937   * @retval HAL status
1938   */
HAL_UART_AbortTransmit(UART_HandleTypeDef * huart)1939 HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
1940 {
1941   /* Disable TXEIE and TCIE interrupts */
1942   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
1943 
1944   /* Disable the UART DMA Tx request if enabled */
1945   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1946   {
1947     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1948 
1949     /* Abort the UART DMA Tx stream : use blocking DMA Abort API (no callback) */
1950     if (huart->hdmatx != NULL)
1951     {
1952       /* Set the UART DMA Abort callback to Null.
1953          No call back execution at end of DMA abort procedure */
1954       huart->hdmatx->XferAbortCallback = NULL;
1955 
1956       if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1957       {
1958         if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1959         {
1960           /* Set error code to DMA */
1961           huart->ErrorCode = HAL_UART_ERROR_DMA;
1962 
1963           return HAL_TIMEOUT;
1964         }
1965       }
1966     }
1967   }
1968 
1969   /* Reset Tx transfer counter */
1970   huart->TxXferCount = 0x00U;
1971 
1972   /* Restore huart->gState to Ready */
1973   huart->gState = HAL_UART_STATE_READY;
1974 
1975   return HAL_OK;
1976 }
1977 
1978 /**
1979   * @brief  Abort ongoing Receive transfer (blocking mode).
1980   * @param  huart UART handle.
1981   * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1982   *         This procedure performs following operations :
1983   *           - Disable UART Interrupts (Rx)
1984   *           - Disable the DMA transfer in the peripheral register (if enabled)
1985   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1986   *           - Set handle State to READY
1987   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1988   * @retval HAL status
1989   */
HAL_UART_AbortReceive(UART_HandleTypeDef * huart)1990 HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
1991 {
1992   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1993   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
1994   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1995 
1996   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1997   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1998   {
1999     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2000   }
2001 
2002   /* Disable the UART DMA Rx request if enabled */
2003   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2004   {
2005     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2006 
2007     /* Abort the UART DMA Rx stream : use blocking DMA Abort API (no callback) */
2008     if (huart->hdmarx != NULL)
2009     {
2010       /* Set the UART DMA Abort callback to Null.
2011          No call back execution at end of DMA abort procedure */
2012       huart->hdmarx->XferAbortCallback = NULL;
2013 
2014       if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
2015       {
2016         if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
2017         {
2018           /* Set error code to DMA */
2019           huart->ErrorCode = HAL_UART_ERROR_DMA;
2020 
2021           return HAL_TIMEOUT;
2022         }
2023       }
2024     }
2025   }
2026 
2027   /* Reset Rx transfer counter */
2028   huart->RxXferCount = 0x00U;
2029 
2030   /* Restore huart->RxState to Ready */
2031   huart->RxState = HAL_UART_STATE_READY;
2032   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2033 
2034   return HAL_OK;
2035 }
2036 
2037 /**
2038   * @brief  Abort ongoing transfers (Interrupt mode).
2039   * @param  huart UART handle.
2040   * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
2041   *         This procedure performs following operations :
2042   *           - Disable UART Interrupts (Tx and Rx)
2043   *           - Disable the DMA transfer in the peripheral register (if enabled)
2044   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2045   *           - Set handle State to READY
2046   *           - At abort completion, call user abort complete callback
2047   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
2048   *         considered as completed only when user abort complete callback is executed (not when exiting function).
2049   * @retval HAL status
2050   */
HAL_UART_Abort_IT(UART_HandleTypeDef * huart)2051 HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
2052 {
2053   uint32_t AbortCplt = 0x01U;
2054 
2055   /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2056   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
2057   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2058 
2059   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
2060   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2061   {
2062     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2063   }
2064 
2065   /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
2066      before any call to DMA Abort functions */
2067   /* DMA Tx Handle is valid */
2068   if (huart->hdmatx != NULL)
2069   {
2070     /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
2071        Otherwise, set it to NULL */
2072     if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2073     {
2074       huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
2075     }
2076     else
2077     {
2078       huart->hdmatx->XferAbortCallback = NULL;
2079     }
2080   }
2081   /* DMA Rx Handle is valid */
2082   if (huart->hdmarx != NULL)
2083   {
2084     /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
2085        Otherwise, set it to NULL */
2086     if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2087     {
2088       huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
2089     }
2090     else
2091     {
2092       huart->hdmarx->XferAbortCallback = NULL;
2093     }
2094   }
2095 
2096   /* Disable the UART DMA Tx request if enabled */
2097   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2098   {
2099     /* Disable DMA Tx at UART level */
2100     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2101 
2102     /* Abort the UART DMA Tx stream : use non blocking DMA Abort API (callback) */
2103     if (huart->hdmatx != NULL)
2104     {
2105       /* UART Tx DMA Abort callback has already been initialised :
2106          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2107 
2108       /* Abort DMA TX */
2109       if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
2110       {
2111         huart->hdmatx->XferAbortCallback = NULL;
2112       }
2113       else
2114       {
2115         AbortCplt = 0x00U;
2116       }
2117     }
2118   }
2119 
2120   /* Disable the UART DMA Rx request if enabled */
2121   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2122   {
2123     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2124 
2125     /* Abort the UART DMA Rx stream : use non blocking DMA Abort API (callback) */
2126     if (huart->hdmarx != NULL)
2127     {
2128       /* UART Rx DMA Abort callback has already been initialised :
2129          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2130 
2131       /* Abort DMA RX */
2132       if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2133       {
2134         huart->hdmarx->XferAbortCallback = NULL;
2135         AbortCplt = 0x01U;
2136       }
2137       else
2138       {
2139         AbortCplt = 0x00U;
2140       }
2141     }
2142   }
2143 
2144   /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
2145   if (AbortCplt == 0x01U)
2146   {
2147     /* Reset Tx and Rx transfer counters */
2148     huart->TxXferCount = 0x00U;
2149     huart->RxXferCount = 0x00U;
2150 
2151     /* Reset ErrorCode */
2152     huart->ErrorCode = HAL_UART_ERROR_NONE;
2153 
2154     /* Restore huart->gState and huart->RxState to Ready */
2155     huart->gState  = HAL_UART_STATE_READY;
2156     huart->RxState = HAL_UART_STATE_READY;
2157     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2158 
2159     /* As no DMA to be aborted, call directly user Abort complete callback */
2160 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2161     /* Call registered Abort complete callback */
2162     huart->AbortCpltCallback(huart);
2163 #else
2164     /* Call legacy weak Abort complete callback */
2165     HAL_UART_AbortCpltCallback(huart);
2166 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2167   }
2168 
2169   return HAL_OK;
2170 }
2171 
2172 /**
2173   * @brief  Abort ongoing Transmit transfer (Interrupt mode).
2174   * @param  huart UART handle.
2175   * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
2176   *         This procedure performs following operations :
2177   *           - Disable UART Interrupts (Tx)
2178   *           - Disable the DMA transfer in the peripheral register (if enabled)
2179   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2180   *           - Set handle State to READY
2181   *           - At abort completion, call user abort complete callback
2182   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
2183   *         considered as completed only when user abort complete callback is executed (not when exiting function).
2184   * @retval HAL status
2185   */
HAL_UART_AbortTransmit_IT(UART_HandleTypeDef * huart)2186 HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
2187 {
2188   /* Disable TXEIE and TCIE interrupts */
2189   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
2190 
2191   /* Disable the UART DMA Tx request if enabled */
2192   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2193   {
2194     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2195 
2196     /* Abort the UART DMA Tx stream : use blocking DMA Abort API (no callback) */
2197     if (huart->hdmatx != NULL)
2198     {
2199       /* Set the UART DMA Abort callback :
2200          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2201       huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
2202 
2203       /* Abort DMA TX */
2204       if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
2205       {
2206         /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
2207         huart->hdmatx->XferAbortCallback(huart->hdmatx);
2208       }
2209     }
2210     else
2211     {
2212       /* Reset Tx transfer counter */
2213       huart->TxXferCount = 0x00U;
2214 
2215       /* Restore huart->gState to Ready */
2216       huart->gState = HAL_UART_STATE_READY;
2217 
2218       /* As no DMA to be aborted, call directly user Abort complete callback */
2219 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2220       /* Call registered Abort Transmit Complete Callback */
2221       huart->AbortTransmitCpltCallback(huart);
2222 #else
2223       /* Call legacy weak Abort Transmit Complete Callback */
2224       HAL_UART_AbortTransmitCpltCallback(huart);
2225 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2226     }
2227   }
2228   else
2229   {
2230     /* Reset Tx transfer counter */
2231     huart->TxXferCount = 0x00U;
2232 
2233     /* Restore huart->gState to Ready */
2234     huart->gState = HAL_UART_STATE_READY;
2235 
2236     /* As no DMA to be aborted, call directly user Abort complete callback */
2237 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2238     /* Call registered Abort Transmit Complete Callback */
2239     huart->AbortTransmitCpltCallback(huart);
2240 #else
2241     /* Call legacy weak Abort Transmit Complete Callback */
2242     HAL_UART_AbortTransmitCpltCallback(huart);
2243 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2244   }
2245 
2246   return HAL_OK;
2247 }
2248 
2249 /**
2250   * @brief  Abort ongoing Receive transfer (Interrupt mode).
2251   * @param  huart UART handle.
2252   * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
2253   *         This procedure performs following operations :
2254   *           - Disable UART Interrupts (Rx)
2255   *           - Disable the DMA transfer in the peripheral register (if enabled)
2256   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2257   *           - Set handle State to READY
2258   *           - At abort completion, call user abort complete callback
2259   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
2260   *         considered as completed only when user abort complete callback is executed (not when exiting function).
2261   * @retval HAL status
2262   */
HAL_UART_AbortReceive_IT(UART_HandleTypeDef * huart)2263 HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
2264 {
2265   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2266   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2267   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2268 
2269   /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
2270   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2271   {
2272     ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2273   }
2274 
2275   /* Disable the UART DMA Rx request if enabled */
2276   if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2277   {
2278     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2279 
2280     /* Abort the UART DMA Rx stream : use blocking DMA Abort API (no callback) */
2281     if (huart->hdmarx != NULL)
2282     {
2283       /* Set the UART DMA Abort callback :
2284          will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2285       huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
2286 
2287       /* Abort DMA RX */
2288       if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2289       {
2290         /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
2291         huart->hdmarx->XferAbortCallback(huart->hdmarx);
2292       }
2293     }
2294     else
2295     {
2296       /* Reset Rx transfer counter */
2297       huart->RxXferCount = 0x00U;
2298 
2299       /* Restore huart->RxState to Ready */
2300       huart->RxState = HAL_UART_STATE_READY;
2301       huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2302 
2303       /* As no DMA to be aborted, call directly user Abort complete callback */
2304 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2305       /* Call registered Abort Receive Complete Callback */
2306       huart->AbortReceiveCpltCallback(huart);
2307 #else
2308       /* Call legacy weak Abort Receive Complete Callback */
2309       HAL_UART_AbortReceiveCpltCallback(huart);
2310 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2311     }
2312   }
2313   else
2314   {
2315     /* Reset Rx transfer counter */
2316     huart->RxXferCount = 0x00U;
2317 
2318     /* Restore huart->RxState to Ready */
2319     huart->RxState = HAL_UART_STATE_READY;
2320     huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2321 
2322     /* As no DMA to be aborted, call directly user Abort complete callback */
2323 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2324     /* Call registered Abort Receive Complete Callback */
2325     huart->AbortReceiveCpltCallback(huart);
2326 #else
2327     /* Call legacy weak Abort Receive Complete Callback */
2328     HAL_UART_AbortReceiveCpltCallback(huart);
2329 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2330   }
2331 
2332   return HAL_OK;
2333 }
2334 
2335 /**
2336   * @brief  This function handles UART interrupt request.
2337   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2338   *                the configuration information for the specified UART module.
2339   * @retval None
2340   */
HAL_UART_IRQHandler(UART_HandleTypeDef * huart)2341 void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
2342 {
2343   uint32_t isrflags   = READ_REG(huart->Instance->SR);
2344   uint32_t cr1its     = READ_REG(huart->Instance->CR1);
2345   uint32_t cr3its     = READ_REG(huart->Instance->CR3);
2346   uint32_t errorflags = 0x00U;
2347   uint32_t dmarequest = 0x00U;
2348 
2349   /* If no error occurs */
2350   errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
2351   if (errorflags == RESET)
2352   {
2353     /* UART in mode Receiver -------------------------------------------------*/
2354     if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2355     {
2356       UART_Receive_IT(huart);
2357       return;
2358     }
2359   }
2360 
2361   /* If some errors occur */
2362   if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET)
2363                                 || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
2364   {
2365     /* UART parity error interrupt occurred ----------------------------------*/
2366     if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
2367     {
2368       huart->ErrorCode |= HAL_UART_ERROR_PE;
2369     }
2370 
2371     /* UART noise error interrupt occurred -----------------------------------*/
2372     if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2373     {
2374       huart->ErrorCode |= HAL_UART_ERROR_NE;
2375     }
2376 
2377     /* UART frame error interrupt occurred -----------------------------------*/
2378     if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2379     {
2380       huart->ErrorCode |= HAL_UART_ERROR_FE;
2381     }
2382 
2383     /* UART Over-Run interrupt occurred --------------------------------------*/
2384     if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET)
2385                                                  || ((cr3its & USART_CR3_EIE) != RESET)))
2386     {
2387       huart->ErrorCode |= HAL_UART_ERROR_ORE;
2388     }
2389 
2390     /* Call UART Error Call back function if need be --------------------------*/
2391     if (huart->ErrorCode != HAL_UART_ERROR_NONE)
2392     {
2393       /* UART in mode Receiver -----------------------------------------------*/
2394       if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2395       {
2396         UART_Receive_IT(huart);
2397       }
2398 
2399       /* If Overrun error occurs, or if any error occurs in DMA mode reception,
2400          consider error as blocking */
2401       dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
2402       if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
2403       {
2404         /* Blocking error : transfer is aborted
2405            Set the UART state ready to be able to start again the process,
2406            Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
2407         UART_EndRxTransfer(huart);
2408 
2409         /* Disable the UART DMA Rx request if enabled */
2410         if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2411         {
2412           ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2413 
2414           /* Abort the UART DMA Rx stream */
2415           if (huart->hdmarx != NULL)
2416           {
2417             /* Set the UART DMA Abort callback :
2418                will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
2419             huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
2420             if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2421             {
2422               /* Call Directly XferAbortCallback function in case of error */
2423               huart->hdmarx->XferAbortCallback(huart->hdmarx);
2424             }
2425           }
2426           else
2427           {
2428             /* Call user error callback */
2429 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2430             /*Call registered error callback*/
2431             huart->ErrorCallback(huart);
2432 #else
2433             /*Call legacy weak error callback*/
2434             HAL_UART_ErrorCallback(huart);
2435 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2436           }
2437         }
2438         else
2439         {
2440           /* Call user error callback */
2441 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2442           /*Call registered error callback*/
2443           huart->ErrorCallback(huart);
2444 #else
2445           /*Call legacy weak error callback*/
2446           HAL_UART_ErrorCallback(huart);
2447 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2448         }
2449       }
2450       else
2451       {
2452         /* Non Blocking error : transfer could go on.
2453            Error is notified to user through user error callback */
2454 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2455         /*Call registered error callback*/
2456         huart->ErrorCallback(huart);
2457 #else
2458         /*Call legacy weak error callback*/
2459         HAL_UART_ErrorCallback(huart);
2460 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2461 
2462         huart->ErrorCode = HAL_UART_ERROR_NONE;
2463       }
2464     }
2465     return;
2466   } /* End if some error occurs */
2467 
2468   /* Check current reception Mode :
2469      If Reception till IDLE event has been selected : */
2470   if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2471       && ((isrflags & USART_SR_IDLE) != 0U)
2472       && ((cr1its & USART_SR_IDLE) != 0U))
2473   {
2474     __HAL_UART_CLEAR_IDLEFLAG(huart);
2475 
2476     /* Check if DMA mode is enabled in UART */
2477     if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2478     {
2479       /* DMA mode enabled */
2480       /* Check received length : If all expected data are received, do nothing,
2481          (DMA cplt callback will be called).
2482          Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2483       uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
2484       if ((nb_remaining_rx_data > 0U)
2485           && (nb_remaining_rx_data < huart->RxXferSize))
2486       {
2487         /* Reception is not complete */
2488         huart->RxXferCount = nb_remaining_rx_data;
2489 
2490         /* In Normal mode, end DMA xfer and HAL UART Rx process*/
2491         if (huart->hdmarx->Init.Mode != DMA_CIRCULAR)
2492         {
2493           /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
2494           ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
2495           ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2496 
2497           /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
2498              in the UART CR3 register */
2499           ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2500 
2501           /* At end of Rx process, restore huart->RxState to Ready */
2502           huart->RxState = HAL_UART_STATE_READY;
2503           huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2504 
2505           ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2506 
2507           /* Last bytes received, so no need as the abort is immediate */
2508           (void)HAL_DMA_Abort(huart->hdmarx);
2509         }
2510 
2511         /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2512         In this case, Rx Event type is Idle Event */
2513         huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2514 
2515 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2516         /*Call registered Rx Event callback*/
2517         huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2518 #else
2519         /*Call legacy weak Rx Event callback*/
2520         HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2521 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2522       }
2523       return;
2524     }
2525     else
2526     {
2527       /* DMA mode not enabled */
2528       /* Check received length : If all expected data are received, do nothing.
2529          Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2530       uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
2531       if ((huart->RxXferCount > 0U)
2532           && (nb_rx_data > 0U))
2533       {
2534         /* Disable the UART Parity Error Interrupt and RXNE interrupts */
2535         ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2536 
2537         /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
2538         ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2539 
2540         /* Rx process is completed, restore huart->RxState to Ready */
2541         huart->RxState = HAL_UART_STATE_READY;
2542         huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2543 
2544         ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2545 
2546         /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2547            In this case, Rx Event type is Idle Event */
2548         huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2549 
2550 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2551         /*Call registered Rx complete callback*/
2552         huart->RxEventCallback(huart, nb_rx_data);
2553 #else
2554         /*Call legacy weak Rx Event callback*/
2555         HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
2556 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2557       }
2558       return;
2559     }
2560   }
2561 
2562   /* UART in mode Transmitter ------------------------------------------------*/
2563   if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
2564   {
2565     UART_Transmit_IT(huart);
2566     return;
2567   }
2568 
2569   /* UART in mode Transmitter end --------------------------------------------*/
2570   if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
2571   {
2572     UART_EndTransmit_IT(huart);
2573     return;
2574   }
2575 }
2576 
2577 /**
2578   * @brief  Tx Transfer completed callbacks.
2579   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2580   *                the configuration information for the specified UART module.
2581   * @retval None
2582   */
HAL_UART_TxCpltCallback(UART_HandleTypeDef * huart)2583 __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
2584 {
2585   /* Prevent unused argument(s) compilation warning */
2586   UNUSED(huart);
2587   /* NOTE: This function should not be modified, when the callback is needed,
2588            the HAL_UART_TxCpltCallback could be implemented in the user file
2589    */
2590 }
2591 
2592 /**
2593   * @brief  Tx Half Transfer completed callbacks.
2594   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2595   *                the configuration information for the specified UART module.
2596   * @retval None
2597   */
HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef * huart)2598 __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
2599 {
2600   /* Prevent unused argument(s) compilation warning */
2601   UNUSED(huart);
2602   /* NOTE: This function should not be modified, when the callback is needed,
2603            the HAL_UART_TxHalfCpltCallback could be implemented in the user file
2604    */
2605 }
2606 
2607 /**
2608   * @brief  Rx Transfer completed callbacks.
2609   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2610   *                the configuration information for the specified UART module.
2611   * @retval None
2612   */
HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)2613 __weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
2614 {
2615   /* Prevent unused argument(s) compilation warning */
2616   UNUSED(huart);
2617   /* NOTE: This function should not be modified, when the callback is needed,
2618            the HAL_UART_RxCpltCallback could be implemented in the user file
2619    */
2620 }
2621 
2622 /**
2623   * @brief  Rx Half Transfer completed callbacks.
2624   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2625   *                the configuration information for the specified UART module.
2626   * @retval None
2627   */
HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef * huart)2628 __weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
2629 {
2630   /* Prevent unused argument(s) compilation warning */
2631   UNUSED(huart);
2632   /* NOTE: This function should not be modified, when the callback is needed,
2633            the HAL_UART_RxHalfCpltCallback could be implemented in the user file
2634    */
2635 }
2636 
2637 /**
2638   * @brief  UART error callbacks.
2639   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2640   *                the configuration information for the specified UART module.
2641   * @retval None
2642   */
HAL_UART_ErrorCallback(UART_HandleTypeDef * huart)2643 __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
2644 {
2645   /* Prevent unused argument(s) compilation warning */
2646   UNUSED(huart);
2647   /* NOTE: This function should not be modified, when the callback is needed,
2648            the HAL_UART_ErrorCallback could be implemented in the user file
2649    */
2650 }
2651 
2652 /**
2653   * @brief  UART Abort Complete callback.
2654   * @param  huart UART handle.
2655   * @retval None
2656   */
HAL_UART_AbortCpltCallback(UART_HandleTypeDef * huart)2657 __weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
2658 {
2659   /* Prevent unused argument(s) compilation warning */
2660   UNUSED(huart);
2661 
2662   /* NOTE : This function should not be modified, when the callback is needed,
2663             the HAL_UART_AbortCpltCallback can be implemented in the user file.
2664    */
2665 }
2666 
2667 /**
2668   * @brief  UART Abort Complete callback.
2669   * @param  huart UART handle.
2670   * @retval None
2671   */
HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef * huart)2672 __weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
2673 {
2674   /* Prevent unused argument(s) compilation warning */
2675   UNUSED(huart);
2676 
2677   /* NOTE : This function should not be modified, when the callback is needed,
2678             the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
2679    */
2680 }
2681 
2682 /**
2683   * @brief  UART Abort Receive Complete callback.
2684   * @param  huart UART handle.
2685   * @retval None
2686   */
HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef * huart)2687 __weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
2688 {
2689   /* Prevent unused argument(s) compilation warning */
2690   UNUSED(huart);
2691 
2692   /* NOTE : This function should not be modified, when the callback is needed,
2693             the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
2694    */
2695 }
2696 
2697 /**
2698   * @brief  Reception Event Callback (Rx event notification called after use of advanced reception service).
2699   * @param  huart UART handle
2700   * @param  Size  Number of data available in application reception buffer (indicates a position in
2701   *               reception buffer until which, data are available)
2702   * @retval None
2703   */
HAL_UARTEx_RxEventCallback(UART_HandleTypeDef * huart,uint16_t Size)2704 __weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
2705 {
2706   /* Prevent unused argument(s) compilation warning */
2707   UNUSED(huart);
2708   UNUSED(Size);
2709 
2710   /* NOTE : This function should not be modified, when the callback is needed,
2711             the HAL_UARTEx_RxEventCallback can be implemented in the user file.
2712    */
2713 }
2714 
2715 /**
2716   * @}
2717   */
2718 
2719 /** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
2720   *  @brief   UART control functions
2721   *
2722 @verbatim
2723   ==============================================================================
2724                       ##### Peripheral Control functions #####
2725   ==============================================================================
2726   [..]
2727     This subsection provides a set of functions allowing to control the UART:
2728     (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
2729     (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode.
2730     (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
2731     (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode
2732     (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode
2733 
2734 @endverbatim
2735   * @{
2736   */
2737 
2738 /**
2739   * @brief  Transmits break characters.
2740   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2741   *                the configuration information for the specified UART module.
2742   * @retval HAL status
2743   */
HAL_LIN_SendBreak(UART_HandleTypeDef * huart)2744 HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
2745 {
2746   /* Check the parameters */
2747   assert_param(IS_UART_INSTANCE(huart->Instance));
2748 
2749   /* Process Locked */
2750   __HAL_LOCK(huart);
2751 
2752   huart->gState = HAL_UART_STATE_BUSY;
2753 
2754   /* Send break characters */
2755   ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
2756 
2757   huart->gState = HAL_UART_STATE_READY;
2758 
2759   /* Process Unlocked */
2760   __HAL_UNLOCK(huart);
2761 
2762   return HAL_OK;
2763 }
2764 
2765 /**
2766   * @brief  Enters the UART in mute mode.
2767   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2768   *                the configuration information for the specified UART module.
2769   * @retval HAL status
2770   */
HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef * huart)2771 HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
2772 {
2773   /* Check the parameters */
2774   assert_param(IS_UART_INSTANCE(huart->Instance));
2775 
2776   /* Process Locked */
2777   __HAL_LOCK(huart);
2778 
2779   huart->gState = HAL_UART_STATE_BUSY;
2780 
2781   /* Enable the USART mute mode  by setting the RWU bit in the CR1 register */
2782   ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
2783 
2784   huart->gState = HAL_UART_STATE_READY;
2785   huart->RxEventType = HAL_UART_RXEVENT_TC;
2786 
2787   /* Process Unlocked */
2788   __HAL_UNLOCK(huart);
2789 
2790   return HAL_OK;
2791 }
2792 
2793 /**
2794   * @brief  Exits the UART mute mode: wake up software.
2795   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2796   *                the configuration information for the specified UART module.
2797   * @retval HAL status
2798   */
HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef * huart)2799 HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
2800 {
2801   /* Check the parameters */
2802   assert_param(IS_UART_INSTANCE(huart->Instance));
2803 
2804   /* Process Locked */
2805   __HAL_LOCK(huart);
2806 
2807   huart->gState = HAL_UART_STATE_BUSY;
2808 
2809   /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
2810   ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
2811 
2812   huart->gState = HAL_UART_STATE_READY;
2813   huart->RxEventType = HAL_UART_RXEVENT_TC;
2814 
2815   /* Process Unlocked */
2816   __HAL_UNLOCK(huart);
2817 
2818   return HAL_OK;
2819 }
2820 
2821 /**
2822   * @brief  Enables the UART transmitter and disables the UART receiver.
2823   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2824   *                the configuration information for the specified UART module.
2825   * @retval HAL status
2826   */
HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef * huart)2827 HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
2828 {
2829   uint32_t tmpreg = 0x00U;
2830 
2831   /* Process Locked */
2832   __HAL_LOCK(huart);
2833 
2834   huart->gState = HAL_UART_STATE_BUSY;
2835 
2836   /*-------------------------- USART CR1 Configuration -----------------------*/
2837   tmpreg = huart->Instance->CR1;
2838 
2839   /* Clear TE and RE bits */
2840   tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2841 
2842   /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
2843   tmpreg |= (uint32_t)USART_CR1_TE;
2844 
2845   /* Write to USART CR1 */
2846   WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2847 
2848   huart->gState = HAL_UART_STATE_READY;
2849 
2850   /* Process Unlocked */
2851   __HAL_UNLOCK(huart);
2852 
2853   return HAL_OK;
2854 }
2855 
2856 /**
2857   * @brief  Enables the UART receiver and disables the UART transmitter.
2858   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2859   *                the configuration information for the specified UART module.
2860   * @retval HAL status
2861   */
HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef * huart)2862 HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
2863 {
2864   uint32_t tmpreg = 0x00U;
2865 
2866   /* Process Locked */
2867   __HAL_LOCK(huart);
2868 
2869   huart->gState = HAL_UART_STATE_BUSY;
2870 
2871   /*-------------------------- USART CR1 Configuration -----------------------*/
2872   tmpreg = huart->Instance->CR1;
2873 
2874   /* Clear TE and RE bits */
2875   tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2876 
2877   /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
2878   tmpreg |= (uint32_t)USART_CR1_RE;
2879 
2880   /* Write to USART CR1 */
2881   WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2882 
2883   huart->gState = HAL_UART_STATE_READY;
2884 
2885   /* Process Unlocked */
2886   __HAL_UNLOCK(huart);
2887 
2888   return HAL_OK;
2889 }
2890 
2891 /**
2892   * @}
2893   */
2894 
2895 /** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions
2896   *  @brief   UART State and Errors functions
2897   *
2898 @verbatim
2899   ==============================================================================
2900                  ##### Peripheral State and Errors functions #####
2901   ==============================================================================
2902  [..]
2903    This subsection provides a set of functions allowing to return the State of
2904    UART communication process, return Peripheral Errors occurred during communication
2905    process
2906    (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
2907    (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication.
2908 
2909 @endverbatim
2910   * @{
2911   */
2912 
2913 /**
2914   * @brief  Returns the UART state.
2915   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2916   *                the configuration information for the specified UART module.
2917   * @retval HAL state
2918   */
HAL_UART_GetState(const UART_HandleTypeDef * huart)2919 HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart)
2920 {
2921   uint32_t temp1 = 0x00U, temp2 = 0x00U;
2922   temp1 = huart->gState;
2923   temp2 = huart->RxState;
2924 
2925   return (HAL_UART_StateTypeDef)(temp1 | temp2);
2926 }
2927 
2928 /**
2929   * @brief  Return the UART error code
2930   * @param  huart Pointer to a UART_HandleTypeDef structure that contains
2931   *               the configuration information for the specified UART.
2932   * @retval UART Error Code
2933   */
HAL_UART_GetError(const UART_HandleTypeDef * huart)2934 uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart)
2935 {
2936   return huart->ErrorCode;
2937 }
2938 
2939 /**
2940   * @}
2941   */
2942 
2943 /**
2944   * @}
2945   */
2946 
2947 /** @defgroup UART_Private_Functions UART Private Functions
2948   * @{
2949   */
2950 
2951 /**
2952   * @brief  Initialize the callbacks to their default values.
2953   * @param  huart UART handle.
2954   * @retval none
2955   */
2956 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
UART_InitCallbacksToDefault(UART_HandleTypeDef * huart)2957 void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
2958 {
2959   /* Init the UART Callback settings */
2960   huart->TxHalfCpltCallback        = HAL_UART_TxHalfCpltCallback;        /* Legacy weak TxHalfCpltCallback        */
2961   huart->TxCpltCallback            = HAL_UART_TxCpltCallback;            /* Legacy weak TxCpltCallback            */
2962   huart->RxHalfCpltCallback        = HAL_UART_RxHalfCpltCallback;        /* Legacy weak RxHalfCpltCallback        */
2963   huart->RxCpltCallback            = HAL_UART_RxCpltCallback;            /* Legacy weak RxCpltCallback            */
2964   huart->ErrorCallback             = HAL_UART_ErrorCallback;             /* Legacy weak ErrorCallback             */
2965   huart->AbortCpltCallback         = HAL_UART_AbortCpltCallback;         /* Legacy weak AbortCpltCallback         */
2966   huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
2967   huart->AbortReceiveCpltCallback  = HAL_UART_AbortReceiveCpltCallback;  /* Legacy weak AbortReceiveCpltCallback  */
2968   huart->RxEventCallback           = HAL_UARTEx_RxEventCallback;         /* Legacy weak RxEventCallback           */
2969 
2970 }
2971 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2972 
2973 /**
2974   * @brief  DMA UART transmit process complete callback.
2975   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2976   *               the configuration information for the specified DMA module.
2977   * @retval None
2978   */
UART_DMATransmitCplt(DMA_HandleTypeDef * hdma)2979 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2980 {
2981   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2982   /* DMA Normal mode*/
2983   if ((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
2984   {
2985     huart->TxXferCount = 0x00U;
2986 
2987     /* Disable the DMA transfer for transmit request by setting the DMAT bit
2988        in the UART CR3 register */
2989     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2990 
2991     /* Enable the UART Transmit Complete Interrupt */
2992     ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
2993 
2994   }
2995   /* DMA Circular mode */
2996   else
2997   {
2998 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2999     /*Call registered Tx complete callback*/
3000     huart->TxCpltCallback(huart);
3001 #else
3002     /*Call legacy weak Tx complete callback*/
3003     HAL_UART_TxCpltCallback(huart);
3004 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3005   }
3006 }
3007 
3008 /**
3009   * @brief DMA UART transmit process half complete callback
3010   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3011   *               the configuration information for the specified DMA module.
3012   * @retval None
3013   */
UART_DMATxHalfCplt(DMA_HandleTypeDef * hdma)3014 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
3015 {
3016   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3017 
3018 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3019   /*Call registered Tx complete callback*/
3020   huart->TxHalfCpltCallback(huart);
3021 #else
3022   /*Call legacy weak Tx complete callback*/
3023   HAL_UART_TxHalfCpltCallback(huart);
3024 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3025 }
3026 
3027 /**
3028   * @brief  DMA UART receive process complete callback.
3029   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3030   *               the configuration information for the specified DMA module.
3031   * @retval None
3032   */
UART_DMAReceiveCplt(DMA_HandleTypeDef * hdma)3033 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
3034 {
3035   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3036 
3037   /* DMA Normal mode*/
3038   if ((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
3039   {
3040     huart->RxXferCount = 0U;
3041 
3042     /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
3043     ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3044     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3045 
3046     /* Disable the DMA transfer for the receiver request by setting the DMAR bit
3047        in the UART CR3 register */
3048     ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3049 
3050     /* At end of Rx process, restore huart->RxState to Ready */
3051     huart->RxState = HAL_UART_STATE_READY;
3052 
3053     /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
3054     if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3055     {
3056       ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3057     }
3058   }
3059 
3060   /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3061    In this case, Rx Event type is Transfer Complete */
3062   huart->RxEventType = HAL_UART_RXEVENT_TC;
3063 
3064   /* Check current reception Mode :
3065      If Reception till IDLE event has been selected : use Rx Event callback */
3066   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3067   {
3068 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3069     /*Call registered Rx Event callback*/
3070     huart->RxEventCallback(huart, huart->RxXferSize);
3071 #else
3072     /*Call legacy weak Rx Event callback*/
3073     HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
3074 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3075   }
3076   else
3077   {
3078     /* In other cases : use Rx Complete callback */
3079 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3080     /*Call registered Rx complete callback*/
3081     huart->RxCpltCallback(huart);
3082 #else
3083     /*Call legacy weak Rx complete callback*/
3084     HAL_UART_RxCpltCallback(huart);
3085 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3086   }
3087 }
3088 
3089 /**
3090   * @brief DMA UART receive process half complete callback
3091   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3092   *               the configuration information for the specified DMA module.
3093   * @retval None
3094   */
UART_DMARxHalfCplt(DMA_HandleTypeDef * hdma)3095 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
3096 {
3097   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3098 
3099   /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3100      In this case, Rx Event type is Half Transfer */
3101   huart->RxEventType = HAL_UART_RXEVENT_HT;
3102 
3103   /* Check current reception Mode :
3104      If Reception till IDLE event has been selected : use Rx Event callback */
3105   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3106   {
3107 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3108     /*Call registered Rx Event callback*/
3109     huart->RxEventCallback(huart, huart->RxXferSize / 2U);
3110 #else
3111     /*Call legacy weak Rx Event callback*/
3112     HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
3113 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3114   }
3115   else
3116   {
3117     /* In other cases : use Rx Half Complete callback */
3118 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3119     /*Call registered Rx Half complete callback*/
3120     huart->RxHalfCpltCallback(huart);
3121 #else
3122     /*Call legacy weak Rx Half complete callback*/
3123     HAL_UART_RxHalfCpltCallback(huart);
3124 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3125   }
3126 }
3127 
3128 /**
3129   * @brief  DMA UART communication error callback.
3130   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3131   *               the configuration information for the specified DMA module.
3132   * @retval None
3133   */
UART_DMAError(DMA_HandleTypeDef * hdma)3134 static void UART_DMAError(DMA_HandleTypeDef *hdma)
3135 {
3136   uint32_t dmarequest = 0x00U;
3137   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3138 
3139   /* Stop UART DMA Tx request if ongoing */
3140   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
3141   if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
3142   {
3143     huart->TxXferCount = 0x00U;
3144     UART_EndTxTransfer(huart);
3145   }
3146 
3147   /* Stop UART DMA Rx request if ongoing */
3148   dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
3149   if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
3150   {
3151     huart->RxXferCount = 0x00U;
3152     UART_EndRxTransfer(huart);
3153   }
3154 
3155   huart->ErrorCode |= HAL_UART_ERROR_DMA;
3156 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3157   /*Call registered error callback*/
3158   huart->ErrorCallback(huart);
3159 #else
3160   /*Call legacy weak error callback*/
3161   HAL_UART_ErrorCallback(huart);
3162 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3163 }
3164 
3165 /**
3166   * @brief  This function handles UART Communication Timeout. It waits
3167   *         until a flag is no longer in the specified status.
3168   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3169   *                the configuration information for the specified UART module.
3170   * @param  Flag specifies the UART flag to check.
3171   * @param  Status The actual Flag status (SET or RESET).
3172   * @param  Tickstart Tick start value
3173   * @param  Timeout Timeout duration
3174   * @retval HAL status
3175   */
UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef * huart,uint32_t Flag,FlagStatus Status,uint32_t Tickstart,uint32_t Timeout)3176 static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
3177                                                      uint32_t Tickstart, uint32_t Timeout)
3178 {
3179   /* Wait until flag is set */
3180   while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
3181   {
3182     /* Check for the Timeout */
3183     if (Timeout != HAL_MAX_DELAY)
3184     {
3185       if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
3186       {
3187 
3188         return HAL_TIMEOUT;
3189       }
3190 
3191       if ((READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U) && (Flag != UART_FLAG_TXE) && (Flag != UART_FLAG_TC))
3192       {
3193         if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) == SET)
3194         {
3195           /* Clear Overrun Error flag*/
3196           __HAL_UART_CLEAR_OREFLAG(huart);
3197 
3198           /* Blocking error : transfer is aborted
3199           Set the UART state ready to be able to start again the process,
3200           Disable Rx Interrupts if ongoing */
3201           UART_EndRxTransfer(huart);
3202 
3203           huart->ErrorCode = HAL_UART_ERROR_ORE;
3204 
3205           /* Process Unlocked */
3206           __HAL_UNLOCK(huart);
3207 
3208           return HAL_ERROR;
3209         }
3210       }
3211     }
3212   }
3213   return HAL_OK;
3214 }
3215 
3216 /**
3217   * @brief  Start Receive operation in interrupt mode.
3218   * @note   This function could be called by all HAL UART API providing reception in Interrupt mode.
3219   * @note   When calling this function, parameters validity is considered as already checked,
3220   *         i.e. Rx State, buffer address, ...
3221   *         UART Handle is assumed as Locked.
3222   * @param  huart UART handle.
3223   * @param  pData Pointer to data buffer (u8 or u16 data elements).
3224   * @param  Size  Amount of data elements (u8 or u16) to be received.
3225   * @retval HAL status
3226   */
UART_Start_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3227 HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3228 {
3229   huart->pRxBuffPtr = pData;
3230   huart->RxXferSize = Size;
3231   huart->RxXferCount = Size;
3232 
3233   huart->ErrorCode = HAL_UART_ERROR_NONE;
3234   huart->RxState = HAL_UART_STATE_BUSY_RX;
3235 
3236   if (huart->Init.Parity != UART_PARITY_NONE)
3237   {
3238     /* Enable the UART Parity Error Interrupt */
3239     __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
3240   }
3241 
3242   /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3243   __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
3244 
3245   /* Enable the UART Data Register not empty Interrupt */
3246   __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
3247 
3248   return HAL_OK;
3249 }
3250 
3251 /**
3252   * @brief  Start Receive operation in DMA mode.
3253   * @note   This function could be called by all HAL UART API providing reception in DMA mode.
3254   * @note   When calling this function, parameters validity is considered as already checked,
3255   *         i.e. Rx State, buffer address, ...
3256   *         UART Handle is assumed as Locked.
3257   * @param  huart UART handle.
3258   * @param  pData Pointer to data buffer (u8 or u16 data elements).
3259   * @param  Size  Amount of data elements (u8 or u16) to be received.
3260   * @retval HAL status
3261   */
UART_Start_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3262 HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3263 {
3264   uint32_t *tmp;
3265 
3266   huart->pRxBuffPtr = pData;
3267   huart->RxXferSize = Size;
3268 
3269   huart->ErrorCode = HAL_UART_ERROR_NONE;
3270   huart->RxState = HAL_UART_STATE_BUSY_RX;
3271 
3272   /* Set the UART DMA transfer complete callback */
3273   huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
3274 
3275   /* Set the UART DMA Half transfer complete callback */
3276   huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
3277 
3278   /* Set the DMA error callback */
3279   huart->hdmarx->XferErrorCallback = UART_DMAError;
3280 
3281   /* Set the DMA abort callback */
3282   huart->hdmarx->XferAbortCallback = NULL;
3283 
3284   /* Enable the DMA stream */
3285   tmp = (uint32_t *)&pData;
3286   HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t *)tmp, Size);
3287 
3288   /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
3289   __HAL_UART_CLEAR_OREFLAG(huart);
3290 
3291   if (huart->Init.Parity != UART_PARITY_NONE)
3292   {
3293     /* Enable the UART Parity Error Interrupt */
3294     ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3295   }
3296 
3297   /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3298   ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
3299 
3300   /* Enable the DMA transfer for the receiver request by setting the DMAR bit
3301   in the UART CR3 register */
3302   ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3303 
3304   return HAL_OK;
3305 }
3306 
3307 /**
3308   * @brief  End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
3309   * @param  huart UART handle.
3310   * @retval None
3311   */
UART_EndTxTransfer(UART_HandleTypeDef * huart)3312 static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
3313 {
3314   /* Disable TXEIE and TCIE interrupts */
3315   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
3316 
3317   /* At end of Tx process, restore huart->gState to Ready */
3318   huart->gState = HAL_UART_STATE_READY;
3319 }
3320 
3321 /**
3322   * @brief  End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
3323   * @param  huart UART handle.
3324   * @retval None
3325   */
UART_EndRxTransfer(UART_HandleTypeDef * huart)3326 static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
3327 {
3328   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
3329   ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
3330   ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3331 
3332   /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
3333   if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3334   {
3335     ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3336   }
3337 
3338   /* At end of Rx process, restore huart->RxState to Ready */
3339   huart->RxState = HAL_UART_STATE_READY;
3340   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3341 }
3342 
3343 /**
3344   * @brief  DMA UART communication abort callback, when initiated by HAL services on Error
3345   *         (To be called at end of DMA Abort procedure following error occurrence).
3346   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3347   *               the configuration information for the specified DMA module.
3348   * @retval None
3349   */
UART_DMAAbortOnError(DMA_HandleTypeDef * hdma)3350 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
3351 {
3352   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3353   huart->RxXferCount = 0x00U;
3354   huart->TxXferCount = 0x00U;
3355 
3356 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3357   /*Call registered error callback*/
3358   huart->ErrorCallback(huart);
3359 #else
3360   /*Call legacy weak error callback*/
3361   HAL_UART_ErrorCallback(huart);
3362 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3363 }
3364 
3365 /**
3366   * @brief  DMA UART Tx communication abort callback, when initiated by user
3367   *         (To be called at end of DMA Tx Abort procedure following user abort request).
3368   * @note   When this callback is executed, User Abort complete call back is called only if no
3369   *         Abort still ongoing for Rx DMA Handle.
3370   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3371   *               the configuration information for the specified DMA module.
3372   * @retval None
3373   */
UART_DMATxAbortCallback(DMA_HandleTypeDef * hdma)3374 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
3375 {
3376   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3377 
3378   huart->hdmatx->XferAbortCallback = NULL;
3379 
3380   /* Check if an Abort process is still ongoing */
3381   if (huart->hdmarx != NULL)
3382   {
3383     if (huart->hdmarx->XferAbortCallback != NULL)
3384     {
3385       return;
3386     }
3387   }
3388 
3389   /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3390   huart->TxXferCount = 0x00U;
3391   huart->RxXferCount = 0x00U;
3392 
3393   /* Reset ErrorCode */
3394   huart->ErrorCode = HAL_UART_ERROR_NONE;
3395 
3396   /* Restore huart->gState and huart->RxState to Ready */
3397   huart->gState  = HAL_UART_STATE_READY;
3398   huart->RxState = HAL_UART_STATE_READY;
3399   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3400 
3401   /* Call user Abort complete callback */
3402 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3403   /* Call registered Abort complete callback */
3404   huart->AbortCpltCallback(huart);
3405 #else
3406   /* Call legacy weak Abort complete callback */
3407   HAL_UART_AbortCpltCallback(huart);
3408 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3409 }
3410 
3411 /**
3412   * @brief  DMA UART Rx communication abort callback, when initiated by user
3413   *         (To be called at end of DMA Rx Abort procedure following user abort request).
3414   * @note   When this callback is executed, User Abort complete call back is called only if no
3415   *         Abort still ongoing for Tx DMA Handle.
3416   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3417   *               the configuration information for the specified DMA module.
3418   * @retval None
3419   */
UART_DMARxAbortCallback(DMA_HandleTypeDef * hdma)3420 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
3421 {
3422   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3423 
3424   huart->hdmarx->XferAbortCallback = NULL;
3425 
3426   /* Check if an Abort process is still ongoing */
3427   if (huart->hdmatx != NULL)
3428   {
3429     if (huart->hdmatx->XferAbortCallback != NULL)
3430     {
3431       return;
3432     }
3433   }
3434 
3435   /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3436   huart->TxXferCount = 0x00U;
3437   huart->RxXferCount = 0x00U;
3438 
3439   /* Reset ErrorCode */
3440   huart->ErrorCode = HAL_UART_ERROR_NONE;
3441 
3442   /* Restore huart->gState and huart->RxState to Ready */
3443   huart->gState  = HAL_UART_STATE_READY;
3444   huart->RxState = HAL_UART_STATE_READY;
3445   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3446 
3447   /* Call user Abort complete callback */
3448 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3449   /* Call registered Abort complete callback */
3450   huart->AbortCpltCallback(huart);
3451 #else
3452   /* Call legacy weak Abort complete callback */
3453   HAL_UART_AbortCpltCallback(huart);
3454 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3455 }
3456 
3457 /**
3458   * @brief  DMA UART Tx communication abort callback, when initiated by user by a call to
3459   *         HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
3460   *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
3461   *         and leads to user Tx Abort Complete callback execution).
3462   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3463   *               the configuration information for the specified DMA module.
3464   * @retval None
3465   */
UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3466 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3467 {
3468   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3469 
3470   huart->TxXferCount = 0x00U;
3471 
3472   /* Restore huart->gState to Ready */
3473   huart->gState = HAL_UART_STATE_READY;
3474 
3475   /* Call user Abort complete callback */
3476 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3477   /* Call registered Abort Transmit Complete Callback */
3478   huart->AbortTransmitCpltCallback(huart);
3479 #else
3480   /* Call legacy weak Abort Transmit Complete Callback */
3481   HAL_UART_AbortTransmitCpltCallback(huart);
3482 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3483 }
3484 
3485 /**
3486   * @brief  DMA UART Rx communication abort callback, when initiated by user by a call to
3487   *         HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
3488   *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
3489   *         and leads to user Rx Abort Complete callback execution).
3490   * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
3491   *               the configuration information for the specified DMA module.
3492   * @retval None
3493   */
UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3494 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3495 {
3496   UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3497 
3498   huart->RxXferCount = 0x00U;
3499 
3500   /* Restore huart->RxState to Ready */
3501   huart->RxState = HAL_UART_STATE_READY;
3502   huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3503 
3504   /* Call user Abort complete callback */
3505 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3506   /* Call registered Abort Receive Complete Callback */
3507   huart->AbortReceiveCpltCallback(huart);
3508 #else
3509   /* Call legacy weak Abort Receive Complete Callback */
3510   HAL_UART_AbortReceiveCpltCallback(huart);
3511 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3512 }
3513 
3514 /**
3515   * @brief  Sends an amount of data in non blocking mode.
3516   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3517   *                the configuration information for the specified UART module.
3518   * @retval HAL status
3519   */
UART_Transmit_IT(UART_HandleTypeDef * huart)3520 static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
3521 {
3522   const uint16_t *tmp;
3523 
3524   /* Check that a Tx process is ongoing */
3525   if (huart->gState == HAL_UART_STATE_BUSY_TX)
3526   {
3527     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3528     {
3529       tmp = (const uint16_t *) huart->pTxBuffPtr;
3530       huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
3531       huart->pTxBuffPtr += 2U;
3532     }
3533     else
3534     {
3535       huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
3536     }
3537 
3538     if (--huart->TxXferCount == 0U)
3539     {
3540       /* Disable the UART Transmit Data Register Empty Interrupt */
3541       __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
3542 
3543       /* Enable the UART Transmit Complete Interrupt */
3544       __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
3545     }
3546     return HAL_OK;
3547   }
3548   else
3549   {
3550     return HAL_BUSY;
3551   }
3552 }
3553 
3554 /**
3555   * @brief  Wraps up transmission in non blocking mode.
3556   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3557   *                the configuration information for the specified UART module.
3558   * @retval HAL status
3559   */
UART_EndTransmit_IT(UART_HandleTypeDef * huart)3560 static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
3561 {
3562   /* Disable the UART Transmit Complete Interrupt */
3563   __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
3564 
3565   /* Tx process is ended, restore huart->gState to Ready */
3566   huart->gState = HAL_UART_STATE_READY;
3567 
3568 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3569   /*Call registered Tx complete callback*/
3570   huart->TxCpltCallback(huart);
3571 #else
3572   /*Call legacy weak Tx complete callback*/
3573   HAL_UART_TxCpltCallback(huart);
3574 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3575 
3576   return HAL_OK;
3577 }
3578 
3579 /**
3580   * @brief  Receives an amount of data in non blocking mode
3581   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3582   *                the configuration information for the specified UART module.
3583   * @retval HAL status
3584   */
UART_Receive_IT(UART_HandleTypeDef * huart)3585 static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
3586 {
3587   uint8_t  *pdata8bits;
3588   uint16_t *pdata16bits;
3589 
3590   /* Check that a Rx process is ongoing */
3591   if (huart->RxState == HAL_UART_STATE_BUSY_RX)
3592   {
3593     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3594     {
3595       pdata8bits  = NULL;
3596       pdata16bits = (uint16_t *) huart->pRxBuffPtr;
3597       *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
3598       huart->pRxBuffPtr += 2U;
3599     }
3600     else
3601     {
3602       pdata8bits = (uint8_t *) huart->pRxBuffPtr;
3603       pdata16bits  = NULL;
3604 
3605       if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
3606       {
3607         *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
3608       }
3609       else
3610       {
3611         *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
3612       }
3613       huart->pRxBuffPtr += 1U;
3614     }
3615 
3616     if (--huart->RxXferCount == 0U)
3617     {
3618       /* Disable the UART Data Register not empty Interrupt */
3619       __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
3620 
3621       /* Disable the UART Parity Error Interrupt */
3622       __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
3623 
3624       /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3625       __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
3626 
3627       /* Rx process is completed, restore huart->RxState to Ready */
3628       huart->RxState = HAL_UART_STATE_READY;
3629 
3630       /* Initialize type of RxEvent to Transfer Complete */
3631       huart->RxEventType = HAL_UART_RXEVENT_TC;
3632 
3633       /* Check current reception Mode :
3634          If Reception till IDLE event has been selected : */
3635       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3636       {
3637         /* Set reception type to Standard */
3638         huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3639 
3640         /* Disable IDLE interrupt */
3641         ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3642 
3643         /* Check if IDLE flag is set */
3644         if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
3645         {
3646           /* Clear IDLE flag in ISR */
3647           __HAL_UART_CLEAR_IDLEFLAG(huart);
3648         }
3649 
3650 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3651         /*Call registered Rx Event callback*/
3652         huart->RxEventCallback(huart, huart->RxXferSize);
3653 #else
3654         /*Call legacy weak Rx Event callback*/
3655         HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
3656 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3657       }
3658       else
3659       {
3660         /* Standard reception API called */
3661 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3662         /*Call registered Rx complete callback*/
3663         huart->RxCpltCallback(huart);
3664 #else
3665         /*Call legacy weak Rx complete callback*/
3666         HAL_UART_RxCpltCallback(huart);
3667 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3668       }
3669 
3670       return HAL_OK;
3671     }
3672     return HAL_OK;
3673   }
3674   else
3675   {
3676     return HAL_BUSY;
3677   }
3678 }
3679 
3680 /**
3681   * @brief  Configures the UART peripheral.
3682   * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
3683   *                the configuration information for the specified UART module.
3684   * @retval None
3685   */
UART_SetConfig(UART_HandleTypeDef * huart)3686 static void UART_SetConfig(UART_HandleTypeDef *huart)
3687 {
3688   uint32_t tmpreg;
3689   uint32_t pclk;
3690 
3691   /* Check the parameters */
3692   assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
3693   assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
3694   assert_param(IS_UART_PARITY(huart->Init.Parity));
3695   assert_param(IS_UART_MODE(huart->Init.Mode));
3696 
3697   /*-------------------------- USART CR2 Configuration -----------------------*/
3698   /* Configure the UART Stop Bits: Set STOP[13:12] bits
3699      according to huart->Init.StopBits value */
3700   MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
3701 
3702   /*-------------------------- USART CR1 Configuration -----------------------*/
3703   /* Configure the UART Word Length, Parity and mode:
3704      Set the M bits according to huart->Init.WordLength value
3705      Set PCE and PS bits according to huart->Init.Parity value
3706      Set TE and RE bits according to huart->Init.Mode value
3707      Set OVER8 bit according to huart->Init.OverSampling value */
3708 
3709   tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling;
3710   MODIFY_REG(huart->Instance->CR1,
3711              (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8),
3712              tmpreg);
3713 
3714   /*-------------------------- USART CR3 Configuration -----------------------*/
3715   /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
3716   MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl);
3717 
3718 
3719   if((huart->Instance == USART1) || (huart->Instance == USART6))
3720   {
3721     pclk = HAL_RCC_GetPCLK2Freq();
3722   }
3723   else
3724   {
3725     pclk = HAL_RCC_GetPCLK1Freq();
3726   }
3727 
3728   /*-------------------------- USART BRR Configuration ---------------------*/
3729   if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
3730   {
3731     huart->Instance->BRR = UART_BRR_SAMPLING8(pclk, huart->Init.BaudRate);
3732   }
3733   else
3734   {
3735     huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate);
3736   }
3737 }
3738 
3739 /**
3740   * @}
3741   */
3742 
3743 #endif /* HAL_UART_MODULE_ENABLED */
3744 /**
3745   * @}
3746   */
3747 
3748 /**
3749   * @}
3750   */
3751 
3752