1 /**
2   ******************************************************************************
3   * @file    stm32f1xx_hal_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Timer (TIM) peripheral:
8   *           + TIM Time Base Initialization
9   *           + TIM Time Base Start
10   *           + TIM Time Base Start Interruption
11   *           + TIM Time Base Start DMA
12   *           + TIM Output Compare/PWM Initialization
13   *           + TIM Output Compare/PWM Channel Configuration
14   *           + TIM Output Compare/PWM  Start
15   *           + TIM Output Compare/PWM  Start Interruption
16   *           + TIM Output Compare/PWM Start DMA
17   *           + TIM Input Capture Initialization
18   *           + TIM Input Capture Channel Configuration
19   *           + TIM Input Capture Start
20   *           + TIM Input Capture Start Interruption
21   *           + TIM Input Capture Start DMA
22   *           + TIM One Pulse Initialization
23   *           + TIM One Pulse Channel Configuration
24   *           + TIM One Pulse Start
25   *           + TIM Encoder Interface Initialization
26   *           + TIM Encoder Interface Start
27   *           + TIM Encoder Interface Start Interruption
28   *           + TIM Encoder Interface Start DMA
29   *           + Commutation Event configuration with Interruption and DMA
30   *           + TIM OCRef clear configuration
31   *           + TIM External Clock configuration
32   ******************************************************************************
33   * @attention
34   *
35   * Copyright (c) 2016 STMicroelectronics.
36   * All rights reserved.
37   *
38   * This software is licensed under terms that can be found in the LICENSE file
39   * in the root directory of this software component.
40   * If no LICENSE file comes with this software, it is provided AS-IS.
41   *
42   ******************************************************************************
43   @verbatim
44   ==============================================================================
45                       ##### TIMER Generic features #####
46   ==============================================================================
47   [..] The Timer features include:
48        (#) 16-bit up, down, up/down auto-reload counter.
49        (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50            counter clock frequency either by any factor between 1 and 65536.
51        (#) Up to 4 independent channels for:
52            (++) Input Capture
53            (++) Output Compare
54            (++) PWM generation (Edge and Center-aligned Mode)
55            (++) One-pulse mode output
56        (#) Synchronization circuit to control the timer with external signals and to interconnect
57             several timers together.
58        (#) Supports incremental encoder for positioning purposes
59 
60             ##### How to use this driver #####
61   ==============================================================================
62     [..]
63      (#) Initialize the TIM low level resources by implementing the following functions
64          depending on the selected feature:
65            (++) Time Base : HAL_TIM_Base_MspInit()
66            (++) Input Capture : HAL_TIM_IC_MspInit()
67            (++) Output Compare : HAL_TIM_OC_MspInit()
68            (++) PWM generation : HAL_TIM_PWM_MspInit()
69            (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70            (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71 
72      (#) Initialize the TIM low level resources :
73         (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74         (##) TIM pins configuration
75             (+++) Enable the clock for the TIM GPIOs using the following function:
76              __HAL_RCC_GPIOx_CLK_ENABLE();
77             (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78 
79      (#) The external Clock can be configured, if needed (the default clock is the
80          internal clock from the APBx), using the following function:
81          HAL_TIM_ConfigClockSource, the clock configuration should be done before
82          any start function.
83 
84      (#) Configure the TIM in the desired functioning mode using one of the
85        Initialization function of this driver:
86        (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87        (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88             Output Compare signal.
89        (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90             PWM signal.
91        (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92             external signal.
93        (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94             in One Pulse Mode.
95        (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96 
97      (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98            (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99            (++) Input Capture :  HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100            (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101            (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102            (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103            (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104 
105      (#) The DMA Burst is managed with the two following functions:
106          HAL_TIM_DMABurst_WriteStart()
107          HAL_TIM_DMABurst_ReadStart()
108 
109     *** Callback registration ***
110   =============================================
111 
112   [..]
113   The compilation define  USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115 
116   [..]
117   Use Function HAL_TIM_RegisterCallback() to register a callback.
118   HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119   the Callback ID and a pointer to the user callback function.
120 
121   [..]
122   Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123   weak function.
124   HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125   and the Callback ID.
126 
127   [..]
128   These functions allow to register/unregister following callbacks:
129     (+) Base_MspInitCallback              : TIM Base Msp Init Callback.
130     (+) Base_MspDeInitCallback            : TIM Base Msp DeInit Callback.
131     (+) IC_MspInitCallback                : TIM IC Msp Init Callback.
132     (+) IC_MspDeInitCallback              : TIM IC Msp DeInit Callback.
133     (+) OC_MspInitCallback                : TIM OC Msp Init Callback.
134     (+) OC_MspDeInitCallback              : TIM OC Msp DeInit Callback.
135     (+) PWM_MspInitCallback               : TIM PWM Msp Init Callback.
136     (+) PWM_MspDeInitCallback             : TIM PWM Msp DeInit Callback.
137     (+) OnePulse_MspInitCallback          : TIM One Pulse Msp Init Callback.
138     (+) OnePulse_MspDeInitCallback        : TIM One Pulse Msp DeInit Callback.
139     (+) Encoder_MspInitCallback           : TIM Encoder Msp Init Callback.
140     (+) Encoder_MspDeInitCallback         : TIM Encoder Msp DeInit Callback.
141     (+) HallSensor_MspInitCallback        : TIM Hall Sensor Msp Init Callback.
142     (+) HallSensor_MspDeInitCallback      : TIM Hall Sensor Msp DeInit Callback.
143     (+) PeriodElapsedCallback             : TIM Period Elapsed Callback.
144     (+) PeriodElapsedHalfCpltCallback     : TIM Period Elapsed half complete Callback.
145     (+) TriggerCallback                   : TIM Trigger Callback.
146     (+) TriggerHalfCpltCallback           : TIM Trigger half complete Callback.
147     (+) IC_CaptureCallback                : TIM Input Capture Callback.
148     (+) IC_CaptureHalfCpltCallback        : TIM Input Capture half complete Callback.
149     (+) OC_DelayElapsedCallback           : TIM Output Compare Delay Elapsed Callback.
150     (+) PWM_PulseFinishedCallback         : TIM PWM Pulse Finished Callback.
151     (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152     (+) ErrorCallback                     : TIM Error Callback.
153     (+) CommutationCallback               : TIM Commutation Callback.
154     (+) CommutationHalfCpltCallback       : TIM Commutation half complete Callback.
155     (+) BreakCallback                     : TIM Break Callback.
156 
157   [..]
158 By default, after the Init and when the state is HAL_TIM_STATE_RESET
159 all interrupt callbacks are set to the corresponding weak functions:
160   examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
161 
162   [..]
163   Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
164   functionalities in the Init / DeInit only when these callbacks are null
165   (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
166     keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
167 
168   [..]
169     Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
170     Exception done MspInit / MspDeInit that can be registered / unregistered
171     in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
172     thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
173   In that case first register the MspInit/MspDeInit user callbacks
174       using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
175 
176   [..]
177       When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
178       not defined, the callback registration feature is not available and all callbacks
179       are set to the corresponding weak functions.
180 
181   @endverbatim
182   ******************************************************************************
183   */
184 
185 /* Includes ------------------------------------------------------------------*/
186 #include "stm32f1xx_hal.h"
187 
188 /** @addtogroup STM32F1xx_HAL_Driver
189   * @{
190   */
191 
192 /** @defgroup TIM TIM
193   * @brief TIM HAL module driver
194   * @{
195   */
196 
197 #ifdef HAL_TIM_MODULE_ENABLED
198 
199 /* Private typedef -----------------------------------------------------------*/
200 /* Private define ------------------------------------------------------------*/
201 /* Private macros ------------------------------------------------------------*/
202 /* Private variables ---------------------------------------------------------*/
203 /* Private function prototypes -----------------------------------------------*/
204 /** @addtogroup TIM_Private_Functions
205   * @{
206   */
207 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
208 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
209 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
210 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
211 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
212                               uint32_t TIM_ICFilter);
213 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
214 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
215                               uint32_t TIM_ICFilter);
216 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
217                               uint32_t TIM_ICFilter);
218 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
219 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
220 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
221 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
222 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
223 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
224 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
225                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig);
226 /**
227   * @}
228   */
229 /* Exported functions --------------------------------------------------------*/
230 
231 /** @defgroup TIM_Exported_Functions TIM Exported Functions
232   * @{
233   */
234 
235 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
236   *  @brief    Time Base functions
237   *
238 @verbatim
239   ==============================================================================
240               ##### Time Base functions #####
241   ==============================================================================
242   [..]
243     This section provides functions allowing to:
244     (+) Initialize and configure the TIM base.
245     (+) De-initialize the TIM base.
246     (+) Start the Time Base.
247     (+) Stop the Time Base.
248     (+) Start the Time Base and enable interrupt.
249     (+) Stop the Time Base and disable interrupt.
250     (+) Start the Time Base and enable DMA transfer.
251     (+) Stop the Time Base and disable DMA transfer.
252 
253 @endverbatim
254   * @{
255   */
256 /**
257   * @brief  Initializes the TIM Time base Unit according to the specified
258   *         parameters in the TIM_HandleTypeDef and initialize the associated handle.
259   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
260   *         requires a timer reset to avoid unexpected direction
261   *         due to DIR bit readonly in center aligned mode.
262   *         Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
263   * @param  htim TIM Base handle
264   * @retval HAL status
265   */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)266 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
267 {
268   /* Check the TIM handle allocation */
269   if (htim == NULL)
270   {
271     return HAL_ERROR;
272   }
273 
274   /* Check the parameters */
275   assert_param(IS_TIM_INSTANCE(htim->Instance));
276   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
277   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
278   assert_param(IS_TIM_PERIOD(htim->Init.Period));
279   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
280 
281   if (htim->State == HAL_TIM_STATE_RESET)
282   {
283     /* Allocate lock resource and initialize it */
284     htim->Lock = HAL_UNLOCKED;
285 
286 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
287     /* Reset interrupt callbacks to legacy weak callbacks */
288     TIM_ResetCallback(htim);
289 
290     if (htim->Base_MspInitCallback == NULL)
291     {
292       htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
293     }
294     /* Init the low level hardware : GPIO, CLOCK, NVIC */
295     htim->Base_MspInitCallback(htim);
296 #else
297     /* Init the low level hardware : GPIO, CLOCK, NVIC */
298     HAL_TIM_Base_MspInit(htim);
299 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
300   }
301 
302   /* Set the TIM state */
303   htim->State = HAL_TIM_STATE_BUSY;
304 
305   /* Set the Time Base configuration */
306   TIM_Base_SetConfig(htim->Instance, &htim->Init);
307 
308   /* Initialize the DMA burst operation state */
309   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
310 
311   /* Initialize the TIM channels state */
312   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
313   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
314 
315   /* Initialize the TIM state*/
316   htim->State = HAL_TIM_STATE_READY;
317 
318   return HAL_OK;
319 }
320 
321 /**
322   * @brief  DeInitializes the TIM Base peripheral
323   * @param  htim TIM Base handle
324   * @retval HAL status
325   */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)326 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
327 {
328   /* Check the parameters */
329   assert_param(IS_TIM_INSTANCE(htim->Instance));
330 
331   htim->State = HAL_TIM_STATE_BUSY;
332 
333   /* Disable the TIM Peripheral Clock */
334   __HAL_TIM_DISABLE(htim);
335 
336 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
337   if (htim->Base_MspDeInitCallback == NULL)
338   {
339     htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
340   }
341   /* DeInit the low level hardware */
342   htim->Base_MspDeInitCallback(htim);
343 #else
344   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
345   HAL_TIM_Base_MspDeInit(htim);
346 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
347 
348   /* Change the DMA burst operation state */
349   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
350 
351   /* Change the TIM channels state */
352   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
353   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
354 
355   /* Change TIM state */
356   htim->State = HAL_TIM_STATE_RESET;
357 
358   /* Release Lock */
359   __HAL_UNLOCK(htim);
360 
361   return HAL_OK;
362 }
363 
364 /**
365   * @brief  Initializes the TIM Base MSP.
366   * @param  htim TIM Base handle
367   * @retval None
368   */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)369 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
370 {
371   /* Prevent unused argument(s) compilation warning */
372   UNUSED(htim);
373 
374   /* NOTE : This function should not be modified, when the callback is needed,
375             the HAL_TIM_Base_MspInit could be implemented in the user file
376    */
377 }
378 
379 /**
380   * @brief  DeInitializes TIM Base MSP.
381   * @param  htim TIM Base handle
382   * @retval None
383   */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)384 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
385 {
386   /* Prevent unused argument(s) compilation warning */
387   UNUSED(htim);
388 
389   /* NOTE : This function should not be modified, when the callback is needed,
390             the HAL_TIM_Base_MspDeInit could be implemented in the user file
391    */
392 }
393 
394 
395 /**
396   * @brief  Starts the TIM Base generation.
397   * @param  htim TIM Base handle
398   * @retval HAL status
399   */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)400 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
401 {
402   uint32_t tmpsmcr;
403 
404   /* Check the parameters */
405   assert_param(IS_TIM_INSTANCE(htim->Instance));
406 
407   /* Check the TIM state */
408   if (htim->State != HAL_TIM_STATE_READY)
409   {
410     return HAL_ERROR;
411   }
412 
413   /* Set the TIM state */
414   htim->State = HAL_TIM_STATE_BUSY;
415 
416   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
417   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
418   {
419     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
420     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
421     {
422       __HAL_TIM_ENABLE(htim);
423     }
424   }
425   else
426   {
427     __HAL_TIM_ENABLE(htim);
428   }
429 
430   /* Return function status */
431   return HAL_OK;
432 }
433 
434 /**
435   * @brief  Stops the TIM Base generation.
436   * @param  htim TIM Base handle
437   * @retval HAL status
438   */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)439 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
440 {
441   /* Check the parameters */
442   assert_param(IS_TIM_INSTANCE(htim->Instance));
443 
444   /* Disable the Peripheral */
445   __HAL_TIM_DISABLE(htim);
446 
447   /* Set the TIM state */
448   htim->State = HAL_TIM_STATE_READY;
449 
450   /* Return function status */
451   return HAL_OK;
452 }
453 
454 /**
455   * @brief  Starts the TIM Base generation in interrupt mode.
456   * @param  htim TIM Base handle
457   * @retval HAL status
458   */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)459 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
460 {
461   uint32_t tmpsmcr;
462 
463   /* Check the parameters */
464   assert_param(IS_TIM_INSTANCE(htim->Instance));
465 
466   /* Check the TIM state */
467   if (htim->State != HAL_TIM_STATE_READY)
468   {
469     return HAL_ERROR;
470   }
471 
472   /* Set the TIM state */
473   htim->State = HAL_TIM_STATE_BUSY;
474 
475   /* Enable the TIM Update interrupt */
476   __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
477 
478   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
479   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
480   {
481     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
482     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
483     {
484       __HAL_TIM_ENABLE(htim);
485     }
486   }
487   else
488   {
489     __HAL_TIM_ENABLE(htim);
490   }
491 
492   /* Return function status */
493   return HAL_OK;
494 }
495 
496 /**
497   * @brief  Stops the TIM Base generation in interrupt mode.
498   * @param  htim TIM Base handle
499   * @retval HAL status
500   */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)501 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
502 {
503   /* Check the parameters */
504   assert_param(IS_TIM_INSTANCE(htim->Instance));
505 
506   /* Disable the TIM Update interrupt */
507   __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
508 
509   /* Disable the Peripheral */
510   __HAL_TIM_DISABLE(htim);
511 
512   /* Set the TIM state */
513   htim->State = HAL_TIM_STATE_READY;
514 
515   /* Return function status */
516   return HAL_OK;
517 }
518 
519 /**
520   * @brief  Starts the TIM Base generation in DMA mode.
521   * @param  htim TIM Base handle
522   * @param  pData The source Buffer address.
523   * @param  Length The length of data to be transferred from memory to peripheral.
524   * @retval HAL status
525   */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)526 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
527 {
528   uint32_t tmpsmcr;
529 
530   /* Check the parameters */
531   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
532 
533   /* Set the TIM state */
534   if (htim->State == HAL_TIM_STATE_BUSY)
535   {
536     return HAL_BUSY;
537   }
538   else if (htim->State == HAL_TIM_STATE_READY)
539   {
540     if ((pData == NULL) || (Length == 0U))
541     {
542       return HAL_ERROR;
543     }
544     else
545     {
546       htim->State = HAL_TIM_STATE_BUSY;
547     }
548   }
549   else
550   {
551     return HAL_ERROR;
552   }
553 
554   /* Set the DMA Period elapsed callbacks */
555   htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
556   htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
557 
558   /* Set the DMA error callback */
559   htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
560 
561   /* Enable the DMA channel */
562   if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
563                        Length) != HAL_OK)
564   {
565     /* Return error status */
566     return HAL_ERROR;
567   }
568 
569   /* Enable the TIM Update DMA request */
570   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
571 
572   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
573   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
574   {
575     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
576     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
577     {
578       __HAL_TIM_ENABLE(htim);
579     }
580   }
581   else
582   {
583     __HAL_TIM_ENABLE(htim);
584   }
585 
586   /* Return function status */
587   return HAL_OK;
588 }
589 
590 /**
591   * @brief  Stops the TIM Base generation in DMA mode.
592   * @param  htim TIM Base handle
593   * @retval HAL status
594   */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)595 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
596 {
597   /* Check the parameters */
598   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
599 
600   /* Disable the TIM Update DMA request */
601   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
602 
603   (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
604 
605   /* Disable the Peripheral */
606   __HAL_TIM_DISABLE(htim);
607 
608   /* Set the TIM state */
609   htim->State = HAL_TIM_STATE_READY;
610 
611   /* Return function status */
612   return HAL_OK;
613 }
614 
615 /**
616   * @}
617   */
618 
619 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
620   *  @brief    TIM Output Compare functions
621   *
622 @verbatim
623   ==============================================================================
624                   ##### TIM Output Compare functions #####
625   ==============================================================================
626   [..]
627     This section provides functions allowing to:
628     (+) Initialize and configure the TIM Output Compare.
629     (+) De-initialize the TIM Output Compare.
630     (+) Start the TIM Output Compare.
631     (+) Stop the TIM Output Compare.
632     (+) Start the TIM Output Compare and enable interrupt.
633     (+) Stop the TIM Output Compare and disable interrupt.
634     (+) Start the TIM Output Compare and enable DMA transfer.
635     (+) Stop the TIM Output Compare and disable DMA transfer.
636 
637 @endverbatim
638   * @{
639   */
640 /**
641   * @brief  Initializes the TIM Output Compare according to the specified
642   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
643   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
644   *         requires a timer reset to avoid unexpected direction
645   *         due to DIR bit readonly in center aligned mode.
646   *         Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
647   * @param  htim TIM Output Compare handle
648   * @retval HAL status
649   */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)650 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
651 {
652   /* Check the TIM handle allocation */
653   if (htim == NULL)
654   {
655     return HAL_ERROR;
656   }
657 
658   /* Check the parameters */
659   assert_param(IS_TIM_INSTANCE(htim->Instance));
660   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
661   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
662   assert_param(IS_TIM_PERIOD(htim->Init.Period));
663   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
664 
665   if (htim->State == HAL_TIM_STATE_RESET)
666   {
667     /* Allocate lock resource and initialize it */
668     htim->Lock = HAL_UNLOCKED;
669 
670 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
671     /* Reset interrupt callbacks to legacy weak callbacks */
672     TIM_ResetCallback(htim);
673 
674     if (htim->OC_MspInitCallback == NULL)
675     {
676       htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
677     }
678     /* Init the low level hardware : GPIO, CLOCK, NVIC */
679     htim->OC_MspInitCallback(htim);
680 #else
681     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
682     HAL_TIM_OC_MspInit(htim);
683 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
684   }
685 
686   /* Set the TIM state */
687   htim->State = HAL_TIM_STATE_BUSY;
688 
689   /* Init the base time for the Output Compare */
690   TIM_Base_SetConfig(htim->Instance,  &htim->Init);
691 
692   /* Initialize the DMA burst operation state */
693   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
694 
695   /* Initialize the TIM channels state */
696   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
697   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
698 
699   /* Initialize the TIM state*/
700   htim->State = HAL_TIM_STATE_READY;
701 
702   return HAL_OK;
703 }
704 
705 /**
706   * @brief  DeInitializes the TIM peripheral
707   * @param  htim TIM Output Compare handle
708   * @retval HAL status
709   */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)710 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
711 {
712   /* Check the parameters */
713   assert_param(IS_TIM_INSTANCE(htim->Instance));
714 
715   htim->State = HAL_TIM_STATE_BUSY;
716 
717   /* Disable the TIM Peripheral Clock */
718   __HAL_TIM_DISABLE(htim);
719 
720 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
721   if (htim->OC_MspDeInitCallback == NULL)
722   {
723     htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
724   }
725   /* DeInit the low level hardware */
726   htim->OC_MspDeInitCallback(htim);
727 #else
728   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
729   HAL_TIM_OC_MspDeInit(htim);
730 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
731 
732   /* Change the DMA burst operation state */
733   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
734 
735   /* Change the TIM channels state */
736   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
737   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
738 
739   /* Change TIM state */
740   htim->State = HAL_TIM_STATE_RESET;
741 
742   /* Release Lock */
743   __HAL_UNLOCK(htim);
744 
745   return HAL_OK;
746 }
747 
748 /**
749   * @brief  Initializes the TIM Output Compare MSP.
750   * @param  htim TIM Output Compare handle
751   * @retval None
752   */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)753 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
754 {
755   /* Prevent unused argument(s) compilation warning */
756   UNUSED(htim);
757 
758   /* NOTE : This function should not be modified, when the callback is needed,
759             the HAL_TIM_OC_MspInit could be implemented in the user file
760    */
761 }
762 
763 /**
764   * @brief  DeInitializes TIM Output Compare MSP.
765   * @param  htim TIM Output Compare handle
766   * @retval None
767   */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)768 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
769 {
770   /* Prevent unused argument(s) compilation warning */
771   UNUSED(htim);
772 
773   /* NOTE : This function should not be modified, when the callback is needed,
774             the HAL_TIM_OC_MspDeInit could be implemented in the user file
775    */
776 }
777 
778 /**
779   * @brief  Starts the TIM Output Compare signal generation.
780   * @param  htim TIM Output Compare handle
781   * @param  Channel TIM Channel to be enabled
782   *          This parameter can be one of the following values:
783   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
784   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
785   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
786   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
787   * @retval HAL status
788   */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)789 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
790 {
791   uint32_t tmpsmcr;
792 
793   /* Check the parameters */
794   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
795 
796   /* Check the TIM channel state */
797   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
798   {
799     return HAL_ERROR;
800   }
801 
802   /* Set the TIM channel state */
803   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
804 
805   /* Enable the Output compare channel */
806   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
807 
808   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
809   {
810     /* Enable the main output */
811     __HAL_TIM_MOE_ENABLE(htim);
812   }
813 
814   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
815   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
816   {
817     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
818     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
819     {
820       __HAL_TIM_ENABLE(htim);
821     }
822   }
823   else
824   {
825     __HAL_TIM_ENABLE(htim);
826   }
827 
828   /* Return function status */
829   return HAL_OK;
830 }
831 
832 /**
833   * @brief  Stops the TIM Output Compare signal generation.
834   * @param  htim TIM Output Compare handle
835   * @param  Channel TIM Channel to be disabled
836   *          This parameter can be one of the following values:
837   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
838   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
839   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
840   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
841   * @retval HAL status
842   */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)843 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
844 {
845   /* Check the parameters */
846   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
847 
848   /* Disable the Output compare channel */
849   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
850 
851   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
852   {
853     /* Disable the Main Output */
854     __HAL_TIM_MOE_DISABLE(htim);
855   }
856 
857   /* Disable the Peripheral */
858   __HAL_TIM_DISABLE(htim);
859 
860   /* Set the TIM channel state */
861   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
862 
863   /* Return function status */
864   return HAL_OK;
865 }
866 
867 /**
868   * @brief  Starts the TIM Output Compare signal generation in interrupt mode.
869   * @param  htim TIM Output Compare handle
870   * @param  Channel TIM Channel to be enabled
871   *          This parameter can be one of the following values:
872   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
873   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
874   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
875   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
876   * @retval HAL status
877   */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)878 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
879 {
880   HAL_StatusTypeDef status = HAL_OK;
881   uint32_t tmpsmcr;
882 
883   /* Check the parameters */
884   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
885 
886   /* Check the TIM channel state */
887   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
888   {
889     return HAL_ERROR;
890   }
891 
892   /* Set the TIM channel state */
893   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
894 
895   switch (Channel)
896   {
897     case TIM_CHANNEL_1:
898     {
899       /* Enable the TIM Capture/Compare 1 interrupt */
900       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
901       break;
902     }
903 
904     case TIM_CHANNEL_2:
905     {
906       /* Enable the TIM Capture/Compare 2 interrupt */
907       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
908       break;
909     }
910 
911     case TIM_CHANNEL_3:
912     {
913       /* Enable the TIM Capture/Compare 3 interrupt */
914       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
915       break;
916     }
917 
918     case TIM_CHANNEL_4:
919     {
920       /* Enable the TIM Capture/Compare 4 interrupt */
921       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
922       break;
923     }
924 
925     default:
926       status = HAL_ERROR;
927       break;
928   }
929 
930   if (status == HAL_OK)
931   {
932     /* Enable the Output compare channel */
933     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
934 
935     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
936     {
937       /* Enable the main output */
938       __HAL_TIM_MOE_ENABLE(htim);
939     }
940 
941     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
942     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
943     {
944       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
945       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
946       {
947         __HAL_TIM_ENABLE(htim);
948       }
949     }
950     else
951     {
952       __HAL_TIM_ENABLE(htim);
953     }
954   }
955 
956   /* Return function status */
957   return status;
958 }
959 
960 /**
961   * @brief  Stops the TIM Output Compare signal generation in interrupt mode.
962   * @param  htim TIM Output Compare handle
963   * @param  Channel TIM Channel to be disabled
964   *          This parameter can be one of the following values:
965   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
966   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
967   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
968   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
969   * @retval HAL status
970   */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)971 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
972 {
973   HAL_StatusTypeDef status = HAL_OK;
974 
975   /* Check the parameters */
976   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
977 
978   switch (Channel)
979   {
980     case TIM_CHANNEL_1:
981     {
982       /* Disable the TIM Capture/Compare 1 interrupt */
983       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
984       break;
985     }
986 
987     case TIM_CHANNEL_2:
988     {
989       /* Disable the TIM Capture/Compare 2 interrupt */
990       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
991       break;
992     }
993 
994     case TIM_CHANNEL_3:
995     {
996       /* Disable the TIM Capture/Compare 3 interrupt */
997       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
998       break;
999     }
1000 
1001     case TIM_CHANNEL_4:
1002     {
1003       /* Disable the TIM Capture/Compare 4 interrupt */
1004       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1005       break;
1006     }
1007 
1008     default:
1009       status = HAL_ERROR;
1010       break;
1011   }
1012 
1013   if (status == HAL_OK)
1014   {
1015     /* Disable the Output compare channel */
1016     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1017 
1018     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1019     {
1020       /* Disable the Main Output */
1021       __HAL_TIM_MOE_DISABLE(htim);
1022     }
1023 
1024     /* Disable the Peripheral */
1025     __HAL_TIM_DISABLE(htim);
1026 
1027     /* Set the TIM channel state */
1028     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1029   }
1030 
1031   /* Return function status */
1032   return status;
1033 }
1034 
1035 /**
1036   * @brief  Starts the TIM Output Compare signal generation in DMA mode.
1037   * @param  htim TIM Output Compare handle
1038   * @param  Channel TIM Channel to be enabled
1039   *          This parameter can be one of the following values:
1040   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1041   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1042   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1043   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1044   * @param  pData The source Buffer address.
1045   * @param  Length The length of data to be transferred from memory to TIM peripheral
1046   * @retval HAL status
1047   */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1048 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1049                                        uint16_t Length)
1050 {
1051   HAL_StatusTypeDef status = HAL_OK;
1052   uint32_t tmpsmcr;
1053 
1054   /* Check the parameters */
1055   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1056 
1057   /* Set the TIM channel state */
1058   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1059   {
1060     return HAL_BUSY;
1061   }
1062   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1063   {
1064     if ((pData == NULL) || (Length == 0U))
1065     {
1066       return HAL_ERROR;
1067     }
1068     else
1069     {
1070       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1071     }
1072   }
1073   else
1074   {
1075     return HAL_ERROR;
1076   }
1077 
1078   switch (Channel)
1079   {
1080     case TIM_CHANNEL_1:
1081     {
1082       /* Set the DMA compare callbacks */
1083       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1084       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1085 
1086       /* Set the DMA error callback */
1087       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1088 
1089       /* Enable the DMA channel */
1090       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1091                            Length) != HAL_OK)
1092       {
1093         /* Return error status */
1094         return HAL_ERROR;
1095       }
1096 
1097       /* Enable the TIM Capture/Compare 1 DMA request */
1098       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1099       break;
1100     }
1101 
1102     case TIM_CHANNEL_2:
1103     {
1104       /* Set the DMA compare callbacks */
1105       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1106       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1107 
1108       /* Set the DMA error callback */
1109       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1110 
1111       /* Enable the DMA channel */
1112       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1113                            Length) != HAL_OK)
1114       {
1115         /* Return error status */
1116         return HAL_ERROR;
1117       }
1118 
1119       /* Enable the TIM Capture/Compare 2 DMA request */
1120       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1121       break;
1122     }
1123 
1124     case TIM_CHANNEL_3:
1125     {
1126       /* Set the DMA compare callbacks */
1127       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1128       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1129 
1130       /* Set the DMA error callback */
1131       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1132 
1133       /* Enable the DMA channel */
1134       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1135                            Length) != HAL_OK)
1136       {
1137         /* Return error status */
1138         return HAL_ERROR;
1139       }
1140       /* Enable the TIM Capture/Compare 3 DMA request */
1141       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1142       break;
1143     }
1144 
1145     case TIM_CHANNEL_4:
1146     {
1147       /* Set the DMA compare callbacks */
1148       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1149       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1150 
1151       /* Set the DMA error callback */
1152       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1153 
1154       /* Enable the DMA channel */
1155       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1156                            Length) != HAL_OK)
1157       {
1158         /* Return error status */
1159         return HAL_ERROR;
1160       }
1161       /* Enable the TIM Capture/Compare 4 DMA request */
1162       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1163       break;
1164     }
1165 
1166     default:
1167       status = HAL_ERROR;
1168       break;
1169   }
1170 
1171   if (status == HAL_OK)
1172   {
1173     /* Enable the Output compare channel */
1174     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1175 
1176     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1177     {
1178       /* Enable the main output */
1179       __HAL_TIM_MOE_ENABLE(htim);
1180     }
1181 
1182     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1183     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1184     {
1185       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1186       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1187       {
1188         __HAL_TIM_ENABLE(htim);
1189       }
1190     }
1191     else
1192     {
1193       __HAL_TIM_ENABLE(htim);
1194     }
1195   }
1196 
1197   /* Return function status */
1198   return status;
1199 }
1200 
1201 /**
1202   * @brief  Stops the TIM Output Compare signal generation in DMA mode.
1203   * @param  htim TIM Output Compare handle
1204   * @param  Channel TIM Channel to be disabled
1205   *          This parameter can be one of the following values:
1206   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1207   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1208   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1209   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1210   * @retval HAL status
1211   */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1212 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1213 {
1214   HAL_StatusTypeDef status = HAL_OK;
1215 
1216   /* Check the parameters */
1217   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1218 
1219   switch (Channel)
1220   {
1221     case TIM_CHANNEL_1:
1222     {
1223       /* Disable the TIM Capture/Compare 1 DMA request */
1224       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1225       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1226       break;
1227     }
1228 
1229     case TIM_CHANNEL_2:
1230     {
1231       /* Disable the TIM Capture/Compare 2 DMA request */
1232       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1233       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1234       break;
1235     }
1236 
1237     case TIM_CHANNEL_3:
1238     {
1239       /* Disable the TIM Capture/Compare 3 DMA request */
1240       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1241       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1242       break;
1243     }
1244 
1245     case TIM_CHANNEL_4:
1246     {
1247       /* Disable the TIM Capture/Compare 4 interrupt */
1248       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1249       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1250       break;
1251     }
1252 
1253     default:
1254       status = HAL_ERROR;
1255       break;
1256   }
1257 
1258   if (status == HAL_OK)
1259   {
1260     /* Disable the Output compare channel */
1261     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1262 
1263     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1264     {
1265       /* Disable the Main Output */
1266       __HAL_TIM_MOE_DISABLE(htim);
1267     }
1268 
1269     /* Disable the Peripheral */
1270     __HAL_TIM_DISABLE(htim);
1271 
1272     /* Set the TIM channel state */
1273     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1274   }
1275 
1276   /* Return function status */
1277   return status;
1278 }
1279 
1280 /**
1281   * @}
1282   */
1283 
1284 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1285   *  @brief    TIM PWM functions
1286   *
1287 @verbatim
1288   ==============================================================================
1289                           ##### TIM PWM functions #####
1290   ==============================================================================
1291   [..]
1292     This section provides functions allowing to:
1293     (+) Initialize and configure the TIM PWM.
1294     (+) De-initialize the TIM PWM.
1295     (+) Start the TIM PWM.
1296     (+) Stop the TIM PWM.
1297     (+) Start the TIM PWM and enable interrupt.
1298     (+) Stop the TIM PWM and disable interrupt.
1299     (+) Start the TIM PWM and enable DMA transfer.
1300     (+) Stop the TIM PWM and disable DMA transfer.
1301 
1302 @endverbatim
1303   * @{
1304   */
1305 /**
1306   * @brief  Initializes the TIM PWM Time Base according to the specified
1307   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1308   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1309   *         requires a timer reset to avoid unexpected direction
1310   *         due to DIR bit readonly in center aligned mode.
1311   *         Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1312   * @param  htim TIM PWM handle
1313   * @retval HAL status
1314   */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1315 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1316 {
1317   /* Check the TIM handle allocation */
1318   if (htim == NULL)
1319   {
1320     return HAL_ERROR;
1321   }
1322 
1323   /* Check the parameters */
1324   assert_param(IS_TIM_INSTANCE(htim->Instance));
1325   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1326   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1327   assert_param(IS_TIM_PERIOD(htim->Init.Period));
1328   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1329 
1330   if (htim->State == HAL_TIM_STATE_RESET)
1331   {
1332     /* Allocate lock resource and initialize it */
1333     htim->Lock = HAL_UNLOCKED;
1334 
1335 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1336     /* Reset interrupt callbacks to legacy weak callbacks */
1337     TIM_ResetCallback(htim);
1338 
1339     if (htim->PWM_MspInitCallback == NULL)
1340     {
1341       htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1342     }
1343     /* Init the low level hardware : GPIO, CLOCK, NVIC */
1344     htim->PWM_MspInitCallback(htim);
1345 #else
1346     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1347     HAL_TIM_PWM_MspInit(htim);
1348 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1349   }
1350 
1351   /* Set the TIM state */
1352   htim->State = HAL_TIM_STATE_BUSY;
1353 
1354   /* Init the base time for the PWM */
1355   TIM_Base_SetConfig(htim->Instance, &htim->Init);
1356 
1357   /* Initialize the DMA burst operation state */
1358   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1359 
1360   /* Initialize the TIM channels state */
1361   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1362   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1363 
1364   /* Initialize the TIM state*/
1365   htim->State = HAL_TIM_STATE_READY;
1366 
1367   return HAL_OK;
1368 }
1369 
1370 /**
1371   * @brief  DeInitializes the TIM peripheral
1372   * @param  htim TIM PWM handle
1373   * @retval HAL status
1374   */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1375 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1376 {
1377   /* Check the parameters */
1378   assert_param(IS_TIM_INSTANCE(htim->Instance));
1379 
1380   htim->State = HAL_TIM_STATE_BUSY;
1381 
1382   /* Disable the TIM Peripheral Clock */
1383   __HAL_TIM_DISABLE(htim);
1384 
1385 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1386   if (htim->PWM_MspDeInitCallback == NULL)
1387   {
1388     htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1389   }
1390   /* DeInit the low level hardware */
1391   htim->PWM_MspDeInitCallback(htim);
1392 #else
1393   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1394   HAL_TIM_PWM_MspDeInit(htim);
1395 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1396 
1397   /* Change the DMA burst operation state */
1398   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1399 
1400   /* Change the TIM channels state */
1401   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1402   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1403 
1404   /* Change TIM state */
1405   htim->State = HAL_TIM_STATE_RESET;
1406 
1407   /* Release Lock */
1408   __HAL_UNLOCK(htim);
1409 
1410   return HAL_OK;
1411 }
1412 
1413 /**
1414   * @brief  Initializes the TIM PWM MSP.
1415   * @param  htim TIM PWM handle
1416   * @retval None
1417   */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1418 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1419 {
1420   /* Prevent unused argument(s) compilation warning */
1421   UNUSED(htim);
1422 
1423   /* NOTE : This function should not be modified, when the callback is needed,
1424             the HAL_TIM_PWM_MspInit could be implemented in the user file
1425    */
1426 }
1427 
1428 /**
1429   * @brief  DeInitializes TIM PWM MSP.
1430   * @param  htim TIM PWM handle
1431   * @retval None
1432   */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1433 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1434 {
1435   /* Prevent unused argument(s) compilation warning */
1436   UNUSED(htim);
1437 
1438   /* NOTE : This function should not be modified, when the callback is needed,
1439             the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1440    */
1441 }
1442 
1443 /**
1444   * @brief  Starts the PWM signal generation.
1445   * @param  htim TIM handle
1446   * @param  Channel TIM Channels to be enabled
1447   *          This parameter can be one of the following values:
1448   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1449   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1450   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1451   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1452   * @retval HAL status
1453   */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1454 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1455 {
1456   uint32_t tmpsmcr;
1457 
1458   /* Check the parameters */
1459   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1460 
1461   /* Check the TIM channel state */
1462   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1463   {
1464     return HAL_ERROR;
1465   }
1466 
1467   /* Set the TIM channel state */
1468   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1469 
1470   /* Enable the Capture compare channel */
1471   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1472 
1473   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1474   {
1475     /* Enable the main output */
1476     __HAL_TIM_MOE_ENABLE(htim);
1477   }
1478 
1479   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1480   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1481   {
1482     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1483     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1484     {
1485       __HAL_TIM_ENABLE(htim);
1486     }
1487   }
1488   else
1489   {
1490     __HAL_TIM_ENABLE(htim);
1491   }
1492 
1493   /* Return function status */
1494   return HAL_OK;
1495 }
1496 
1497 /**
1498   * @brief  Stops the PWM signal generation.
1499   * @param  htim TIM PWM handle
1500   * @param  Channel TIM Channels to be disabled
1501   *          This parameter can be one of the following values:
1502   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1503   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1504   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1505   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1506   * @retval HAL status
1507   */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1508 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1509 {
1510   /* Check the parameters */
1511   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1512 
1513   /* Disable the Capture compare channel */
1514   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1515 
1516   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1517   {
1518     /* Disable the Main Output */
1519     __HAL_TIM_MOE_DISABLE(htim);
1520   }
1521 
1522   /* Disable the Peripheral */
1523   __HAL_TIM_DISABLE(htim);
1524 
1525   /* Set the TIM channel state */
1526   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1527 
1528   /* Return function status */
1529   return HAL_OK;
1530 }
1531 
1532 /**
1533   * @brief  Starts the PWM signal generation in interrupt mode.
1534   * @param  htim TIM PWM handle
1535   * @param  Channel TIM Channel to be enabled
1536   *          This parameter can be one of the following values:
1537   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1538   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1539   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1540   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1541   * @retval HAL status
1542   */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1543 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1544 {
1545   HAL_StatusTypeDef status = HAL_OK;
1546   uint32_t tmpsmcr;
1547 
1548   /* Check the parameters */
1549   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1550 
1551   /* Check the TIM channel state */
1552   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1553   {
1554     return HAL_ERROR;
1555   }
1556 
1557   /* Set the TIM channel state */
1558   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1559 
1560   switch (Channel)
1561   {
1562     case TIM_CHANNEL_1:
1563     {
1564       /* Enable the TIM Capture/Compare 1 interrupt */
1565       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1566       break;
1567     }
1568 
1569     case TIM_CHANNEL_2:
1570     {
1571       /* Enable the TIM Capture/Compare 2 interrupt */
1572       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1573       break;
1574     }
1575 
1576     case TIM_CHANNEL_3:
1577     {
1578       /* Enable the TIM Capture/Compare 3 interrupt */
1579       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1580       break;
1581     }
1582 
1583     case TIM_CHANNEL_4:
1584     {
1585       /* Enable the TIM Capture/Compare 4 interrupt */
1586       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1587       break;
1588     }
1589 
1590     default:
1591       status = HAL_ERROR;
1592       break;
1593   }
1594 
1595   if (status == HAL_OK)
1596   {
1597     /* Enable the Capture compare channel */
1598     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1599 
1600     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1601     {
1602       /* Enable the main output */
1603       __HAL_TIM_MOE_ENABLE(htim);
1604     }
1605 
1606     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1607     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1608     {
1609       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1610       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1611       {
1612         __HAL_TIM_ENABLE(htim);
1613       }
1614     }
1615     else
1616     {
1617       __HAL_TIM_ENABLE(htim);
1618     }
1619   }
1620 
1621   /* Return function status */
1622   return status;
1623 }
1624 
1625 /**
1626   * @brief  Stops the PWM signal generation in interrupt mode.
1627   * @param  htim TIM PWM handle
1628   * @param  Channel TIM Channels to be disabled
1629   *          This parameter can be one of the following values:
1630   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1631   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1632   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1633   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1634   * @retval HAL status
1635   */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1636 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1637 {
1638   HAL_StatusTypeDef status = HAL_OK;
1639 
1640   /* Check the parameters */
1641   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1642 
1643   switch (Channel)
1644   {
1645     case TIM_CHANNEL_1:
1646     {
1647       /* Disable the TIM Capture/Compare 1 interrupt */
1648       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1649       break;
1650     }
1651 
1652     case TIM_CHANNEL_2:
1653     {
1654       /* Disable the TIM Capture/Compare 2 interrupt */
1655       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1656       break;
1657     }
1658 
1659     case TIM_CHANNEL_3:
1660     {
1661       /* Disable the TIM Capture/Compare 3 interrupt */
1662       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1663       break;
1664     }
1665 
1666     case TIM_CHANNEL_4:
1667     {
1668       /* Disable the TIM Capture/Compare 4 interrupt */
1669       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1670       break;
1671     }
1672 
1673     default:
1674       status = HAL_ERROR;
1675       break;
1676   }
1677 
1678   if (status == HAL_OK)
1679   {
1680     /* Disable the Capture compare channel */
1681     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1682 
1683     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1684     {
1685       /* Disable the Main Output */
1686       __HAL_TIM_MOE_DISABLE(htim);
1687     }
1688 
1689     /* Disable the Peripheral */
1690     __HAL_TIM_DISABLE(htim);
1691 
1692     /* Set the TIM channel state */
1693     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1694   }
1695 
1696   /* Return function status */
1697   return status;
1698 }
1699 
1700 /**
1701   * @brief  Starts the TIM PWM signal generation in DMA mode.
1702   * @param  htim TIM PWM handle
1703   * @param  Channel TIM Channels to be enabled
1704   *          This parameter can be one of the following values:
1705   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1706   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1707   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1708   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1709   * @param  pData The source Buffer address.
1710   * @param  Length The length of data to be transferred from memory to TIM peripheral
1711   * @retval HAL status
1712   */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1713 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1714                                         uint16_t Length)
1715 {
1716   HAL_StatusTypeDef status = HAL_OK;
1717   uint32_t tmpsmcr;
1718 
1719   /* Check the parameters */
1720   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1721 
1722   /* Set the TIM channel state */
1723   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1724   {
1725     return HAL_BUSY;
1726   }
1727   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1728   {
1729     if ((pData == NULL) || (Length == 0U))
1730     {
1731       return HAL_ERROR;
1732     }
1733     else
1734     {
1735       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1736     }
1737   }
1738   else
1739   {
1740     return HAL_ERROR;
1741   }
1742 
1743   switch (Channel)
1744   {
1745     case TIM_CHANNEL_1:
1746     {
1747       /* Set the DMA compare callbacks */
1748       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1749       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1750 
1751       /* Set the DMA error callback */
1752       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1753 
1754       /* Enable the DMA channel */
1755       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1756                            Length) != HAL_OK)
1757       {
1758         /* Return error status */
1759         return HAL_ERROR;
1760       }
1761 
1762       /* Enable the TIM Capture/Compare 1 DMA request */
1763       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1764       break;
1765     }
1766 
1767     case TIM_CHANNEL_2:
1768     {
1769       /* Set the DMA compare callbacks */
1770       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1771       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1772 
1773       /* Set the DMA error callback */
1774       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1775 
1776       /* Enable the DMA channel */
1777       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1778                            Length) != HAL_OK)
1779       {
1780         /* Return error status */
1781         return HAL_ERROR;
1782       }
1783       /* Enable the TIM Capture/Compare 2 DMA request */
1784       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1785       break;
1786     }
1787 
1788     case TIM_CHANNEL_3:
1789     {
1790       /* Set the DMA compare callbacks */
1791       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1792       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1793 
1794       /* Set the DMA error callback */
1795       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1796 
1797       /* Enable the DMA channel */
1798       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1799                            Length) != HAL_OK)
1800       {
1801         /* Return error status */
1802         return HAL_ERROR;
1803       }
1804       /* Enable the TIM Output Capture/Compare 3 request */
1805       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1806       break;
1807     }
1808 
1809     case TIM_CHANNEL_4:
1810     {
1811       /* Set the DMA compare callbacks */
1812       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1813       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1814 
1815       /* Set the DMA error callback */
1816       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1817 
1818       /* Enable the DMA channel */
1819       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1820                            Length) != HAL_OK)
1821       {
1822         /* Return error status */
1823         return HAL_ERROR;
1824       }
1825       /* Enable the TIM Capture/Compare 4 DMA request */
1826       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1827       break;
1828     }
1829 
1830     default:
1831       status = HAL_ERROR;
1832       break;
1833   }
1834 
1835   if (status == HAL_OK)
1836   {
1837     /* Enable the Capture compare channel */
1838     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1839 
1840     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1841     {
1842       /* Enable the main output */
1843       __HAL_TIM_MOE_ENABLE(htim);
1844     }
1845 
1846     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1847     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1848     {
1849       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1850       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1851       {
1852         __HAL_TIM_ENABLE(htim);
1853       }
1854     }
1855     else
1856     {
1857       __HAL_TIM_ENABLE(htim);
1858     }
1859   }
1860 
1861   /* Return function status */
1862   return status;
1863 }
1864 
1865 /**
1866   * @brief  Stops the TIM PWM signal generation in DMA mode.
1867   * @param  htim TIM PWM handle
1868   * @param  Channel TIM Channels to be disabled
1869   *          This parameter can be one of the following values:
1870   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1871   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1872   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1873   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1874   * @retval HAL status
1875   */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1876 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1877 {
1878   HAL_StatusTypeDef status = HAL_OK;
1879 
1880   /* Check the parameters */
1881   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1882 
1883   switch (Channel)
1884   {
1885     case TIM_CHANNEL_1:
1886     {
1887       /* Disable the TIM Capture/Compare 1 DMA request */
1888       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1889       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1890       break;
1891     }
1892 
1893     case TIM_CHANNEL_2:
1894     {
1895       /* Disable the TIM Capture/Compare 2 DMA request */
1896       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1897       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1898       break;
1899     }
1900 
1901     case TIM_CHANNEL_3:
1902     {
1903       /* Disable the TIM Capture/Compare 3 DMA request */
1904       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1905       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1906       break;
1907     }
1908 
1909     case TIM_CHANNEL_4:
1910     {
1911       /* Disable the TIM Capture/Compare 4 interrupt */
1912       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1913       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1914       break;
1915     }
1916 
1917     default:
1918       status = HAL_ERROR;
1919       break;
1920   }
1921 
1922   if (status == HAL_OK)
1923   {
1924     /* Disable the Capture compare channel */
1925     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1926 
1927     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1928     {
1929       /* Disable the Main Output */
1930       __HAL_TIM_MOE_DISABLE(htim);
1931     }
1932 
1933     /* Disable the Peripheral */
1934     __HAL_TIM_DISABLE(htim);
1935 
1936     /* Set the TIM channel state */
1937     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1938   }
1939 
1940   /* Return function status */
1941   return status;
1942 }
1943 
1944 /**
1945   * @}
1946   */
1947 
1948 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1949   *  @brief    TIM Input Capture functions
1950   *
1951 @verbatim
1952   ==============================================================================
1953               ##### TIM Input Capture functions #####
1954   ==============================================================================
1955  [..]
1956    This section provides functions allowing to:
1957    (+) Initialize and configure the TIM Input Capture.
1958    (+) De-initialize the TIM Input Capture.
1959    (+) Start the TIM Input Capture.
1960    (+) Stop the TIM Input Capture.
1961    (+) Start the TIM Input Capture and enable interrupt.
1962    (+) Stop the TIM Input Capture and disable interrupt.
1963    (+) Start the TIM Input Capture and enable DMA transfer.
1964    (+) Stop the TIM Input Capture and disable DMA transfer.
1965 
1966 @endverbatim
1967   * @{
1968   */
1969 /**
1970   * @brief  Initializes the TIM Input Capture Time base according to the specified
1971   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1972   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1973   *         requires a timer reset to avoid unexpected direction
1974   *         due to DIR bit readonly in center aligned mode.
1975   *         Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1976   * @param  htim TIM Input Capture handle
1977   * @retval HAL status
1978   */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1979 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1980 {
1981   /* Check the TIM handle allocation */
1982   if (htim == NULL)
1983   {
1984     return HAL_ERROR;
1985   }
1986 
1987   /* Check the parameters */
1988   assert_param(IS_TIM_INSTANCE(htim->Instance));
1989   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1990   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1991   assert_param(IS_TIM_PERIOD(htim->Init.Period));
1992   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1993 
1994   if (htim->State == HAL_TIM_STATE_RESET)
1995   {
1996     /* Allocate lock resource and initialize it */
1997     htim->Lock = HAL_UNLOCKED;
1998 
1999 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2000     /* Reset interrupt callbacks to legacy weak callbacks */
2001     TIM_ResetCallback(htim);
2002 
2003     if (htim->IC_MspInitCallback == NULL)
2004     {
2005       htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2006     }
2007     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2008     htim->IC_MspInitCallback(htim);
2009 #else
2010     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2011     HAL_TIM_IC_MspInit(htim);
2012 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2013   }
2014 
2015   /* Set the TIM state */
2016   htim->State = HAL_TIM_STATE_BUSY;
2017 
2018   /* Init the base time for the input capture */
2019   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2020 
2021   /* Initialize the DMA burst operation state */
2022   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2023 
2024   /* Initialize the TIM channels state */
2025   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2026   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2027 
2028   /* Initialize the TIM state*/
2029   htim->State = HAL_TIM_STATE_READY;
2030 
2031   return HAL_OK;
2032 }
2033 
2034 /**
2035   * @brief  DeInitializes the TIM peripheral
2036   * @param  htim TIM Input Capture handle
2037   * @retval HAL status
2038   */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2039 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2040 {
2041   /* Check the parameters */
2042   assert_param(IS_TIM_INSTANCE(htim->Instance));
2043 
2044   htim->State = HAL_TIM_STATE_BUSY;
2045 
2046   /* Disable the TIM Peripheral Clock */
2047   __HAL_TIM_DISABLE(htim);
2048 
2049 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2050   if (htim->IC_MspDeInitCallback == NULL)
2051   {
2052     htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2053   }
2054   /* DeInit the low level hardware */
2055   htim->IC_MspDeInitCallback(htim);
2056 #else
2057   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2058   HAL_TIM_IC_MspDeInit(htim);
2059 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2060 
2061   /* Change the DMA burst operation state */
2062   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2063 
2064   /* Change the TIM channels state */
2065   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2066   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2067 
2068   /* Change TIM state */
2069   htim->State = HAL_TIM_STATE_RESET;
2070 
2071   /* Release Lock */
2072   __HAL_UNLOCK(htim);
2073 
2074   return HAL_OK;
2075 }
2076 
2077 /**
2078   * @brief  Initializes the TIM Input Capture MSP.
2079   * @param  htim TIM Input Capture handle
2080   * @retval None
2081   */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2082 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2083 {
2084   /* Prevent unused argument(s) compilation warning */
2085   UNUSED(htim);
2086 
2087   /* NOTE : This function should not be modified, when the callback is needed,
2088             the HAL_TIM_IC_MspInit could be implemented in the user file
2089    */
2090 }
2091 
2092 /**
2093   * @brief  DeInitializes TIM Input Capture MSP.
2094   * @param  htim TIM handle
2095   * @retval None
2096   */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2097 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2098 {
2099   /* Prevent unused argument(s) compilation warning */
2100   UNUSED(htim);
2101 
2102   /* NOTE : This function should not be modified, when the callback is needed,
2103             the HAL_TIM_IC_MspDeInit could be implemented in the user file
2104    */
2105 }
2106 
2107 /**
2108   * @brief  Starts the TIM Input Capture measurement.
2109   * @param  htim TIM Input Capture handle
2110   * @param  Channel TIM Channels to be enabled
2111   *          This parameter can be one of the following values:
2112   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2113   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2114   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2115   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2116   * @retval HAL status
2117   */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2118 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2119 {
2120   uint32_t tmpsmcr;
2121   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2122   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2123 
2124   /* Check the parameters */
2125   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2126 
2127   /* Check the TIM channel state */
2128   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2129       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2130   {
2131     return HAL_ERROR;
2132   }
2133 
2134   /* Set the TIM channel state */
2135   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2136   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2137 
2138   /* Enable the Input Capture channel */
2139   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2140 
2141   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2142   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2143   {
2144     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2145     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2146     {
2147       __HAL_TIM_ENABLE(htim);
2148     }
2149   }
2150   else
2151   {
2152     __HAL_TIM_ENABLE(htim);
2153   }
2154 
2155   /* Return function status */
2156   return HAL_OK;
2157 }
2158 
2159 /**
2160   * @brief  Stops the TIM Input Capture measurement.
2161   * @param  htim TIM Input Capture handle
2162   * @param  Channel TIM Channels to be disabled
2163   *          This parameter can be one of the following values:
2164   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2165   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2166   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2167   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2168   * @retval HAL status
2169   */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2170 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2171 {
2172   /* Check the parameters */
2173   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2174 
2175   /* Disable the Input Capture channel */
2176   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2177 
2178   /* Disable the Peripheral */
2179   __HAL_TIM_DISABLE(htim);
2180 
2181   /* Set the TIM channel state */
2182   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2183   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2184 
2185   /* Return function status */
2186   return HAL_OK;
2187 }
2188 
2189 /**
2190   * @brief  Starts the TIM Input Capture measurement in interrupt mode.
2191   * @param  htim TIM Input Capture handle
2192   * @param  Channel TIM Channels to be enabled
2193   *          This parameter can be one of the following values:
2194   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2195   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2196   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2197   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2198   * @retval HAL status
2199   */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2200 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2201 {
2202   HAL_StatusTypeDef status = HAL_OK;
2203   uint32_t tmpsmcr;
2204 
2205   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2206   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2207 
2208   /* Check the parameters */
2209   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2210 
2211   /* Check the TIM channel state */
2212   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2213       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2214   {
2215     return HAL_ERROR;
2216   }
2217 
2218   /* Set the TIM channel state */
2219   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2220   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2221 
2222   switch (Channel)
2223   {
2224     case TIM_CHANNEL_1:
2225     {
2226       /* Enable the TIM Capture/Compare 1 interrupt */
2227       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2228       break;
2229     }
2230 
2231     case TIM_CHANNEL_2:
2232     {
2233       /* Enable the TIM Capture/Compare 2 interrupt */
2234       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2235       break;
2236     }
2237 
2238     case TIM_CHANNEL_3:
2239     {
2240       /* Enable the TIM Capture/Compare 3 interrupt */
2241       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2242       break;
2243     }
2244 
2245     case TIM_CHANNEL_4:
2246     {
2247       /* Enable the TIM Capture/Compare 4 interrupt */
2248       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2249       break;
2250     }
2251 
2252     default:
2253       status = HAL_ERROR;
2254       break;
2255   }
2256 
2257   if (status == HAL_OK)
2258   {
2259     /* Enable the Input Capture channel */
2260     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2261 
2262     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2263     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2264     {
2265       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2266       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2267       {
2268         __HAL_TIM_ENABLE(htim);
2269       }
2270     }
2271     else
2272     {
2273       __HAL_TIM_ENABLE(htim);
2274     }
2275   }
2276 
2277   /* Return function status */
2278   return status;
2279 }
2280 
2281 /**
2282   * @brief  Stops the TIM Input Capture measurement in interrupt mode.
2283   * @param  htim TIM Input Capture handle
2284   * @param  Channel TIM Channels to be disabled
2285   *          This parameter can be one of the following values:
2286   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2287   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2288   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2289   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2290   * @retval HAL status
2291   */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2292 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2293 {
2294   HAL_StatusTypeDef status = HAL_OK;
2295 
2296   /* Check the parameters */
2297   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2298 
2299   switch (Channel)
2300   {
2301     case TIM_CHANNEL_1:
2302     {
2303       /* Disable the TIM Capture/Compare 1 interrupt */
2304       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2305       break;
2306     }
2307 
2308     case TIM_CHANNEL_2:
2309     {
2310       /* Disable the TIM Capture/Compare 2 interrupt */
2311       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2312       break;
2313     }
2314 
2315     case TIM_CHANNEL_3:
2316     {
2317       /* Disable the TIM Capture/Compare 3 interrupt */
2318       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2319       break;
2320     }
2321 
2322     case TIM_CHANNEL_4:
2323     {
2324       /* Disable the TIM Capture/Compare 4 interrupt */
2325       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2326       break;
2327     }
2328 
2329     default:
2330       status = HAL_ERROR;
2331       break;
2332   }
2333 
2334   if (status == HAL_OK)
2335   {
2336     /* Disable the Input Capture channel */
2337     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2338 
2339     /* Disable the Peripheral */
2340     __HAL_TIM_DISABLE(htim);
2341 
2342     /* Set the TIM channel state */
2343     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2344     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2345   }
2346 
2347   /* Return function status */
2348   return status;
2349 }
2350 
2351 /**
2352   * @brief  Starts the TIM Input Capture measurement in DMA mode.
2353   * @param  htim TIM Input Capture handle
2354   * @param  Channel TIM Channels to be enabled
2355   *          This parameter can be one of the following values:
2356   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2357   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2358   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2359   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2360   * @param  pData The destination Buffer address.
2361   * @param  Length The length of data to be transferred from TIM peripheral to memory.
2362   * @retval HAL status
2363   */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2364 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2365 {
2366   HAL_StatusTypeDef status = HAL_OK;
2367   uint32_t tmpsmcr;
2368 
2369   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2370   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2371 
2372   /* Check the parameters */
2373   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2374   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2375 
2376   /* Set the TIM channel state */
2377   if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2378       || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2379   {
2380     return HAL_BUSY;
2381   }
2382   else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2383            && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2384   {
2385     if ((pData == NULL) || (Length == 0U))
2386     {
2387       return HAL_ERROR;
2388     }
2389     else
2390     {
2391       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2392       TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2393     }
2394   }
2395   else
2396   {
2397     return HAL_ERROR;
2398   }
2399 
2400   /* Enable the Input Capture channel */
2401   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2402 
2403   switch (Channel)
2404   {
2405     case TIM_CHANNEL_1:
2406     {
2407       /* Set the DMA capture callbacks */
2408       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2409       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2410 
2411       /* Set the DMA error callback */
2412       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2413 
2414       /* Enable the DMA channel */
2415       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2416                            Length) != HAL_OK)
2417       {
2418         /* Return error status */
2419         return HAL_ERROR;
2420       }
2421       /* Enable the TIM Capture/Compare 1 DMA request */
2422       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2423       break;
2424     }
2425 
2426     case TIM_CHANNEL_2:
2427     {
2428       /* Set the DMA capture callbacks */
2429       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2430       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2431 
2432       /* Set the DMA error callback */
2433       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2434 
2435       /* Enable the DMA channel */
2436       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2437                            Length) != HAL_OK)
2438       {
2439         /* Return error status */
2440         return HAL_ERROR;
2441       }
2442       /* Enable the TIM Capture/Compare 2  DMA request */
2443       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2444       break;
2445     }
2446 
2447     case TIM_CHANNEL_3:
2448     {
2449       /* Set the DMA capture callbacks */
2450       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2451       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2452 
2453       /* Set the DMA error callback */
2454       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2455 
2456       /* Enable the DMA channel */
2457       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2458                            Length) != HAL_OK)
2459       {
2460         /* Return error status */
2461         return HAL_ERROR;
2462       }
2463       /* Enable the TIM Capture/Compare 3  DMA request */
2464       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2465       break;
2466     }
2467 
2468     case TIM_CHANNEL_4:
2469     {
2470       /* Set the DMA capture callbacks */
2471       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2472       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2473 
2474       /* Set the DMA error callback */
2475       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2476 
2477       /* Enable the DMA channel */
2478       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2479                            Length) != HAL_OK)
2480       {
2481         /* Return error status */
2482         return HAL_ERROR;
2483       }
2484       /* Enable the TIM Capture/Compare 4  DMA request */
2485       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2486       break;
2487     }
2488 
2489     default:
2490       status = HAL_ERROR;
2491       break;
2492   }
2493 
2494   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2495   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2496   {
2497     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2498     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2499     {
2500       __HAL_TIM_ENABLE(htim);
2501     }
2502   }
2503   else
2504   {
2505     __HAL_TIM_ENABLE(htim);
2506   }
2507 
2508   /* Return function status */
2509   return status;
2510 }
2511 
2512 /**
2513   * @brief  Stops the TIM Input Capture measurement in DMA mode.
2514   * @param  htim TIM Input Capture handle
2515   * @param  Channel TIM Channels to be disabled
2516   *          This parameter can be one of the following values:
2517   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2518   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2519   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2520   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2521   * @retval HAL status
2522   */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2523 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2524 {
2525   HAL_StatusTypeDef status = HAL_OK;
2526 
2527   /* Check the parameters */
2528   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2529   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2530 
2531   /* Disable the Input Capture channel */
2532   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2533 
2534   switch (Channel)
2535   {
2536     case TIM_CHANNEL_1:
2537     {
2538       /* Disable the TIM Capture/Compare 1 DMA request */
2539       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2540       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2541       break;
2542     }
2543 
2544     case TIM_CHANNEL_2:
2545     {
2546       /* Disable the TIM Capture/Compare 2 DMA request */
2547       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2548       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2549       break;
2550     }
2551 
2552     case TIM_CHANNEL_3:
2553     {
2554       /* Disable the TIM Capture/Compare 3  DMA request */
2555       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2556       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2557       break;
2558     }
2559 
2560     case TIM_CHANNEL_4:
2561     {
2562       /* Disable the TIM Capture/Compare 4  DMA request */
2563       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2564       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2565       break;
2566     }
2567 
2568     default:
2569       status = HAL_ERROR;
2570       break;
2571   }
2572 
2573   if (status == HAL_OK)
2574   {
2575     /* Disable the Peripheral */
2576     __HAL_TIM_DISABLE(htim);
2577 
2578     /* Set the TIM channel state */
2579     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2580     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2581   }
2582 
2583   /* Return function status */
2584   return status;
2585 }
2586 /**
2587   * @}
2588   */
2589 
2590 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2591   *  @brief    TIM One Pulse functions
2592   *
2593 @verbatim
2594   ==============================================================================
2595                         ##### TIM One Pulse functions #####
2596   ==============================================================================
2597   [..]
2598     This section provides functions allowing to:
2599     (+) Initialize and configure the TIM One Pulse.
2600     (+) De-initialize the TIM One Pulse.
2601     (+) Start the TIM One Pulse.
2602     (+) Stop the TIM One Pulse.
2603     (+) Start the TIM One Pulse and enable interrupt.
2604     (+) Stop the TIM One Pulse and disable interrupt.
2605     (+) Start the TIM One Pulse and enable DMA transfer.
2606     (+) Stop the TIM One Pulse and disable DMA transfer.
2607 
2608 @endverbatim
2609   * @{
2610   */
2611 /**
2612   * @brief  Initializes the TIM One Pulse Time Base according to the specified
2613   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
2614   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2615   *         requires a timer reset to avoid unexpected direction
2616   *         due to DIR bit readonly in center aligned mode.
2617   *         Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2618   * @note   When the timer instance is initialized in One Pulse mode, timer
2619   *         channels 1 and channel 2 are reserved and cannot be used for other
2620   *         purpose.
2621   * @param  htim TIM One Pulse handle
2622   * @param  OnePulseMode Select the One pulse mode.
2623   *         This parameter can be one of the following values:
2624   *            @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2625   *            @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2626   * @retval HAL status
2627   */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2628 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2629 {
2630   /* Check the TIM handle allocation */
2631   if (htim == NULL)
2632   {
2633     return HAL_ERROR;
2634   }
2635 
2636   /* Check the parameters */
2637   assert_param(IS_TIM_INSTANCE(htim->Instance));
2638   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2639   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2640   assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2641   assert_param(IS_TIM_PERIOD(htim->Init.Period));
2642   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2643 
2644   if (htim->State == HAL_TIM_STATE_RESET)
2645   {
2646     /* Allocate lock resource and initialize it */
2647     htim->Lock = HAL_UNLOCKED;
2648 
2649 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2650     /* Reset interrupt callbacks to legacy weak callbacks */
2651     TIM_ResetCallback(htim);
2652 
2653     if (htim->OnePulse_MspInitCallback == NULL)
2654     {
2655       htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2656     }
2657     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2658     htim->OnePulse_MspInitCallback(htim);
2659 #else
2660     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2661     HAL_TIM_OnePulse_MspInit(htim);
2662 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2663   }
2664 
2665   /* Set the TIM state */
2666   htim->State = HAL_TIM_STATE_BUSY;
2667 
2668   /* Configure the Time base in the One Pulse Mode */
2669   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2670 
2671   /* Reset the OPM Bit */
2672   htim->Instance->CR1 &= ~TIM_CR1_OPM;
2673 
2674   /* Configure the OPM Mode */
2675   htim->Instance->CR1 |= OnePulseMode;
2676 
2677   /* Initialize the DMA burst operation state */
2678   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2679 
2680   /* Initialize the TIM channels state */
2681   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2682   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2683   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2684   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2685 
2686   /* Initialize the TIM state*/
2687   htim->State = HAL_TIM_STATE_READY;
2688 
2689   return HAL_OK;
2690 }
2691 
2692 /**
2693   * @brief  DeInitializes the TIM One Pulse
2694   * @param  htim TIM One Pulse handle
2695   * @retval HAL status
2696   */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2697 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2698 {
2699   /* Check the parameters */
2700   assert_param(IS_TIM_INSTANCE(htim->Instance));
2701 
2702   htim->State = HAL_TIM_STATE_BUSY;
2703 
2704   /* Disable the TIM Peripheral Clock */
2705   __HAL_TIM_DISABLE(htim);
2706 
2707 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2708   if (htim->OnePulse_MspDeInitCallback == NULL)
2709   {
2710     htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2711   }
2712   /* DeInit the low level hardware */
2713   htim->OnePulse_MspDeInitCallback(htim);
2714 #else
2715   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2716   HAL_TIM_OnePulse_MspDeInit(htim);
2717 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2718 
2719   /* Change the DMA burst operation state */
2720   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2721 
2722   /* Set the TIM channel state */
2723   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2724   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2725   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2726   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2727 
2728   /* Change TIM state */
2729   htim->State = HAL_TIM_STATE_RESET;
2730 
2731   /* Release Lock */
2732   __HAL_UNLOCK(htim);
2733 
2734   return HAL_OK;
2735 }
2736 
2737 /**
2738   * @brief  Initializes the TIM One Pulse MSP.
2739   * @param  htim TIM One Pulse handle
2740   * @retval None
2741   */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2742 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2743 {
2744   /* Prevent unused argument(s) compilation warning */
2745   UNUSED(htim);
2746 
2747   /* NOTE : This function should not be modified, when the callback is needed,
2748             the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2749    */
2750 }
2751 
2752 /**
2753   * @brief  DeInitializes TIM One Pulse MSP.
2754   * @param  htim TIM One Pulse handle
2755   * @retval None
2756   */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2757 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2758 {
2759   /* Prevent unused argument(s) compilation warning */
2760   UNUSED(htim);
2761 
2762   /* NOTE : This function should not be modified, when the callback is needed,
2763             the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2764    */
2765 }
2766 
2767 /**
2768   * @brief  Starts the TIM One Pulse signal generation.
2769   * @note Though OutputChannel parameter is deprecated and ignored by the function
2770   *        it has been kept to avoid HAL_TIM API compatibility break.
2771   * @note The pulse output channel is determined when calling
2772   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2773   * @param  htim TIM One Pulse handle
2774   * @param  OutputChannel See note above
2775   * @retval HAL status
2776   */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2777 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2778 {
2779   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2780   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2781   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2782   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2783 
2784   /* Prevent unused argument(s) compilation warning */
2785   UNUSED(OutputChannel);
2786 
2787   /* Check the TIM channels state */
2788   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2789       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2790       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2791       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2792   {
2793     return HAL_ERROR;
2794   }
2795 
2796   /* Set the TIM channels state */
2797   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2798   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2799   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2800   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2801 
2802   /* Enable the Capture compare and the Input Capture channels
2803     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2804     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2805     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2806     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2807 
2808     No need to enable the counter, it's enabled automatically by hardware
2809     (the counter starts in response to a stimulus and generate a pulse */
2810 
2811   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2812   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2813 
2814   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2815   {
2816     /* Enable the main output */
2817     __HAL_TIM_MOE_ENABLE(htim);
2818   }
2819 
2820   /* Return function status */
2821   return HAL_OK;
2822 }
2823 
2824 /**
2825   * @brief  Stops the TIM One Pulse signal generation.
2826   * @note Though OutputChannel parameter is deprecated and ignored by the function
2827   *        it has been kept to avoid HAL_TIM API compatibility break.
2828   * @note The pulse output channel is determined when calling
2829   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2830   * @param  htim TIM One Pulse handle
2831   * @param  OutputChannel See note above
2832   * @retval HAL status
2833   */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2834 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2835 {
2836   /* Prevent unused argument(s) compilation warning */
2837   UNUSED(OutputChannel);
2838 
2839   /* Disable the Capture compare and the Input Capture channels
2840   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2841   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2842   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2843   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2844 
2845   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2846   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2847 
2848   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2849   {
2850     /* Disable the Main Output */
2851     __HAL_TIM_MOE_DISABLE(htim);
2852   }
2853 
2854   /* Disable the Peripheral */
2855   __HAL_TIM_DISABLE(htim);
2856 
2857   /* Set the TIM channels state */
2858   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2859   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2860   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2861   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2862 
2863   /* Return function status */
2864   return HAL_OK;
2865 }
2866 
2867 /**
2868   * @brief  Starts the TIM One Pulse signal generation in interrupt mode.
2869   * @note Though OutputChannel parameter is deprecated and ignored by the function
2870   *        it has been kept to avoid HAL_TIM API compatibility break.
2871   * @note The pulse output channel is determined when calling
2872   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2873   * @param  htim TIM One Pulse handle
2874   * @param  OutputChannel See note above
2875   * @retval HAL status
2876   */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2877 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2878 {
2879   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2880   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2881   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2882   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2883 
2884   /* Prevent unused argument(s) compilation warning */
2885   UNUSED(OutputChannel);
2886 
2887   /* Check the TIM channels state */
2888   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2889       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2890       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2891       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2892   {
2893     return HAL_ERROR;
2894   }
2895 
2896   /* Set the TIM channels state */
2897   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2898   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2899   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2900   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2901 
2902   /* Enable the Capture compare and the Input Capture channels
2903     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2904     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2905     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2906     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2907 
2908     No need to enable the counter, it's enabled automatically by hardware
2909     (the counter starts in response to a stimulus and generate a pulse */
2910 
2911   /* Enable the TIM Capture/Compare 1 interrupt */
2912   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2913 
2914   /* Enable the TIM Capture/Compare 2 interrupt */
2915   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2916 
2917   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2918   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2919 
2920   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2921   {
2922     /* Enable the main output */
2923     __HAL_TIM_MOE_ENABLE(htim);
2924   }
2925 
2926   /* Return function status */
2927   return HAL_OK;
2928 }
2929 
2930 /**
2931   * @brief  Stops the TIM One Pulse signal generation in interrupt mode.
2932   * @note Though OutputChannel parameter is deprecated and ignored by the function
2933   *        it has been kept to avoid HAL_TIM API compatibility break.
2934   * @note The pulse output channel is determined when calling
2935   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2936   * @param  htim TIM One Pulse handle
2937   * @param  OutputChannel See note above
2938   * @retval HAL status
2939   */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2940 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2941 {
2942   /* Prevent unused argument(s) compilation warning */
2943   UNUSED(OutputChannel);
2944 
2945   /* Disable the TIM Capture/Compare 1 interrupt */
2946   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2947 
2948   /* Disable the TIM Capture/Compare 2 interrupt */
2949   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2950 
2951   /* Disable the Capture compare and the Input Capture channels
2952   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2953   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2954   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2955   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2956   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2957   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2958 
2959   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2960   {
2961     /* Disable the Main Output */
2962     __HAL_TIM_MOE_DISABLE(htim);
2963   }
2964 
2965   /* Disable the Peripheral */
2966   __HAL_TIM_DISABLE(htim);
2967 
2968   /* Set the TIM channels state */
2969   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2970   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2971   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2972   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2973 
2974   /* Return function status */
2975   return HAL_OK;
2976 }
2977 
2978 /**
2979   * @}
2980   */
2981 
2982 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
2983   *  @brief    TIM Encoder functions
2984   *
2985 @verbatim
2986   ==============================================================================
2987                           ##### TIM Encoder functions #####
2988   ==============================================================================
2989   [..]
2990     This section provides functions allowing to:
2991     (+) Initialize and configure the TIM Encoder.
2992     (+) De-initialize the TIM Encoder.
2993     (+) Start the TIM Encoder.
2994     (+) Stop the TIM Encoder.
2995     (+) Start the TIM Encoder and enable interrupt.
2996     (+) Stop the TIM Encoder and disable interrupt.
2997     (+) Start the TIM Encoder and enable DMA transfer.
2998     (+) Stop the TIM Encoder and disable DMA transfer.
2999 
3000 @endverbatim
3001   * @{
3002   */
3003 /**
3004   * @brief  Initializes the TIM Encoder Interface and initialize the associated handle.
3005   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3006   *         requires a timer reset to avoid unexpected direction
3007   *         due to DIR bit readonly in center aligned mode.
3008   *         Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3009   * @note   Encoder mode and External clock mode 2 are not compatible and must not be selected together
3010   *         Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3011   *         using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3012   * @note   When the timer instance is initialized in Encoder mode, timer
3013   *         channels 1 and channel 2 are reserved and cannot be used for other
3014   *         purpose.
3015   * @param  htim TIM Encoder Interface handle
3016   * @param  sConfig TIM Encoder Interface configuration structure
3017   * @retval HAL status
3018   */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,const TIM_Encoder_InitTypeDef * sConfig)3019 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig)
3020 {
3021   uint32_t tmpsmcr;
3022   uint32_t tmpccmr1;
3023   uint32_t tmpccer;
3024 
3025   /* Check the TIM handle allocation */
3026   if (htim == NULL)
3027   {
3028     return HAL_ERROR;
3029   }
3030 
3031   /* Check the parameters */
3032   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3033   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3034   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3035   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3036   assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3037   assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3038   assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3039   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3040   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3041   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3042   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3043   assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3044   assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3045   assert_param(IS_TIM_PERIOD(htim->Init.Period));
3046 
3047   if (htim->State == HAL_TIM_STATE_RESET)
3048   {
3049     /* Allocate lock resource and initialize it */
3050     htim->Lock = HAL_UNLOCKED;
3051 
3052 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3053     /* Reset interrupt callbacks to legacy weak callbacks */
3054     TIM_ResetCallback(htim);
3055 
3056     if (htim->Encoder_MspInitCallback == NULL)
3057     {
3058       htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3059     }
3060     /* Init the low level hardware : GPIO, CLOCK, NVIC */
3061     htim->Encoder_MspInitCallback(htim);
3062 #else
3063     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3064     HAL_TIM_Encoder_MspInit(htim);
3065 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3066   }
3067 
3068   /* Set the TIM state */
3069   htim->State = HAL_TIM_STATE_BUSY;
3070 
3071   /* Reset the SMS and ECE bits */
3072   htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3073 
3074   /* Configure the Time base in the Encoder Mode */
3075   TIM_Base_SetConfig(htim->Instance, &htim->Init);
3076 
3077   /* Get the TIMx SMCR register value */
3078   tmpsmcr = htim->Instance->SMCR;
3079 
3080   /* Get the TIMx CCMR1 register value */
3081   tmpccmr1 = htim->Instance->CCMR1;
3082 
3083   /* Get the TIMx CCER register value */
3084   tmpccer = htim->Instance->CCER;
3085 
3086   /* Set the encoder Mode */
3087   tmpsmcr |= sConfig->EncoderMode;
3088 
3089   /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3090   tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3091   tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3092 
3093   /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3094   tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3095   tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3096   tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3097   tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3098 
3099   /* Set the TI1 and the TI2 Polarities */
3100   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3101   tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3102 
3103   /* Write to TIMx SMCR */
3104   htim->Instance->SMCR = tmpsmcr;
3105 
3106   /* Write to TIMx CCMR1 */
3107   htim->Instance->CCMR1 = tmpccmr1;
3108 
3109   /* Write to TIMx CCER */
3110   htim->Instance->CCER = tmpccer;
3111 
3112   /* Initialize the DMA burst operation state */
3113   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3114 
3115   /* Set the TIM channels state */
3116   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3117   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3118   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3119   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3120 
3121   /* Initialize the TIM state*/
3122   htim->State = HAL_TIM_STATE_READY;
3123 
3124   return HAL_OK;
3125 }
3126 
3127 
3128 /**
3129   * @brief  DeInitializes the TIM Encoder interface
3130   * @param  htim TIM Encoder Interface handle
3131   * @retval HAL status
3132   */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3133 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3134 {
3135   /* Check the parameters */
3136   assert_param(IS_TIM_INSTANCE(htim->Instance));
3137 
3138   htim->State = HAL_TIM_STATE_BUSY;
3139 
3140   /* Disable the TIM Peripheral Clock */
3141   __HAL_TIM_DISABLE(htim);
3142 
3143 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3144   if (htim->Encoder_MspDeInitCallback == NULL)
3145   {
3146     htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3147   }
3148   /* DeInit the low level hardware */
3149   htim->Encoder_MspDeInitCallback(htim);
3150 #else
3151   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3152   HAL_TIM_Encoder_MspDeInit(htim);
3153 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3154 
3155   /* Change the DMA burst operation state */
3156   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3157 
3158   /* Set the TIM channels state */
3159   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3160   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3161   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3162   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3163 
3164   /* Change TIM state */
3165   htim->State = HAL_TIM_STATE_RESET;
3166 
3167   /* Release Lock */
3168   __HAL_UNLOCK(htim);
3169 
3170   return HAL_OK;
3171 }
3172 
3173 /**
3174   * @brief  Initializes the TIM Encoder Interface MSP.
3175   * @param  htim TIM Encoder Interface handle
3176   * @retval None
3177   */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3178 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3179 {
3180   /* Prevent unused argument(s) compilation warning */
3181   UNUSED(htim);
3182 
3183   /* NOTE : This function should not be modified, when the callback is needed,
3184             the HAL_TIM_Encoder_MspInit could be implemented in the user file
3185    */
3186 }
3187 
3188 /**
3189   * @brief  DeInitializes TIM Encoder Interface MSP.
3190   * @param  htim TIM Encoder Interface handle
3191   * @retval None
3192   */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3193 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3194 {
3195   /* Prevent unused argument(s) compilation warning */
3196   UNUSED(htim);
3197 
3198   /* NOTE : This function should not be modified, when the callback is needed,
3199             the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3200    */
3201 }
3202 
3203 /**
3204   * @brief  Starts the TIM Encoder Interface.
3205   * @param  htim TIM Encoder Interface handle
3206   * @param  Channel TIM Channels to be enabled
3207   *          This parameter can be one of the following values:
3208   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3209   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3210   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3211   * @retval HAL status
3212   */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3213 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3214 {
3215   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3216   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3217   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3218   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3219 
3220   /* Check the parameters */
3221   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3222 
3223   /* Set the TIM channel(s) state */
3224   if (Channel == TIM_CHANNEL_1)
3225   {
3226     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3227         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3228     {
3229       return HAL_ERROR;
3230     }
3231     else
3232     {
3233       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3234       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3235     }
3236   }
3237   else if (Channel == TIM_CHANNEL_2)
3238   {
3239     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3240         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3241     {
3242       return HAL_ERROR;
3243     }
3244     else
3245     {
3246       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3247       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3248     }
3249   }
3250   else
3251   {
3252     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3253         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3254         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3255         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3256     {
3257       return HAL_ERROR;
3258     }
3259     else
3260     {
3261       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3262       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3263       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3264       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3265     }
3266   }
3267 
3268   /* Enable the encoder interface channels */
3269   switch (Channel)
3270   {
3271     case TIM_CHANNEL_1:
3272     {
3273       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3274       break;
3275     }
3276 
3277     case TIM_CHANNEL_2:
3278     {
3279       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3280       break;
3281     }
3282 
3283     default :
3284     {
3285       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3286       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3287       break;
3288     }
3289   }
3290   /* Enable the Peripheral */
3291   __HAL_TIM_ENABLE(htim);
3292 
3293   /* Return function status */
3294   return HAL_OK;
3295 }
3296 
3297 /**
3298   * @brief  Stops the TIM Encoder Interface.
3299   * @param  htim TIM Encoder Interface handle
3300   * @param  Channel TIM Channels to be disabled
3301   *          This parameter can be one of the following values:
3302   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3303   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3304   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3305   * @retval HAL status
3306   */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3307 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3308 {
3309   /* Check the parameters */
3310   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3311 
3312   /* Disable the Input Capture channels 1 and 2
3313     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3314   switch (Channel)
3315   {
3316     case TIM_CHANNEL_1:
3317     {
3318       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3319       break;
3320     }
3321 
3322     case TIM_CHANNEL_2:
3323     {
3324       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3325       break;
3326     }
3327 
3328     default :
3329     {
3330       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3331       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3332       break;
3333     }
3334   }
3335 
3336   /* Disable the Peripheral */
3337   __HAL_TIM_DISABLE(htim);
3338 
3339   /* Set the TIM channel(s) state */
3340   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3341   {
3342     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3343     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3344   }
3345   else
3346   {
3347     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3348     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3349     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3350     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3351   }
3352 
3353   /* Return function status */
3354   return HAL_OK;
3355 }
3356 
3357 /**
3358   * @brief  Starts the TIM Encoder Interface in interrupt mode.
3359   * @param  htim TIM Encoder Interface handle
3360   * @param  Channel TIM Channels to be enabled
3361   *          This parameter can be one of the following values:
3362   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3363   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3364   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3365   * @retval HAL status
3366   */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3367 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3368 {
3369   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3370   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3371   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3372   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3373 
3374   /* Check the parameters */
3375   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3376 
3377   /* Set the TIM channel(s) state */
3378   if (Channel == TIM_CHANNEL_1)
3379   {
3380     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3381         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3382     {
3383       return HAL_ERROR;
3384     }
3385     else
3386     {
3387       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3388       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3389     }
3390   }
3391   else if (Channel == TIM_CHANNEL_2)
3392   {
3393     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3394         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3395     {
3396       return HAL_ERROR;
3397     }
3398     else
3399     {
3400       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3401       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3402     }
3403   }
3404   else
3405   {
3406     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3407         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3408         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3409         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3410     {
3411       return HAL_ERROR;
3412     }
3413     else
3414     {
3415       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3416       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3417       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3418       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3419     }
3420   }
3421 
3422   /* Enable the encoder interface channels */
3423   /* Enable the capture compare Interrupts 1 and/or 2 */
3424   switch (Channel)
3425   {
3426     case TIM_CHANNEL_1:
3427     {
3428       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3429       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3430       break;
3431     }
3432 
3433     case TIM_CHANNEL_2:
3434     {
3435       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3436       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3437       break;
3438     }
3439 
3440     default :
3441     {
3442       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3443       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3444       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3445       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3446       break;
3447     }
3448   }
3449 
3450   /* Enable the Peripheral */
3451   __HAL_TIM_ENABLE(htim);
3452 
3453   /* Return function status */
3454   return HAL_OK;
3455 }
3456 
3457 /**
3458   * @brief  Stops the TIM Encoder Interface in interrupt mode.
3459   * @param  htim TIM Encoder Interface handle
3460   * @param  Channel TIM Channels to be disabled
3461   *          This parameter can be one of the following values:
3462   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3463   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3464   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3465   * @retval HAL status
3466   */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3467 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3468 {
3469   /* Check the parameters */
3470   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3471 
3472   /* Disable the Input Capture channels 1 and 2
3473     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3474   if (Channel == TIM_CHANNEL_1)
3475   {
3476     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3477 
3478     /* Disable the capture compare Interrupts 1 */
3479     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3480   }
3481   else if (Channel == TIM_CHANNEL_2)
3482   {
3483     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3484 
3485     /* Disable the capture compare Interrupts 2 */
3486     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3487   }
3488   else
3489   {
3490     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3491     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3492 
3493     /* Disable the capture compare Interrupts 1 and 2 */
3494     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3495     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3496   }
3497 
3498   /* Disable the Peripheral */
3499   __HAL_TIM_DISABLE(htim);
3500 
3501   /* Set the TIM channel(s) state */
3502   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3503   {
3504     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3505     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3506   }
3507   else
3508   {
3509     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3510     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3511     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3512     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3513   }
3514 
3515   /* Return function status */
3516   return HAL_OK;
3517 }
3518 
3519 /**
3520   * @brief  Starts the TIM Encoder Interface in DMA mode.
3521   * @param  htim TIM Encoder Interface handle
3522   * @param  Channel TIM Channels to be enabled
3523   *          This parameter can be one of the following values:
3524   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3525   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3526   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3527   * @param  pData1 The destination Buffer address for IC1.
3528   * @param  pData2 The destination Buffer address for IC2.
3529   * @param  Length The length of data to be transferred from TIM peripheral to memory.
3530   * @retval HAL status
3531   */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3532 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3533                                             uint32_t *pData2, uint16_t Length)
3534 {
3535   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3536   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3537   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3538   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3539 
3540   /* Check the parameters */
3541   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3542 
3543   /* Set the TIM channel(s) state */
3544   if (Channel == TIM_CHANNEL_1)
3545   {
3546     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3547         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3548     {
3549       return HAL_BUSY;
3550     }
3551     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3552              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3553     {
3554       if ((pData1 == NULL) || (Length == 0U))
3555       {
3556         return HAL_ERROR;
3557       }
3558       else
3559       {
3560         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3561         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3562       }
3563     }
3564     else
3565     {
3566       return HAL_ERROR;
3567     }
3568   }
3569   else if (Channel == TIM_CHANNEL_2)
3570   {
3571     if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3572         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3573     {
3574       return HAL_BUSY;
3575     }
3576     else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3577              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3578     {
3579       if ((pData2 == NULL) || (Length == 0U))
3580       {
3581         return HAL_ERROR;
3582       }
3583       else
3584       {
3585         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3586         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3587       }
3588     }
3589     else
3590     {
3591       return HAL_ERROR;
3592     }
3593   }
3594   else
3595   {
3596     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3597         || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3598         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3599         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3600     {
3601       return HAL_BUSY;
3602     }
3603     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3604              && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3605              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3606              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3607     {
3608       if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3609       {
3610         return HAL_ERROR;
3611       }
3612       else
3613       {
3614         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3615         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3616         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3617         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3618       }
3619     }
3620     else
3621     {
3622       return HAL_ERROR;
3623     }
3624   }
3625 
3626   switch (Channel)
3627   {
3628     case TIM_CHANNEL_1:
3629     {
3630       /* Set the DMA capture callbacks */
3631       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3632       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3633 
3634       /* Set the DMA error callback */
3635       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3636 
3637       /* Enable the DMA channel */
3638       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3639                            Length) != HAL_OK)
3640       {
3641         /* Return error status */
3642         return HAL_ERROR;
3643       }
3644       /* Enable the TIM Input Capture DMA request */
3645       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3646 
3647       /* Enable the Capture compare channel */
3648       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3649 
3650       /* Enable the Peripheral */
3651       __HAL_TIM_ENABLE(htim);
3652 
3653       break;
3654     }
3655 
3656     case TIM_CHANNEL_2:
3657     {
3658       /* Set the DMA capture callbacks */
3659       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3660       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3661 
3662       /* Set the DMA error callback */
3663       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3664       /* Enable the DMA channel */
3665       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3666                            Length) != HAL_OK)
3667       {
3668         /* Return error status */
3669         return HAL_ERROR;
3670       }
3671       /* Enable the TIM Input Capture  DMA request */
3672       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3673 
3674       /* Enable the Capture compare channel */
3675       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3676 
3677       /* Enable the Peripheral */
3678       __HAL_TIM_ENABLE(htim);
3679 
3680       break;
3681     }
3682 
3683     default:
3684     {
3685       /* Set the DMA capture callbacks */
3686       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3687       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3688 
3689       /* Set the DMA error callback */
3690       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3691 
3692       /* Enable the DMA channel */
3693       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3694                            Length) != HAL_OK)
3695       {
3696         /* Return error status */
3697         return HAL_ERROR;
3698       }
3699 
3700       /* Set the DMA capture callbacks */
3701       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3702       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3703 
3704       /* Set the DMA error callback */
3705       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3706 
3707       /* Enable the DMA channel */
3708       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3709                            Length) != HAL_OK)
3710       {
3711         /* Return error status */
3712         return HAL_ERROR;
3713       }
3714 
3715       /* Enable the TIM Input Capture  DMA request */
3716       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3717       /* Enable the TIM Input Capture  DMA request */
3718       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3719 
3720       /* Enable the Capture compare channel */
3721       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3722       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3723 
3724       /* Enable the Peripheral */
3725       __HAL_TIM_ENABLE(htim);
3726 
3727       break;
3728     }
3729   }
3730 
3731   /* Return function status */
3732   return HAL_OK;
3733 }
3734 
3735 /**
3736   * @brief  Stops the TIM Encoder Interface in DMA mode.
3737   * @param  htim TIM Encoder Interface handle
3738   * @param  Channel TIM Channels to be enabled
3739   *          This parameter can be one of the following values:
3740   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3741   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3742   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3743   * @retval HAL status
3744   */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3745 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3746 {
3747   /* Check the parameters */
3748   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3749 
3750   /* Disable the Input Capture channels 1 and 2
3751     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3752   if (Channel == TIM_CHANNEL_1)
3753   {
3754     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3755 
3756     /* Disable the capture compare DMA Request 1 */
3757     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3758     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3759   }
3760   else if (Channel == TIM_CHANNEL_2)
3761   {
3762     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3763 
3764     /* Disable the capture compare DMA Request 2 */
3765     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3766     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3767   }
3768   else
3769   {
3770     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3771     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3772 
3773     /* Disable the capture compare DMA Request 1 and 2 */
3774     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3775     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3776     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3777     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3778   }
3779 
3780   /* Disable the Peripheral */
3781   __HAL_TIM_DISABLE(htim);
3782 
3783   /* Set the TIM channel(s) state */
3784   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3785   {
3786     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3787     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3788   }
3789   else
3790   {
3791     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3792     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3793     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3794     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3795   }
3796 
3797   /* Return function status */
3798   return HAL_OK;
3799 }
3800 
3801 /**
3802   * @}
3803   */
3804 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3805   *  @brief    TIM IRQ handler management
3806   *
3807 @verbatim
3808   ==============================================================================
3809                         ##### IRQ handler management #####
3810   ==============================================================================
3811   [..]
3812     This section provides Timer IRQ handler function.
3813 
3814 @endverbatim
3815   * @{
3816   */
3817 /**
3818   * @brief  This function handles TIM interrupts requests.
3819   * @param  htim TIM  handle
3820   * @retval None
3821   */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3822 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3823 {
3824   uint32_t itsource = htim->Instance->DIER;
3825   uint32_t itflag   = htim->Instance->SR;
3826 
3827   /* Capture compare 1 event */
3828   if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1))
3829   {
3830     if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1))
3831     {
3832       {
3833         __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC1);
3834         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3835 
3836         /* Input capture event */
3837         if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3838         {
3839 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3840           htim->IC_CaptureCallback(htim);
3841 #else
3842           HAL_TIM_IC_CaptureCallback(htim);
3843 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3844         }
3845         /* Output compare event */
3846         else
3847         {
3848 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3849           htim->OC_DelayElapsedCallback(htim);
3850           htim->PWM_PulseFinishedCallback(htim);
3851 #else
3852           HAL_TIM_OC_DelayElapsedCallback(htim);
3853           HAL_TIM_PWM_PulseFinishedCallback(htim);
3854 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3855         }
3856         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3857       }
3858     }
3859   }
3860   /* Capture compare 2 event */
3861   if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2))
3862   {
3863     if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2))
3864     {
3865       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC2);
3866       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3867       /* Input capture event */
3868       if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3869       {
3870 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3871         htim->IC_CaptureCallback(htim);
3872 #else
3873         HAL_TIM_IC_CaptureCallback(htim);
3874 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3875       }
3876       /* Output compare event */
3877       else
3878       {
3879 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3880         htim->OC_DelayElapsedCallback(htim);
3881         htim->PWM_PulseFinishedCallback(htim);
3882 #else
3883         HAL_TIM_OC_DelayElapsedCallback(htim);
3884         HAL_TIM_PWM_PulseFinishedCallback(htim);
3885 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3886       }
3887       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3888     }
3889   }
3890   /* Capture compare 3 event */
3891   if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3))
3892   {
3893     if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3))
3894     {
3895       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC3);
3896       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3897       /* Input capture event */
3898       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3899       {
3900 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3901         htim->IC_CaptureCallback(htim);
3902 #else
3903         HAL_TIM_IC_CaptureCallback(htim);
3904 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3905       }
3906       /* Output compare event */
3907       else
3908       {
3909 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3910         htim->OC_DelayElapsedCallback(htim);
3911         htim->PWM_PulseFinishedCallback(htim);
3912 #else
3913         HAL_TIM_OC_DelayElapsedCallback(htim);
3914         HAL_TIM_PWM_PulseFinishedCallback(htim);
3915 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3916       }
3917       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3918     }
3919   }
3920   /* Capture compare 4 event */
3921   if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4))
3922   {
3923     if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4))
3924     {
3925       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC4);
3926       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3927       /* Input capture event */
3928       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3929       {
3930 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3931         htim->IC_CaptureCallback(htim);
3932 #else
3933         HAL_TIM_IC_CaptureCallback(htim);
3934 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3935       }
3936       /* Output compare event */
3937       else
3938       {
3939 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3940         htim->OC_DelayElapsedCallback(htim);
3941         htim->PWM_PulseFinishedCallback(htim);
3942 #else
3943         HAL_TIM_OC_DelayElapsedCallback(htim);
3944         HAL_TIM_PWM_PulseFinishedCallback(htim);
3945 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3946       }
3947       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3948     }
3949   }
3950   /* TIM Update event */
3951   if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE))
3952   {
3953     if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE))
3954     {
3955       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_UPDATE);
3956 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3957       htim->PeriodElapsedCallback(htim);
3958 #else
3959       HAL_TIM_PeriodElapsedCallback(htim);
3960 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3961     }
3962   }
3963   /* TIM Break input event */
3964   if ((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK))
3965   {
3966     if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
3967     {
3968       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK);
3969 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3970       htim->BreakCallback(htim);
3971 #else
3972       HAL_TIMEx_BreakCallback(htim);
3973 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3974     }
3975   }
3976   /* TIM Trigger detection event */
3977   if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER))
3978   {
3979     if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER))
3980     {
3981       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_TRIGGER);
3982 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3983       htim->TriggerCallback(htim);
3984 #else
3985       HAL_TIM_TriggerCallback(htim);
3986 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3987     }
3988   }
3989   /* TIM commutation event */
3990   if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM))
3991   {
3992     if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM))
3993     {
3994       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_COM);
3995 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3996       htim->CommutationCallback(htim);
3997 #else
3998       HAL_TIMEx_CommutCallback(htim);
3999 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4000     }
4001   }
4002 }
4003 
4004 /**
4005   * @}
4006   */
4007 
4008 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4009   *  @brief    TIM Peripheral Control functions
4010   *
4011 @verbatim
4012   ==============================================================================
4013                    ##### Peripheral Control functions #####
4014   ==============================================================================
4015  [..]
4016    This section provides functions allowing to:
4017       (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4018       (+) Configure External Clock source.
4019       (+) Configure Complementary channels, break features and dead time.
4020       (+) Configure Master and the Slave synchronization.
4021       (+) Configure the DMA Burst Mode.
4022 
4023 @endverbatim
4024   * @{
4025   */
4026 
4027 /**
4028   * @brief  Initializes the TIM Output Compare Channels according to the specified
4029   *         parameters in the TIM_OC_InitTypeDef.
4030   * @param  htim TIM Output Compare handle
4031   * @param  sConfig TIM Output Compare configuration structure
4032   * @param  Channel TIM Channels to configure
4033   *          This parameter can be one of the following values:
4034   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4035   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4036   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4037   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4038   * @retval HAL status
4039   */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4040 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4041                                            const TIM_OC_InitTypeDef *sConfig,
4042                                            uint32_t Channel)
4043 {
4044   HAL_StatusTypeDef status = HAL_OK;
4045 
4046   /* Check the parameters */
4047   assert_param(IS_TIM_CHANNELS(Channel));
4048   assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4049   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4050 
4051   /* Process Locked */
4052   __HAL_LOCK(htim);
4053 
4054   switch (Channel)
4055   {
4056     case TIM_CHANNEL_1:
4057     {
4058       /* Check the parameters */
4059       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4060 
4061       /* Configure the TIM Channel 1 in Output Compare */
4062       TIM_OC1_SetConfig(htim->Instance, sConfig);
4063       break;
4064     }
4065 
4066     case TIM_CHANNEL_2:
4067     {
4068       /* Check the parameters */
4069       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4070 
4071       /* Configure the TIM Channel 2 in Output Compare */
4072       TIM_OC2_SetConfig(htim->Instance, sConfig);
4073       break;
4074     }
4075 
4076     case TIM_CHANNEL_3:
4077     {
4078       /* Check the parameters */
4079       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4080 
4081       /* Configure the TIM Channel 3 in Output Compare */
4082       TIM_OC3_SetConfig(htim->Instance, sConfig);
4083       break;
4084     }
4085 
4086     case TIM_CHANNEL_4:
4087     {
4088       /* Check the parameters */
4089       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4090 
4091       /* Configure the TIM Channel 4 in Output Compare */
4092       TIM_OC4_SetConfig(htim->Instance, sConfig);
4093       break;
4094     }
4095 
4096     default:
4097       status = HAL_ERROR;
4098       break;
4099   }
4100 
4101   __HAL_UNLOCK(htim);
4102 
4103   return status;
4104 }
4105 
4106 /**
4107   * @brief  Initializes the TIM Input Capture Channels according to the specified
4108   *         parameters in the TIM_IC_InitTypeDef.
4109   * @param  htim TIM IC handle
4110   * @param  sConfig TIM Input Capture configuration structure
4111   * @param  Channel TIM Channel to configure
4112   *          This parameter can be one of the following values:
4113   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4114   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4115   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4116   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4117   * @retval HAL status
4118   */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4119 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4120 {
4121   HAL_StatusTypeDef status = HAL_OK;
4122 
4123   /* Check the parameters */
4124   assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4125   assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4126   assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4127   assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4128   assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4129 
4130   /* Process Locked */
4131   __HAL_LOCK(htim);
4132 
4133   if (Channel == TIM_CHANNEL_1)
4134   {
4135     /* TI1 Configuration */
4136     TIM_TI1_SetConfig(htim->Instance,
4137                       sConfig->ICPolarity,
4138                       sConfig->ICSelection,
4139                       sConfig->ICFilter);
4140 
4141     /* Reset the IC1PSC Bits */
4142     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4143 
4144     /* Set the IC1PSC value */
4145     htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4146   }
4147   else if (Channel == TIM_CHANNEL_2)
4148   {
4149     /* TI2 Configuration */
4150     assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4151 
4152     TIM_TI2_SetConfig(htim->Instance,
4153                       sConfig->ICPolarity,
4154                       sConfig->ICSelection,
4155                       sConfig->ICFilter);
4156 
4157     /* Reset the IC2PSC Bits */
4158     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4159 
4160     /* Set the IC2PSC value */
4161     htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4162   }
4163   else if (Channel == TIM_CHANNEL_3)
4164   {
4165     /* TI3 Configuration */
4166     assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4167 
4168     TIM_TI3_SetConfig(htim->Instance,
4169                       sConfig->ICPolarity,
4170                       sConfig->ICSelection,
4171                       sConfig->ICFilter);
4172 
4173     /* Reset the IC3PSC Bits */
4174     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4175 
4176     /* Set the IC3PSC value */
4177     htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4178   }
4179   else if (Channel == TIM_CHANNEL_4)
4180   {
4181     /* TI4 Configuration */
4182     assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4183 
4184     TIM_TI4_SetConfig(htim->Instance,
4185                       sConfig->ICPolarity,
4186                       sConfig->ICSelection,
4187                       sConfig->ICFilter);
4188 
4189     /* Reset the IC4PSC Bits */
4190     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4191 
4192     /* Set the IC4PSC value */
4193     htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4194   }
4195   else
4196   {
4197     status = HAL_ERROR;
4198   }
4199 
4200   __HAL_UNLOCK(htim);
4201 
4202   return status;
4203 }
4204 
4205 /**
4206   * @brief  Initializes the TIM PWM  channels according to the specified
4207   *         parameters in the TIM_OC_InitTypeDef.
4208   * @param  htim TIM PWM handle
4209   * @param  sConfig TIM PWM configuration structure
4210   * @param  Channel TIM Channels to be configured
4211   *          This parameter can be one of the following values:
4212   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4213   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4214   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4215   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4216   * @retval HAL status
4217   */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4218 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4219                                             const TIM_OC_InitTypeDef *sConfig,
4220                                             uint32_t Channel)
4221 {
4222   HAL_StatusTypeDef status = HAL_OK;
4223 
4224   /* Check the parameters */
4225   assert_param(IS_TIM_CHANNELS(Channel));
4226   assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4227   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4228   assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4229 
4230   /* Process Locked */
4231   __HAL_LOCK(htim);
4232 
4233   switch (Channel)
4234   {
4235     case TIM_CHANNEL_1:
4236     {
4237       /* Check the parameters */
4238       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4239 
4240       /* Configure the Channel 1 in PWM mode */
4241       TIM_OC1_SetConfig(htim->Instance, sConfig);
4242 
4243       /* Set the Preload enable bit for channel1 */
4244       htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4245 
4246       /* Configure the Output Fast mode */
4247       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4248       htim->Instance->CCMR1 |= sConfig->OCFastMode;
4249       break;
4250     }
4251 
4252     case TIM_CHANNEL_2:
4253     {
4254       /* Check the parameters */
4255       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4256 
4257       /* Configure the Channel 2 in PWM mode */
4258       TIM_OC2_SetConfig(htim->Instance, sConfig);
4259 
4260       /* Set the Preload enable bit for channel2 */
4261       htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4262 
4263       /* Configure the Output Fast mode */
4264       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4265       htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4266       break;
4267     }
4268 
4269     case TIM_CHANNEL_3:
4270     {
4271       /* Check the parameters */
4272       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4273 
4274       /* Configure the Channel 3 in PWM mode */
4275       TIM_OC3_SetConfig(htim->Instance, sConfig);
4276 
4277       /* Set the Preload enable bit for channel3 */
4278       htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4279 
4280       /* Configure the Output Fast mode */
4281       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4282       htim->Instance->CCMR2 |= sConfig->OCFastMode;
4283       break;
4284     }
4285 
4286     case TIM_CHANNEL_4:
4287     {
4288       /* Check the parameters */
4289       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4290 
4291       /* Configure the Channel 4 in PWM mode */
4292       TIM_OC4_SetConfig(htim->Instance, sConfig);
4293 
4294       /* Set the Preload enable bit for channel4 */
4295       htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4296 
4297       /* Configure the Output Fast mode */
4298       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4299       htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4300       break;
4301     }
4302 
4303     default:
4304       status = HAL_ERROR;
4305       break;
4306   }
4307 
4308   __HAL_UNLOCK(htim);
4309 
4310   return status;
4311 }
4312 
4313 /**
4314   * @brief  Initializes the TIM One Pulse Channels according to the specified
4315   *         parameters in the TIM_OnePulse_InitTypeDef.
4316   * @param  htim TIM One Pulse handle
4317   * @param  sConfig TIM One Pulse configuration structure
4318   * @param  OutputChannel TIM output channel to configure
4319   *          This parameter can be one of the following values:
4320   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4321   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4322   * @param  InputChannel TIM input Channel to configure
4323   *          This parameter can be one of the following values:
4324   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4325   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4326   * @note  To output a waveform with a minimum delay user can enable the fast
4327   *        mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4328   *        output is forced in response to the edge detection on TIx input,
4329   *        without taking in account the comparison.
4330   * @retval HAL status
4331   */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4332 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim,  TIM_OnePulse_InitTypeDef *sConfig,
4333                                                  uint32_t OutputChannel,  uint32_t InputChannel)
4334 {
4335   HAL_StatusTypeDef status = HAL_OK;
4336   TIM_OC_InitTypeDef temp1;
4337 
4338   /* Check the parameters */
4339   assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4340   assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4341 
4342   if (OutputChannel != InputChannel)
4343   {
4344     /* Process Locked */
4345     __HAL_LOCK(htim);
4346 
4347     htim->State = HAL_TIM_STATE_BUSY;
4348 
4349     /* Extract the Output compare configuration from sConfig structure */
4350     temp1.OCMode = sConfig->OCMode;
4351     temp1.Pulse = sConfig->Pulse;
4352     temp1.OCPolarity = sConfig->OCPolarity;
4353     temp1.OCNPolarity = sConfig->OCNPolarity;
4354     temp1.OCIdleState = sConfig->OCIdleState;
4355     temp1.OCNIdleState = sConfig->OCNIdleState;
4356 
4357     switch (OutputChannel)
4358     {
4359       case TIM_CHANNEL_1:
4360       {
4361         assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4362 
4363         TIM_OC1_SetConfig(htim->Instance, &temp1);
4364         break;
4365       }
4366 
4367       case TIM_CHANNEL_2:
4368       {
4369         assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4370 
4371         TIM_OC2_SetConfig(htim->Instance, &temp1);
4372         break;
4373       }
4374 
4375       default:
4376         status = HAL_ERROR;
4377         break;
4378     }
4379 
4380     if (status == HAL_OK)
4381     {
4382       switch (InputChannel)
4383       {
4384         case TIM_CHANNEL_1:
4385         {
4386           assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4387 
4388           TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4389                             sConfig->ICSelection, sConfig->ICFilter);
4390 
4391           /* Reset the IC1PSC Bits */
4392           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4393 
4394           /* Select the Trigger source */
4395           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4396           htim->Instance->SMCR |= TIM_TS_TI1FP1;
4397 
4398           /* Select the Slave Mode */
4399           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4400           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4401           break;
4402         }
4403 
4404         case TIM_CHANNEL_2:
4405         {
4406           assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4407 
4408           TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4409                             sConfig->ICSelection, sConfig->ICFilter);
4410 
4411           /* Reset the IC2PSC Bits */
4412           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4413 
4414           /* Select the Trigger source */
4415           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4416           htim->Instance->SMCR |= TIM_TS_TI2FP2;
4417 
4418           /* Select the Slave Mode */
4419           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4420           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4421           break;
4422         }
4423 
4424         default:
4425           status = HAL_ERROR;
4426           break;
4427       }
4428     }
4429 
4430     htim->State = HAL_TIM_STATE_READY;
4431 
4432     __HAL_UNLOCK(htim);
4433 
4434     return status;
4435   }
4436   else
4437   {
4438     return HAL_ERROR;
4439   }
4440 }
4441 
4442 /**
4443   * @brief  Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4444   * @param  htim TIM handle
4445   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data write
4446   *         This parameter can be one of the following values:
4447   *            @arg TIM_DMABASE_CR1
4448   *            @arg TIM_DMABASE_CR2
4449   *            @arg TIM_DMABASE_SMCR
4450   *            @arg TIM_DMABASE_DIER
4451   *            @arg TIM_DMABASE_SR
4452   *            @arg TIM_DMABASE_EGR
4453   *            @arg TIM_DMABASE_CCMR1
4454   *            @arg TIM_DMABASE_CCMR2
4455   *            @arg TIM_DMABASE_CCER
4456   *            @arg TIM_DMABASE_CNT
4457   *            @arg TIM_DMABASE_PSC
4458   *            @arg TIM_DMABASE_ARR
4459   *            @arg TIM_DMABASE_RCR
4460   *            @arg TIM_DMABASE_CCR1
4461   *            @arg TIM_DMABASE_CCR2
4462   *            @arg TIM_DMABASE_CCR3
4463   *            @arg TIM_DMABASE_CCR4
4464   *            @arg TIM_DMABASE_BDTR
4465   * @param  BurstRequestSrc TIM DMA Request sources
4466   *         This parameter can be one of the following values:
4467   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4468   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4469   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4470   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4471   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4472   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4473   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4474   * @param  BurstBuffer The Buffer address.
4475   * @param  BurstLength DMA Burst length. This parameter can be one value
4476   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4477   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4478   * @retval HAL status
4479   */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4480 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4481                                               uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4482                                               uint32_t  BurstLength)
4483 {
4484   HAL_StatusTypeDef status;
4485 
4486   status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4487                                             ((BurstLength) >> 8U) + 1U);
4488 
4489 
4490 
4491   return status;
4492 }
4493 
4494 /**
4495   * @brief  Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4496   * @param  htim TIM handle
4497   * @param  BurstBaseAddress TIM Base address from where the DMA will start the Data write
4498   *         This parameter can be one of the following values:
4499   *            @arg TIM_DMABASE_CR1
4500   *            @arg TIM_DMABASE_CR2
4501   *            @arg TIM_DMABASE_SMCR
4502   *            @arg TIM_DMABASE_DIER
4503   *            @arg TIM_DMABASE_SR
4504   *            @arg TIM_DMABASE_EGR
4505   *            @arg TIM_DMABASE_CCMR1
4506   *            @arg TIM_DMABASE_CCMR2
4507   *            @arg TIM_DMABASE_CCER
4508   *            @arg TIM_DMABASE_CNT
4509   *            @arg TIM_DMABASE_PSC
4510   *            @arg TIM_DMABASE_ARR
4511   *            @arg TIM_DMABASE_RCR
4512   *            @arg TIM_DMABASE_CCR1
4513   *            @arg TIM_DMABASE_CCR2
4514   *            @arg TIM_DMABASE_CCR3
4515   *            @arg TIM_DMABASE_CCR4
4516   *            @arg TIM_DMABASE_BDTR
4517   * @param  BurstRequestSrc TIM DMA Request sources
4518   *         This parameter can be one of the following values:
4519   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4520   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4521   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4522   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4523   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4524   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4525   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4526   * @param  BurstBuffer The Buffer address.
4527   * @param  BurstLength DMA Burst length. This parameter can be one value
4528   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4529   * @param  DataLength Data length. This parameter can be one value
4530   *         between 1 and 0xFFFF.
4531   * @retval HAL status
4532   */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4533 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4534                                                    uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4535                                                    uint32_t  BurstLength,  uint32_t  DataLength)
4536 {
4537   HAL_StatusTypeDef status = HAL_OK;
4538 
4539   /* Check the parameters */
4540   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4541   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4542   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4543   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4544   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4545 
4546   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4547   {
4548     return HAL_BUSY;
4549   }
4550   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4551   {
4552     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4553     {
4554       return HAL_ERROR;
4555     }
4556     else
4557     {
4558       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4559     }
4560   }
4561   else
4562   {
4563     /* nothing to do */
4564   }
4565 
4566   switch (BurstRequestSrc)
4567   {
4568     case TIM_DMA_UPDATE:
4569     {
4570       /* Set the DMA Period elapsed callbacks */
4571       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4572       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4573 
4574       /* Set the DMA error callback */
4575       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4576 
4577       /* Enable the DMA channel */
4578       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4579                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4580       {
4581         /* Return error status */
4582         return HAL_ERROR;
4583       }
4584       break;
4585     }
4586     case TIM_DMA_CC1:
4587     {
4588       /* Set the DMA compare callbacks */
4589       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4590       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4591 
4592       /* Set the DMA error callback */
4593       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4594 
4595       /* Enable the DMA channel */
4596       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4597                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4598       {
4599         /* Return error status */
4600         return HAL_ERROR;
4601       }
4602       break;
4603     }
4604     case TIM_DMA_CC2:
4605     {
4606       /* Set the DMA compare callbacks */
4607       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4608       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4609 
4610       /* Set the DMA error callback */
4611       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4612 
4613       /* Enable the DMA channel */
4614       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4615                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4616       {
4617         /* Return error status */
4618         return HAL_ERROR;
4619       }
4620       break;
4621     }
4622     case TIM_DMA_CC3:
4623     {
4624       /* Set the DMA compare callbacks */
4625       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4626       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4627 
4628       /* Set the DMA error callback */
4629       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4630 
4631       /* Enable the DMA channel */
4632       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4633                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4634       {
4635         /* Return error status */
4636         return HAL_ERROR;
4637       }
4638       break;
4639     }
4640     case TIM_DMA_CC4:
4641     {
4642       /* Set the DMA compare callbacks */
4643       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4644       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4645 
4646       /* Set the DMA error callback */
4647       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4648 
4649       /* Enable the DMA channel */
4650       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4651                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4652       {
4653         /* Return error status */
4654         return HAL_ERROR;
4655       }
4656       break;
4657     }
4658     case TIM_DMA_COM:
4659     {
4660       /* Set the DMA commutation callbacks */
4661       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4662       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4663 
4664       /* Set the DMA error callback */
4665       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4666 
4667       /* Enable the DMA channel */
4668       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4669                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4670       {
4671         /* Return error status */
4672         return HAL_ERROR;
4673       }
4674       break;
4675     }
4676     case TIM_DMA_TRIGGER:
4677     {
4678       /* Set the DMA trigger callbacks */
4679       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4680       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4681 
4682       /* Set the DMA error callback */
4683       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4684 
4685       /* Enable the DMA channel */
4686       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4687                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4688       {
4689         /* Return error status */
4690         return HAL_ERROR;
4691       }
4692       break;
4693     }
4694     default:
4695       status = HAL_ERROR;
4696       break;
4697   }
4698 
4699   if (status == HAL_OK)
4700   {
4701     /* Configure the DMA Burst Mode */
4702     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4703     /* Enable the TIM DMA Request */
4704     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4705   }
4706 
4707   /* Return function status */
4708   return status;
4709 }
4710 
4711 /**
4712   * @brief  Stops the TIM DMA Burst mode
4713   * @param  htim TIM handle
4714   * @param  BurstRequestSrc TIM DMA Request sources to disable
4715   * @retval HAL status
4716   */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4717 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4718 {
4719   HAL_StatusTypeDef status = HAL_OK;
4720 
4721   /* Check the parameters */
4722   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4723 
4724   /* Abort the DMA transfer (at least disable the DMA channel) */
4725   switch (BurstRequestSrc)
4726   {
4727     case TIM_DMA_UPDATE:
4728     {
4729       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4730       break;
4731     }
4732     case TIM_DMA_CC1:
4733     {
4734       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4735       break;
4736     }
4737     case TIM_DMA_CC2:
4738     {
4739       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4740       break;
4741     }
4742     case TIM_DMA_CC3:
4743     {
4744       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4745       break;
4746     }
4747     case TIM_DMA_CC4:
4748     {
4749       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4750       break;
4751     }
4752     case TIM_DMA_COM:
4753     {
4754       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4755       break;
4756     }
4757     case TIM_DMA_TRIGGER:
4758     {
4759       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4760       break;
4761     }
4762     default:
4763       status = HAL_ERROR;
4764       break;
4765   }
4766 
4767   if (status == HAL_OK)
4768   {
4769     /* Disable the TIM Update DMA request */
4770     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4771 
4772     /* Change the DMA burst operation state */
4773     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4774   }
4775 
4776   /* Return function status */
4777   return status;
4778 }
4779 
4780 /**
4781   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4782   * @param  htim TIM handle
4783   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4784   *         This parameter can be one of the following values:
4785   *            @arg TIM_DMABASE_CR1
4786   *            @arg TIM_DMABASE_CR2
4787   *            @arg TIM_DMABASE_SMCR
4788   *            @arg TIM_DMABASE_DIER
4789   *            @arg TIM_DMABASE_SR
4790   *            @arg TIM_DMABASE_EGR
4791   *            @arg TIM_DMABASE_CCMR1
4792   *            @arg TIM_DMABASE_CCMR2
4793   *            @arg TIM_DMABASE_CCER
4794   *            @arg TIM_DMABASE_CNT
4795   *            @arg TIM_DMABASE_PSC
4796   *            @arg TIM_DMABASE_ARR
4797   *            @arg TIM_DMABASE_RCR
4798   *            @arg TIM_DMABASE_CCR1
4799   *            @arg TIM_DMABASE_CCR2
4800   *            @arg TIM_DMABASE_CCR3
4801   *            @arg TIM_DMABASE_CCR4
4802   *            @arg TIM_DMABASE_BDTR
4803   * @param  BurstRequestSrc TIM DMA Request sources
4804   *         This parameter can be one of the following values:
4805   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4806   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4807   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4808   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4809   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4810   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4811   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4812   * @param  BurstBuffer The Buffer address.
4813   * @param  BurstLength DMA Burst length. This parameter can be one value
4814   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4815   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4816   * @retval HAL status
4817   */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4818 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4819                                              uint32_t BurstRequestSrc, uint32_t  *BurstBuffer, uint32_t  BurstLength)
4820 {
4821   HAL_StatusTypeDef status;
4822 
4823   status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4824                                            ((BurstLength) >> 8U) + 1U);
4825 
4826 
4827   return status;
4828 }
4829 
4830 /**
4831   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4832   * @param  htim TIM handle
4833   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4834   *         This parameter can be one of the following values:
4835   *            @arg TIM_DMABASE_CR1
4836   *            @arg TIM_DMABASE_CR2
4837   *            @arg TIM_DMABASE_SMCR
4838   *            @arg TIM_DMABASE_DIER
4839   *            @arg TIM_DMABASE_SR
4840   *            @arg TIM_DMABASE_EGR
4841   *            @arg TIM_DMABASE_CCMR1
4842   *            @arg TIM_DMABASE_CCMR2
4843   *            @arg TIM_DMABASE_CCER
4844   *            @arg TIM_DMABASE_CNT
4845   *            @arg TIM_DMABASE_PSC
4846   *            @arg TIM_DMABASE_ARR
4847   *            @arg TIM_DMABASE_RCR
4848   *            @arg TIM_DMABASE_CCR1
4849   *            @arg TIM_DMABASE_CCR2
4850   *            @arg TIM_DMABASE_CCR3
4851   *            @arg TIM_DMABASE_CCR4
4852   *            @arg TIM_DMABASE_BDTR
4853   * @param  BurstRequestSrc TIM DMA Request sources
4854   *         This parameter can be one of the following values:
4855   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4856   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4857   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4858   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4859   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4860   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4861   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4862   * @param  BurstBuffer The Buffer address.
4863   * @param  BurstLength DMA Burst length. This parameter can be one value
4864   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4865   * @param  DataLength Data length. This parameter can be one value
4866   *         between 1 and 0xFFFF.
4867   * @retval HAL status
4868   */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4869 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4870                                                   uint32_t BurstRequestSrc, uint32_t  *BurstBuffer,
4871                                                   uint32_t  BurstLength, uint32_t  DataLength)
4872 {
4873   HAL_StatusTypeDef status = HAL_OK;
4874 
4875   /* Check the parameters */
4876   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4877   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4878   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4879   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4880   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4881 
4882   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4883   {
4884     return HAL_BUSY;
4885   }
4886   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4887   {
4888     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4889     {
4890       return HAL_ERROR;
4891     }
4892     else
4893     {
4894       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4895     }
4896   }
4897   else
4898   {
4899     /* nothing to do */
4900   }
4901   switch (BurstRequestSrc)
4902   {
4903     case TIM_DMA_UPDATE:
4904     {
4905       /* Set the DMA Period elapsed callbacks */
4906       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4907       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4908 
4909       /* Set the DMA error callback */
4910       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4911 
4912       /* Enable the DMA channel */
4913       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4914                            DataLength) != HAL_OK)
4915       {
4916         /* Return error status */
4917         return HAL_ERROR;
4918       }
4919       break;
4920     }
4921     case TIM_DMA_CC1:
4922     {
4923       /* Set the DMA capture callbacks */
4924       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
4925       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4926 
4927       /* Set the DMA error callback */
4928       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4929 
4930       /* Enable the DMA channel */
4931       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4932                            DataLength) != HAL_OK)
4933       {
4934         /* Return error status */
4935         return HAL_ERROR;
4936       }
4937       break;
4938     }
4939     case TIM_DMA_CC2:
4940     {
4941       /* Set the DMA capture callbacks */
4942       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
4943       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4944 
4945       /* Set the DMA error callback */
4946       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4947 
4948       /* Enable the DMA channel */
4949       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4950                            DataLength) != HAL_OK)
4951       {
4952         /* Return error status */
4953         return HAL_ERROR;
4954       }
4955       break;
4956     }
4957     case TIM_DMA_CC3:
4958     {
4959       /* Set the DMA capture callbacks */
4960       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
4961       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4962 
4963       /* Set the DMA error callback */
4964       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4965 
4966       /* Enable the DMA channel */
4967       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4968                            DataLength) != HAL_OK)
4969       {
4970         /* Return error status */
4971         return HAL_ERROR;
4972       }
4973       break;
4974     }
4975     case TIM_DMA_CC4:
4976     {
4977       /* Set the DMA capture callbacks */
4978       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
4979       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
4980 
4981       /* Set the DMA error callback */
4982       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4983 
4984       /* Enable the DMA channel */
4985       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
4986                            DataLength) != HAL_OK)
4987       {
4988         /* Return error status */
4989         return HAL_ERROR;
4990       }
4991       break;
4992     }
4993     case TIM_DMA_COM:
4994     {
4995       /* Set the DMA commutation callbacks */
4996       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4997       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4998 
4999       /* Set the DMA error callback */
5000       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
5001 
5002       /* Enable the DMA channel */
5003       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5004                            DataLength) != HAL_OK)
5005       {
5006         /* Return error status */
5007         return HAL_ERROR;
5008       }
5009       break;
5010     }
5011     case TIM_DMA_TRIGGER:
5012     {
5013       /* Set the DMA trigger callbacks */
5014       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5015       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5016 
5017       /* Set the DMA error callback */
5018       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5019 
5020       /* Enable the DMA channel */
5021       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5022                            DataLength) != HAL_OK)
5023       {
5024         /* Return error status */
5025         return HAL_ERROR;
5026       }
5027       break;
5028     }
5029     default:
5030       status = HAL_ERROR;
5031       break;
5032   }
5033 
5034   if (status == HAL_OK)
5035   {
5036     /* Configure the DMA Burst Mode */
5037     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5038 
5039     /* Enable the TIM DMA Request */
5040     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5041   }
5042 
5043   /* Return function status */
5044   return status;
5045 }
5046 
5047 /**
5048   * @brief  Stop the DMA burst reading
5049   * @param  htim TIM handle
5050   * @param  BurstRequestSrc TIM DMA Request sources to disable.
5051   * @retval HAL status
5052   */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5053 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5054 {
5055   HAL_StatusTypeDef status = HAL_OK;
5056 
5057   /* Check the parameters */
5058   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5059 
5060   /* Abort the DMA transfer (at least disable the DMA channel) */
5061   switch (BurstRequestSrc)
5062   {
5063     case TIM_DMA_UPDATE:
5064     {
5065       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5066       break;
5067     }
5068     case TIM_DMA_CC1:
5069     {
5070       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5071       break;
5072     }
5073     case TIM_DMA_CC2:
5074     {
5075       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5076       break;
5077     }
5078     case TIM_DMA_CC3:
5079     {
5080       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5081       break;
5082     }
5083     case TIM_DMA_CC4:
5084     {
5085       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5086       break;
5087     }
5088     case TIM_DMA_COM:
5089     {
5090       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5091       break;
5092     }
5093     case TIM_DMA_TRIGGER:
5094     {
5095       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5096       break;
5097     }
5098     default:
5099       status = HAL_ERROR;
5100       break;
5101   }
5102 
5103   if (status == HAL_OK)
5104   {
5105     /* Disable the TIM Update DMA request */
5106     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5107 
5108     /* Change the DMA burst operation state */
5109     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5110   }
5111 
5112   /* Return function status */
5113   return status;
5114 }
5115 
5116 /**
5117   * @brief  Generate a software event
5118   * @param  htim TIM handle
5119   * @param  EventSource specifies the event source.
5120   *          This parameter can be one of the following values:
5121   *            @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5122   *            @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5123   *            @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5124   *            @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5125   *            @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5126   *            @arg TIM_EVENTSOURCE_COM: Timer COM event source
5127   *            @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5128   *            @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5129   * @note   Basic timers can only generate an update event.
5130   * @note   TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5131   * @note   TIM_EVENTSOURCE_BREAK are relevant only for timer instances
5132   *         supporting a break input.
5133   * @retval HAL status
5134   */
5135 
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5136 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5137 {
5138   /* Check the parameters */
5139   assert_param(IS_TIM_INSTANCE(htim->Instance));
5140   assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5141 
5142   /* Process Locked */
5143   __HAL_LOCK(htim);
5144 
5145   /* Change the TIM state */
5146   htim->State = HAL_TIM_STATE_BUSY;
5147 
5148   /* Set the event sources */
5149   htim->Instance->EGR = EventSource;
5150 
5151   /* Change the TIM state */
5152   htim->State = HAL_TIM_STATE_READY;
5153 
5154   __HAL_UNLOCK(htim);
5155 
5156   /* Return function status */
5157   return HAL_OK;
5158 }
5159 
5160 /**
5161   * @brief  Configures the OCRef clear feature
5162   * @param  htim TIM handle
5163   * @param  sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5164   *         contains the OCREF clear feature and parameters for the TIM peripheral.
5165   * @param  Channel specifies the TIM Channel
5166   *          This parameter can be one of the following values:
5167   *            @arg TIM_CHANNEL_1: TIM Channel 1
5168   *            @arg TIM_CHANNEL_2: TIM Channel 2
5169   *            @arg TIM_CHANNEL_3: TIM Channel 3
5170   *            @arg TIM_CHANNEL_4: TIM Channel 4
5171   * @retval HAL status
5172   */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5173 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5174                                            const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5175                                            uint32_t Channel)
5176 {
5177   HAL_StatusTypeDef status = HAL_OK;
5178 
5179   /* Check the parameters */
5180   assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5181   assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5182 
5183   /* Process Locked */
5184   __HAL_LOCK(htim);
5185 
5186   htim->State = HAL_TIM_STATE_BUSY;
5187 
5188   switch (sClearInputConfig->ClearInputSource)
5189   {
5190     case TIM_CLEARINPUTSOURCE_NONE:
5191     {
5192       /* Clear the OCREF clear selection bit and the the ETR Bits */
5193       CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5194       break;
5195     }
5196 
5197     case TIM_CLEARINPUTSOURCE_ETR:
5198     {
5199       /* Check the parameters */
5200       assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5201       assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5202       assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5203 
5204       /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5205       if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5206       {
5207         htim->State = HAL_TIM_STATE_READY;
5208         __HAL_UNLOCK(htim);
5209         return HAL_ERROR;
5210       }
5211 
5212       TIM_ETR_SetConfig(htim->Instance,
5213                         sClearInputConfig->ClearInputPrescaler,
5214                         sClearInputConfig->ClearInputPolarity,
5215                         sClearInputConfig->ClearInputFilter);
5216       break;
5217     }
5218 
5219     default:
5220       status = HAL_ERROR;
5221       break;
5222   }
5223 
5224   if (status == HAL_OK)
5225   {
5226     switch (Channel)
5227     {
5228       case TIM_CHANNEL_1:
5229       {
5230         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5231         {
5232           /* Enable the OCREF clear feature for Channel 1 */
5233           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5234         }
5235         else
5236         {
5237           /* Disable the OCREF clear feature for Channel 1 */
5238           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5239         }
5240         break;
5241       }
5242       case TIM_CHANNEL_2:
5243       {
5244         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5245         {
5246           /* Enable the OCREF clear feature for Channel 2 */
5247           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5248         }
5249         else
5250         {
5251           /* Disable the OCREF clear feature for Channel 2 */
5252           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5253         }
5254         break;
5255       }
5256       case TIM_CHANNEL_3:
5257       {
5258         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5259         {
5260           /* Enable the OCREF clear feature for Channel 3 */
5261           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5262         }
5263         else
5264         {
5265           /* Disable the OCREF clear feature for Channel 3 */
5266           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5267         }
5268         break;
5269       }
5270       case TIM_CHANNEL_4:
5271       {
5272         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5273         {
5274           /* Enable the OCREF clear feature for Channel 4 */
5275           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5276         }
5277         else
5278         {
5279           /* Disable the OCREF clear feature for Channel 4 */
5280           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5281         }
5282         break;
5283       }
5284       default:
5285         break;
5286     }
5287   }
5288 
5289   htim->State = HAL_TIM_STATE_READY;
5290 
5291   __HAL_UNLOCK(htim);
5292 
5293   return status;
5294 }
5295 
5296 /**
5297   * @brief   Configures the clock source to be used
5298   * @param  htim TIM handle
5299   * @param  sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5300   *         contains the clock source information for the TIM peripheral.
5301   * @retval HAL status
5302   */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5303 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5304 {
5305   HAL_StatusTypeDef status = HAL_OK;
5306   uint32_t tmpsmcr;
5307 
5308   /* Process Locked */
5309   __HAL_LOCK(htim);
5310 
5311   htim->State = HAL_TIM_STATE_BUSY;
5312 
5313   /* Check the parameters */
5314   assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5315 
5316   /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5317   tmpsmcr = htim->Instance->SMCR;
5318   tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5319   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5320   htim->Instance->SMCR = tmpsmcr;
5321 
5322   switch (sClockSourceConfig->ClockSource)
5323   {
5324     case TIM_CLOCKSOURCE_INTERNAL:
5325     {
5326       assert_param(IS_TIM_INSTANCE(htim->Instance));
5327       break;
5328     }
5329 
5330     case TIM_CLOCKSOURCE_ETRMODE1:
5331     {
5332       /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5333       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5334 
5335       /* Check ETR input conditioning related parameters */
5336       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5337       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5338       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5339 
5340       /* Configure the ETR Clock source */
5341       TIM_ETR_SetConfig(htim->Instance,
5342                         sClockSourceConfig->ClockPrescaler,
5343                         sClockSourceConfig->ClockPolarity,
5344                         sClockSourceConfig->ClockFilter);
5345 
5346       /* Select the External clock mode1 and the ETRF trigger */
5347       tmpsmcr = htim->Instance->SMCR;
5348       tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5349       /* Write to TIMx SMCR */
5350       htim->Instance->SMCR = tmpsmcr;
5351       break;
5352     }
5353 
5354     case TIM_CLOCKSOURCE_ETRMODE2:
5355     {
5356       /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5357       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5358 
5359       /* Check ETR input conditioning related parameters */
5360       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5361       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5362       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5363 
5364       /* Configure the ETR Clock source */
5365       TIM_ETR_SetConfig(htim->Instance,
5366                         sClockSourceConfig->ClockPrescaler,
5367                         sClockSourceConfig->ClockPolarity,
5368                         sClockSourceConfig->ClockFilter);
5369       /* Enable the External clock mode2 */
5370       htim->Instance->SMCR |= TIM_SMCR_ECE;
5371       break;
5372     }
5373 
5374     case TIM_CLOCKSOURCE_TI1:
5375     {
5376       /* Check whether or not the timer instance supports external clock mode 1 */
5377       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5378 
5379       /* Check TI1 input conditioning related parameters */
5380       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5381       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5382 
5383       TIM_TI1_ConfigInputStage(htim->Instance,
5384                                sClockSourceConfig->ClockPolarity,
5385                                sClockSourceConfig->ClockFilter);
5386       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5387       break;
5388     }
5389 
5390     case TIM_CLOCKSOURCE_TI2:
5391     {
5392       /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5393       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5394 
5395       /* Check TI2 input conditioning related parameters */
5396       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5397       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5398 
5399       TIM_TI2_ConfigInputStage(htim->Instance,
5400                                sClockSourceConfig->ClockPolarity,
5401                                sClockSourceConfig->ClockFilter);
5402       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5403       break;
5404     }
5405 
5406     case TIM_CLOCKSOURCE_TI1ED:
5407     {
5408       /* Check whether or not the timer instance supports external clock mode 1 */
5409       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5410 
5411       /* Check TI1 input conditioning related parameters */
5412       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5413       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5414 
5415       TIM_TI1_ConfigInputStage(htim->Instance,
5416                                sClockSourceConfig->ClockPolarity,
5417                                sClockSourceConfig->ClockFilter);
5418       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5419       break;
5420     }
5421 
5422     case TIM_CLOCKSOURCE_ITR0:
5423     case TIM_CLOCKSOURCE_ITR1:
5424     case TIM_CLOCKSOURCE_ITR2:
5425     case TIM_CLOCKSOURCE_ITR3:
5426     {
5427       /* Check whether or not the timer instance supports internal trigger input */
5428       assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5429 
5430       TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5431       break;
5432     }
5433 
5434     default:
5435       status = HAL_ERROR;
5436       break;
5437   }
5438   htim->State = HAL_TIM_STATE_READY;
5439 
5440   __HAL_UNLOCK(htim);
5441 
5442   return status;
5443 }
5444 
5445 /**
5446   * @brief  Selects the signal connected to the TI1 input: direct from CH1_input
5447   *         or a XOR combination between CH1_input, CH2_input & CH3_input
5448   * @param  htim TIM handle.
5449   * @param  TI1_Selection Indicate whether or not channel 1 is connected to the
5450   *         output of a XOR gate.
5451   *          This parameter can be one of the following values:
5452   *            @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5453   *            @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5454   *            pins are connected to the TI1 input (XOR combination)
5455   * @retval HAL status
5456   */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5457 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5458 {
5459   uint32_t tmpcr2;
5460 
5461   /* Check the parameters */
5462   assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5463   assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5464 
5465   /* Get the TIMx CR2 register value */
5466   tmpcr2 = htim->Instance->CR2;
5467 
5468   /* Reset the TI1 selection */
5469   tmpcr2 &= ~TIM_CR2_TI1S;
5470 
5471   /* Set the TI1 selection */
5472   tmpcr2 |= TI1_Selection;
5473 
5474   /* Write to TIMxCR2 */
5475   htim->Instance->CR2 = tmpcr2;
5476 
5477   return HAL_OK;
5478 }
5479 
5480 /**
5481   * @brief  Configures the TIM in Slave mode
5482   * @param  htim TIM handle.
5483   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5484   *         contains the selected trigger (internal trigger input, filtered
5485   *         timer input or external trigger input) and the Slave mode
5486   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5487   * @retval HAL status
5488   */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5489 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5490 {
5491   /* Check the parameters */
5492   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5493   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5494   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5495 
5496   __HAL_LOCK(htim);
5497 
5498   htim->State = HAL_TIM_STATE_BUSY;
5499 
5500   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5501   {
5502     htim->State = HAL_TIM_STATE_READY;
5503     __HAL_UNLOCK(htim);
5504     return HAL_ERROR;
5505   }
5506 
5507   /* Disable Trigger Interrupt */
5508   __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5509 
5510   /* Disable Trigger DMA request */
5511   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5512 
5513   htim->State = HAL_TIM_STATE_READY;
5514 
5515   __HAL_UNLOCK(htim);
5516 
5517   return HAL_OK;
5518 }
5519 
5520 /**
5521   * @brief  Configures the TIM in Slave mode in interrupt mode
5522   * @param  htim TIM handle.
5523   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5524   *         contains the selected trigger (internal trigger input, filtered
5525   *         timer input or external trigger input) and the Slave mode
5526   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5527   * @retval HAL status
5528   */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5529 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5530                                                 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5531 {
5532   /* Check the parameters */
5533   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5534   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5535   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5536 
5537   __HAL_LOCK(htim);
5538 
5539   htim->State = HAL_TIM_STATE_BUSY;
5540 
5541   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5542   {
5543     htim->State = HAL_TIM_STATE_READY;
5544     __HAL_UNLOCK(htim);
5545     return HAL_ERROR;
5546   }
5547 
5548   /* Enable Trigger Interrupt */
5549   __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5550 
5551   /* Disable Trigger DMA request */
5552   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5553 
5554   htim->State = HAL_TIM_STATE_READY;
5555 
5556   __HAL_UNLOCK(htim);
5557 
5558   return HAL_OK;
5559 }
5560 
5561 /**
5562   * @brief  Read the captured value from Capture Compare unit
5563   * @param  htim TIM handle.
5564   * @param  Channel TIM Channels to be enabled
5565   *          This parameter can be one of the following values:
5566   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
5567   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
5568   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
5569   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
5570   * @retval Captured value
5571   */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5572 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5573 {
5574   uint32_t tmpreg = 0U;
5575 
5576   switch (Channel)
5577   {
5578     case TIM_CHANNEL_1:
5579     {
5580       /* Check the parameters */
5581       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5582 
5583       /* Return the capture 1 value */
5584       tmpreg =  htim->Instance->CCR1;
5585 
5586       break;
5587     }
5588     case TIM_CHANNEL_2:
5589     {
5590       /* Check the parameters */
5591       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5592 
5593       /* Return the capture 2 value */
5594       tmpreg =   htim->Instance->CCR2;
5595 
5596       break;
5597     }
5598 
5599     case TIM_CHANNEL_3:
5600     {
5601       /* Check the parameters */
5602       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5603 
5604       /* Return the capture 3 value */
5605       tmpreg =   htim->Instance->CCR3;
5606 
5607       break;
5608     }
5609 
5610     case TIM_CHANNEL_4:
5611     {
5612       /* Check the parameters */
5613       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5614 
5615       /* Return the capture 4 value */
5616       tmpreg =   htim->Instance->CCR4;
5617 
5618       break;
5619     }
5620 
5621     default:
5622       break;
5623   }
5624 
5625   return tmpreg;
5626 }
5627 
5628 /**
5629   * @}
5630   */
5631 
5632 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5633   *  @brief    TIM Callbacks functions
5634   *
5635 @verbatim
5636   ==============================================================================
5637                         ##### TIM Callbacks functions #####
5638   ==============================================================================
5639  [..]
5640    This section provides TIM callback functions:
5641    (+) TIM Period elapsed callback
5642    (+) TIM Output Compare callback
5643    (+) TIM Input capture callback
5644    (+) TIM Trigger callback
5645    (+) TIM Error callback
5646 
5647 @endverbatim
5648   * @{
5649   */
5650 
5651 /**
5652   * @brief  Period elapsed callback in non-blocking mode
5653   * @param  htim TIM handle
5654   * @retval None
5655   */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5656 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5657 {
5658   /* Prevent unused argument(s) compilation warning */
5659   UNUSED(htim);
5660 
5661   /* NOTE : This function should not be modified, when the callback is needed,
5662             the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5663    */
5664 }
5665 
5666 /**
5667   * @brief  Period elapsed half complete callback in non-blocking mode
5668   * @param  htim TIM handle
5669   * @retval None
5670   */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5671 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5672 {
5673   /* Prevent unused argument(s) compilation warning */
5674   UNUSED(htim);
5675 
5676   /* NOTE : This function should not be modified, when the callback is needed,
5677             the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5678    */
5679 }
5680 
5681 /**
5682   * @brief  Output Compare callback in non-blocking mode
5683   * @param  htim TIM OC handle
5684   * @retval None
5685   */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5686 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5687 {
5688   /* Prevent unused argument(s) compilation warning */
5689   UNUSED(htim);
5690 
5691   /* NOTE : This function should not be modified, when the callback is needed,
5692             the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5693    */
5694 }
5695 
5696 /**
5697   * @brief  Input Capture callback in non-blocking mode
5698   * @param  htim TIM IC handle
5699   * @retval None
5700   */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5701 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5702 {
5703   /* Prevent unused argument(s) compilation warning */
5704   UNUSED(htim);
5705 
5706   /* NOTE : This function should not be modified, when the callback is needed,
5707             the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5708    */
5709 }
5710 
5711 /**
5712   * @brief  Input Capture half complete callback in non-blocking mode
5713   * @param  htim TIM IC handle
5714   * @retval None
5715   */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5716 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5717 {
5718   /* Prevent unused argument(s) compilation warning */
5719   UNUSED(htim);
5720 
5721   /* NOTE : This function should not be modified, when the callback is needed,
5722             the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5723    */
5724 }
5725 
5726 /**
5727   * @brief  PWM Pulse finished callback in non-blocking mode
5728   * @param  htim TIM handle
5729   * @retval None
5730   */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5731 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5732 {
5733   /* Prevent unused argument(s) compilation warning */
5734   UNUSED(htim);
5735 
5736   /* NOTE : This function should not be modified, when the callback is needed,
5737             the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5738    */
5739 }
5740 
5741 /**
5742   * @brief  PWM Pulse finished half complete callback in non-blocking mode
5743   * @param  htim TIM handle
5744   * @retval None
5745   */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5746 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5747 {
5748   /* Prevent unused argument(s) compilation warning */
5749   UNUSED(htim);
5750 
5751   /* NOTE : This function should not be modified, when the callback is needed,
5752             the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5753    */
5754 }
5755 
5756 /**
5757   * @brief  Hall Trigger detection callback in non-blocking mode
5758   * @param  htim TIM handle
5759   * @retval None
5760   */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5761 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5762 {
5763   /* Prevent unused argument(s) compilation warning */
5764   UNUSED(htim);
5765 
5766   /* NOTE : This function should not be modified, when the callback is needed,
5767             the HAL_TIM_TriggerCallback could be implemented in the user file
5768    */
5769 }
5770 
5771 /**
5772   * @brief  Hall Trigger detection half complete callback in non-blocking mode
5773   * @param  htim TIM handle
5774   * @retval None
5775   */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5776 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5777 {
5778   /* Prevent unused argument(s) compilation warning */
5779   UNUSED(htim);
5780 
5781   /* NOTE : This function should not be modified, when the callback is needed,
5782             the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5783    */
5784 }
5785 
5786 /**
5787   * @brief  Timer error callback in non-blocking mode
5788   * @param  htim TIM handle
5789   * @retval None
5790   */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5791 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5792 {
5793   /* Prevent unused argument(s) compilation warning */
5794   UNUSED(htim);
5795 
5796   /* NOTE : This function should not be modified, when the callback is needed,
5797             the HAL_TIM_ErrorCallback could be implemented in the user file
5798    */
5799 }
5800 
5801 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5802 /**
5803   * @brief  Register a User TIM callback to be used instead of the weak predefined callback
5804   * @param htim tim handle
5805   * @param CallbackID ID of the callback to be registered
5806   *        This parameter can be one of the following values:
5807   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5808   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5809   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5810   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5811   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5812   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5813   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5814   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5815   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5816   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5817   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5818   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5819   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5820   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5821   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5822   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5823   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5824   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5825   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5826   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5827   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
5828   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
5829   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
5830   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
5831   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
5832   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
5833   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
5834   *          @param pCallback pointer to the callback function
5835   *          @retval status
5836   */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)5837 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
5838                                            pTIM_CallbackTypeDef pCallback)
5839 {
5840   HAL_StatusTypeDef status = HAL_OK;
5841 
5842   if (pCallback == NULL)
5843   {
5844     return HAL_ERROR;
5845   }
5846 
5847   if (htim->State == HAL_TIM_STATE_READY)
5848   {
5849     switch (CallbackID)
5850     {
5851       case HAL_TIM_BASE_MSPINIT_CB_ID :
5852         htim->Base_MspInitCallback                 = pCallback;
5853         break;
5854 
5855       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
5856         htim->Base_MspDeInitCallback               = pCallback;
5857         break;
5858 
5859       case HAL_TIM_IC_MSPINIT_CB_ID :
5860         htim->IC_MspInitCallback                   = pCallback;
5861         break;
5862 
5863       case HAL_TIM_IC_MSPDEINIT_CB_ID :
5864         htim->IC_MspDeInitCallback                 = pCallback;
5865         break;
5866 
5867       case HAL_TIM_OC_MSPINIT_CB_ID :
5868         htim->OC_MspInitCallback                   = pCallback;
5869         break;
5870 
5871       case HAL_TIM_OC_MSPDEINIT_CB_ID :
5872         htim->OC_MspDeInitCallback                 = pCallback;
5873         break;
5874 
5875       case HAL_TIM_PWM_MSPINIT_CB_ID :
5876         htim->PWM_MspInitCallback                  = pCallback;
5877         break;
5878 
5879       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
5880         htim->PWM_MspDeInitCallback                = pCallback;
5881         break;
5882 
5883       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
5884         htim->OnePulse_MspInitCallback             = pCallback;
5885         break;
5886 
5887       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
5888         htim->OnePulse_MspDeInitCallback           = pCallback;
5889         break;
5890 
5891       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
5892         htim->Encoder_MspInitCallback              = pCallback;
5893         break;
5894 
5895       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
5896         htim->Encoder_MspDeInitCallback            = pCallback;
5897         break;
5898 
5899       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
5900         htim->HallSensor_MspInitCallback           = pCallback;
5901         break;
5902 
5903       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
5904         htim->HallSensor_MspDeInitCallback         = pCallback;
5905         break;
5906 
5907       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
5908         htim->PeriodElapsedCallback                = pCallback;
5909         break;
5910 
5911       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
5912         htim->PeriodElapsedHalfCpltCallback        = pCallback;
5913         break;
5914 
5915       case HAL_TIM_TRIGGER_CB_ID :
5916         htim->TriggerCallback                      = pCallback;
5917         break;
5918 
5919       case HAL_TIM_TRIGGER_HALF_CB_ID :
5920         htim->TriggerHalfCpltCallback              = pCallback;
5921         break;
5922 
5923       case HAL_TIM_IC_CAPTURE_CB_ID :
5924         htim->IC_CaptureCallback                   = pCallback;
5925         break;
5926 
5927       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
5928         htim->IC_CaptureHalfCpltCallback           = pCallback;
5929         break;
5930 
5931       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
5932         htim->OC_DelayElapsedCallback              = pCallback;
5933         break;
5934 
5935       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
5936         htim->PWM_PulseFinishedCallback            = pCallback;
5937         break;
5938 
5939       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
5940         htim->PWM_PulseFinishedHalfCpltCallback    = pCallback;
5941         break;
5942 
5943       case HAL_TIM_ERROR_CB_ID :
5944         htim->ErrorCallback                        = pCallback;
5945         break;
5946 
5947       case HAL_TIM_COMMUTATION_CB_ID :
5948         htim->CommutationCallback                  = pCallback;
5949         break;
5950 
5951       case HAL_TIM_COMMUTATION_HALF_CB_ID :
5952         htim->CommutationHalfCpltCallback          = pCallback;
5953         break;
5954 
5955       case HAL_TIM_BREAK_CB_ID :
5956         htim->BreakCallback                        = pCallback;
5957         break;
5958 
5959       default :
5960         /* Return error status */
5961         status = HAL_ERROR;
5962         break;
5963     }
5964   }
5965   else if (htim->State == HAL_TIM_STATE_RESET)
5966   {
5967     switch (CallbackID)
5968     {
5969       case HAL_TIM_BASE_MSPINIT_CB_ID :
5970         htim->Base_MspInitCallback         = pCallback;
5971         break;
5972 
5973       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
5974         htim->Base_MspDeInitCallback       = pCallback;
5975         break;
5976 
5977       case HAL_TIM_IC_MSPINIT_CB_ID :
5978         htim->IC_MspInitCallback           = pCallback;
5979         break;
5980 
5981       case HAL_TIM_IC_MSPDEINIT_CB_ID :
5982         htim->IC_MspDeInitCallback         = pCallback;
5983         break;
5984 
5985       case HAL_TIM_OC_MSPINIT_CB_ID :
5986         htim->OC_MspInitCallback           = pCallback;
5987         break;
5988 
5989       case HAL_TIM_OC_MSPDEINIT_CB_ID :
5990         htim->OC_MspDeInitCallback         = pCallback;
5991         break;
5992 
5993       case HAL_TIM_PWM_MSPINIT_CB_ID :
5994         htim->PWM_MspInitCallback          = pCallback;
5995         break;
5996 
5997       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
5998         htim->PWM_MspDeInitCallback        = pCallback;
5999         break;
6000 
6001       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6002         htim->OnePulse_MspInitCallback     = pCallback;
6003         break;
6004 
6005       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6006         htim->OnePulse_MspDeInitCallback   = pCallback;
6007         break;
6008 
6009       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6010         htim->Encoder_MspInitCallback      = pCallback;
6011         break;
6012 
6013       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6014         htim->Encoder_MspDeInitCallback    = pCallback;
6015         break;
6016 
6017       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6018         htim->HallSensor_MspInitCallback   = pCallback;
6019         break;
6020 
6021       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6022         htim->HallSensor_MspDeInitCallback = pCallback;
6023         break;
6024 
6025       default :
6026         /* Return error status */
6027         status = HAL_ERROR;
6028         break;
6029     }
6030   }
6031   else
6032   {
6033     /* Return error status */
6034     status = HAL_ERROR;
6035   }
6036 
6037   return status;
6038 }
6039 
6040 /**
6041   * @brief  Unregister a TIM callback
6042   *         TIM callback is redirected to the weak predefined callback
6043   * @param htim tim handle
6044   * @param CallbackID ID of the callback to be unregistered
6045   *        This parameter can be one of the following values:
6046   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6047   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6048   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6049   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6050   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6051   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6052   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6053   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6054   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6055   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6056   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6057   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6058   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6059   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6060   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6061   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6062   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6063   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6064   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6065   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6066   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6067   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6068   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6069   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6070   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6071   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6072   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6073   *          @retval status
6074   */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6075 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6076 {
6077   HAL_StatusTypeDef status = HAL_OK;
6078 
6079   if (htim->State == HAL_TIM_STATE_READY)
6080   {
6081     switch (CallbackID)
6082     {
6083       case HAL_TIM_BASE_MSPINIT_CB_ID :
6084         /* Legacy weak Base MspInit Callback */
6085         htim->Base_MspInitCallback              = HAL_TIM_Base_MspInit;
6086         break;
6087 
6088       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6089         /* Legacy weak Base Msp DeInit Callback */
6090         htim->Base_MspDeInitCallback            = HAL_TIM_Base_MspDeInit;
6091         break;
6092 
6093       case HAL_TIM_IC_MSPINIT_CB_ID :
6094         /* Legacy weak IC Msp Init Callback */
6095         htim->IC_MspInitCallback                = HAL_TIM_IC_MspInit;
6096         break;
6097 
6098       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6099         /* Legacy weak IC Msp DeInit Callback */
6100         htim->IC_MspDeInitCallback              = HAL_TIM_IC_MspDeInit;
6101         break;
6102 
6103       case HAL_TIM_OC_MSPINIT_CB_ID :
6104         /* Legacy weak OC Msp Init Callback */
6105         htim->OC_MspInitCallback                = HAL_TIM_OC_MspInit;
6106         break;
6107 
6108       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6109         /* Legacy weak OC Msp DeInit Callback */
6110         htim->OC_MspDeInitCallback              = HAL_TIM_OC_MspDeInit;
6111         break;
6112 
6113       case HAL_TIM_PWM_MSPINIT_CB_ID :
6114         /* Legacy weak PWM Msp Init Callback */
6115         htim->PWM_MspInitCallback               = HAL_TIM_PWM_MspInit;
6116         break;
6117 
6118       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6119         /* Legacy weak PWM Msp DeInit Callback */
6120         htim->PWM_MspDeInitCallback             = HAL_TIM_PWM_MspDeInit;
6121         break;
6122 
6123       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6124         /* Legacy weak One Pulse Msp Init Callback */
6125         htim->OnePulse_MspInitCallback          = HAL_TIM_OnePulse_MspInit;
6126         break;
6127 
6128       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6129         /* Legacy weak One Pulse Msp DeInit Callback */
6130         htim->OnePulse_MspDeInitCallback        = HAL_TIM_OnePulse_MspDeInit;
6131         break;
6132 
6133       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6134         /* Legacy weak Encoder Msp Init Callback */
6135         htim->Encoder_MspInitCallback           = HAL_TIM_Encoder_MspInit;
6136         break;
6137 
6138       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6139         /* Legacy weak Encoder Msp DeInit Callback */
6140         htim->Encoder_MspDeInitCallback         = HAL_TIM_Encoder_MspDeInit;
6141         break;
6142 
6143       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6144         /* Legacy weak Hall Sensor Msp Init Callback */
6145         htim->HallSensor_MspInitCallback        = HAL_TIMEx_HallSensor_MspInit;
6146         break;
6147 
6148       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6149         /* Legacy weak Hall Sensor Msp DeInit Callback */
6150         htim->HallSensor_MspDeInitCallback      = HAL_TIMEx_HallSensor_MspDeInit;
6151         break;
6152 
6153       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6154         /* Legacy weak Period Elapsed Callback */
6155         htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
6156         break;
6157 
6158       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6159         /* Legacy weak Period Elapsed half complete Callback */
6160         htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
6161         break;
6162 
6163       case HAL_TIM_TRIGGER_CB_ID :
6164         /* Legacy weak Trigger Callback */
6165         htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
6166         break;
6167 
6168       case HAL_TIM_TRIGGER_HALF_CB_ID :
6169         /* Legacy weak Trigger half complete Callback */
6170         htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
6171         break;
6172 
6173       case HAL_TIM_IC_CAPTURE_CB_ID :
6174         /* Legacy weak IC Capture Callback */
6175         htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
6176         break;
6177 
6178       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6179         /* Legacy weak IC Capture half complete Callback */
6180         htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
6181         break;
6182 
6183       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6184         /* Legacy weak OC Delay Elapsed Callback */
6185         htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
6186         break;
6187 
6188       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6189         /* Legacy weak PWM Pulse Finished Callback */
6190         htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
6191         break;
6192 
6193       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6194         /* Legacy weak PWM Pulse Finished half complete Callback */
6195         htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6196         break;
6197 
6198       case HAL_TIM_ERROR_CB_ID :
6199         /* Legacy weak Error Callback */
6200         htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
6201         break;
6202 
6203       case HAL_TIM_COMMUTATION_CB_ID :
6204         /* Legacy weak Commutation Callback */
6205         htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
6206         break;
6207 
6208       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6209         /* Legacy weak Commutation half complete Callback */
6210         htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
6211         break;
6212 
6213       case HAL_TIM_BREAK_CB_ID :
6214         /* Legacy weak Break Callback */
6215         htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
6216         break;
6217 
6218       default :
6219         /* Return error status */
6220         status = HAL_ERROR;
6221         break;
6222     }
6223   }
6224   else if (htim->State == HAL_TIM_STATE_RESET)
6225   {
6226     switch (CallbackID)
6227     {
6228       case HAL_TIM_BASE_MSPINIT_CB_ID :
6229         /* Legacy weak Base MspInit Callback */
6230         htim->Base_MspInitCallback         = HAL_TIM_Base_MspInit;
6231         break;
6232 
6233       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6234         /* Legacy weak Base Msp DeInit Callback */
6235         htim->Base_MspDeInitCallback       = HAL_TIM_Base_MspDeInit;
6236         break;
6237 
6238       case HAL_TIM_IC_MSPINIT_CB_ID :
6239         /* Legacy weak IC Msp Init Callback */
6240         htim->IC_MspInitCallback           = HAL_TIM_IC_MspInit;
6241         break;
6242 
6243       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6244         /* Legacy weak IC Msp DeInit Callback */
6245         htim->IC_MspDeInitCallback         = HAL_TIM_IC_MspDeInit;
6246         break;
6247 
6248       case HAL_TIM_OC_MSPINIT_CB_ID :
6249         /* Legacy weak OC Msp Init Callback */
6250         htim->OC_MspInitCallback           = HAL_TIM_OC_MspInit;
6251         break;
6252 
6253       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6254         /* Legacy weak OC Msp DeInit Callback */
6255         htim->OC_MspDeInitCallback         = HAL_TIM_OC_MspDeInit;
6256         break;
6257 
6258       case HAL_TIM_PWM_MSPINIT_CB_ID :
6259         /* Legacy weak PWM Msp Init Callback */
6260         htim->PWM_MspInitCallback          = HAL_TIM_PWM_MspInit;
6261         break;
6262 
6263       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6264         /* Legacy weak PWM Msp DeInit Callback */
6265         htim->PWM_MspDeInitCallback        = HAL_TIM_PWM_MspDeInit;
6266         break;
6267 
6268       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6269         /* Legacy weak One Pulse Msp Init Callback */
6270         htim->OnePulse_MspInitCallback     = HAL_TIM_OnePulse_MspInit;
6271         break;
6272 
6273       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6274         /* Legacy weak One Pulse Msp DeInit Callback */
6275         htim->OnePulse_MspDeInitCallback   = HAL_TIM_OnePulse_MspDeInit;
6276         break;
6277 
6278       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6279         /* Legacy weak Encoder Msp Init Callback */
6280         htim->Encoder_MspInitCallback      = HAL_TIM_Encoder_MspInit;
6281         break;
6282 
6283       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6284         /* Legacy weak Encoder Msp DeInit Callback */
6285         htim->Encoder_MspDeInitCallback    = HAL_TIM_Encoder_MspDeInit;
6286         break;
6287 
6288       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6289         /* Legacy weak Hall Sensor Msp Init Callback */
6290         htim->HallSensor_MspInitCallback   = HAL_TIMEx_HallSensor_MspInit;
6291         break;
6292 
6293       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6294         /* Legacy weak Hall Sensor Msp DeInit Callback */
6295         htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6296         break;
6297 
6298       default :
6299         /* Return error status */
6300         status = HAL_ERROR;
6301         break;
6302     }
6303   }
6304   else
6305   {
6306     /* Return error status */
6307     status = HAL_ERROR;
6308   }
6309 
6310   return status;
6311 }
6312 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6313 
6314 /**
6315   * @}
6316   */
6317 
6318 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6319   *  @brief   TIM Peripheral State functions
6320   *
6321 @verbatim
6322   ==============================================================================
6323                         ##### Peripheral State functions #####
6324   ==============================================================================
6325     [..]
6326     This subsection permits to get in run-time the status of the peripheral
6327     and the data flow.
6328 
6329 @endverbatim
6330   * @{
6331   */
6332 
6333 /**
6334   * @brief  Return the TIM Base handle state.
6335   * @param  htim TIM Base handle
6336   * @retval HAL state
6337   */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6338 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6339 {
6340   return htim->State;
6341 }
6342 
6343 /**
6344   * @brief  Return the TIM OC handle state.
6345   * @param  htim TIM Output Compare handle
6346   * @retval HAL state
6347   */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6348 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6349 {
6350   return htim->State;
6351 }
6352 
6353 /**
6354   * @brief  Return the TIM PWM handle state.
6355   * @param  htim TIM handle
6356   * @retval HAL state
6357   */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6358 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6359 {
6360   return htim->State;
6361 }
6362 
6363 /**
6364   * @brief  Return the TIM Input Capture handle state.
6365   * @param  htim TIM IC handle
6366   * @retval HAL state
6367   */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6368 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6369 {
6370   return htim->State;
6371 }
6372 
6373 /**
6374   * @brief  Return the TIM One Pulse Mode handle state.
6375   * @param  htim TIM OPM handle
6376   * @retval HAL state
6377   */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6378 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6379 {
6380   return htim->State;
6381 }
6382 
6383 /**
6384   * @brief  Return the TIM Encoder Mode handle state.
6385   * @param  htim TIM Encoder Interface handle
6386   * @retval HAL state
6387   */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6388 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6389 {
6390   return htim->State;
6391 }
6392 
6393 /**
6394   * @brief  Return the TIM Encoder Mode handle state.
6395   * @param  htim TIM handle
6396   * @retval Active channel
6397   */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6398 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6399 {
6400   return htim->Channel;
6401 }
6402 
6403 /**
6404   * @brief  Return actual state of the TIM channel.
6405   * @param  htim TIM handle
6406   * @param  Channel TIM Channel
6407   *          This parameter can be one of the following values:
6408   *            @arg TIM_CHANNEL_1: TIM Channel 1
6409   *            @arg TIM_CHANNEL_2: TIM Channel 2
6410   *            @arg TIM_CHANNEL_3: TIM Channel 3
6411   *            @arg TIM_CHANNEL_4: TIM Channel 4
6412   *            @arg TIM_CHANNEL_5: TIM Channel 5
6413   *            @arg TIM_CHANNEL_6: TIM Channel 6
6414   * @retval TIM Channel state
6415   */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6416 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim,  uint32_t Channel)
6417 {
6418   HAL_TIM_ChannelStateTypeDef channel_state;
6419 
6420   /* Check the parameters */
6421   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6422 
6423   channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6424 
6425   return channel_state;
6426 }
6427 
6428 /**
6429   * @brief  Return actual state of a DMA burst operation.
6430   * @param  htim TIM handle
6431   * @retval DMA burst state
6432   */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6433 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6434 {
6435   /* Check the parameters */
6436   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6437 
6438   return htim->DMABurstState;
6439 }
6440 
6441 /**
6442   * @}
6443   */
6444 
6445 /**
6446   * @}
6447   */
6448 
6449 /** @defgroup TIM_Private_Functions TIM Private Functions
6450   * @{
6451   */
6452 
6453 /**
6454   * @brief  TIM DMA error callback
6455   * @param  hdma pointer to DMA handle.
6456   * @retval None
6457   */
TIM_DMAError(DMA_HandleTypeDef * hdma)6458 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6459 {
6460   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6461 
6462   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6463   {
6464     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6465     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6466   }
6467   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6468   {
6469     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6470     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6471   }
6472   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6473   {
6474     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6475     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6476   }
6477   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6478   {
6479     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6480     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6481   }
6482   else
6483   {
6484     htim->State = HAL_TIM_STATE_READY;
6485   }
6486 
6487 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6488   htim->ErrorCallback(htim);
6489 #else
6490   HAL_TIM_ErrorCallback(htim);
6491 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6492 
6493   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6494 }
6495 
6496 /**
6497   * @brief  TIM DMA Delay Pulse complete callback.
6498   * @param  hdma pointer to DMA handle.
6499   * @retval None
6500   */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6501 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6502 {
6503   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6504 
6505   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6506   {
6507     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6508 
6509     if (hdma->Init.Mode == DMA_NORMAL)
6510     {
6511       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6512     }
6513   }
6514   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6515   {
6516     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6517 
6518     if (hdma->Init.Mode == DMA_NORMAL)
6519     {
6520       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6521     }
6522   }
6523   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6524   {
6525     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6526 
6527     if (hdma->Init.Mode == DMA_NORMAL)
6528     {
6529       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6530     }
6531   }
6532   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6533   {
6534     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6535 
6536     if (hdma->Init.Mode == DMA_NORMAL)
6537     {
6538       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6539     }
6540   }
6541   else
6542   {
6543     /* nothing to do */
6544   }
6545 
6546 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6547   htim->PWM_PulseFinishedCallback(htim);
6548 #else
6549   HAL_TIM_PWM_PulseFinishedCallback(htim);
6550 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6551 
6552   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6553 }
6554 
6555 /**
6556   * @brief  TIM DMA Delay Pulse half complete callback.
6557   * @param  hdma pointer to DMA handle.
6558   * @retval None
6559   */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6560 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6561 {
6562   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6563 
6564   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6565   {
6566     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6567   }
6568   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6569   {
6570     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6571   }
6572   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6573   {
6574     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6575   }
6576   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6577   {
6578     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6579   }
6580   else
6581   {
6582     /* nothing to do */
6583   }
6584 
6585 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6586   htim->PWM_PulseFinishedHalfCpltCallback(htim);
6587 #else
6588   HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6589 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6590 
6591   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6592 }
6593 
6594 /**
6595   * @brief  TIM DMA Capture complete callback.
6596   * @param  hdma pointer to DMA handle.
6597   * @retval None
6598   */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6599 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6600 {
6601   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6602 
6603   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6604   {
6605     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6606 
6607     if (hdma->Init.Mode == DMA_NORMAL)
6608     {
6609       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6610       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6611     }
6612   }
6613   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6614   {
6615     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6616 
6617     if (hdma->Init.Mode == DMA_NORMAL)
6618     {
6619       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6620       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6621     }
6622   }
6623   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6624   {
6625     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6626 
6627     if (hdma->Init.Mode == DMA_NORMAL)
6628     {
6629       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6630       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6631     }
6632   }
6633   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6634   {
6635     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6636 
6637     if (hdma->Init.Mode == DMA_NORMAL)
6638     {
6639       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6640       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6641     }
6642   }
6643   else
6644   {
6645     /* nothing to do */
6646   }
6647 
6648 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6649   htim->IC_CaptureCallback(htim);
6650 #else
6651   HAL_TIM_IC_CaptureCallback(htim);
6652 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6653 
6654   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6655 }
6656 
6657 /**
6658   * @brief  TIM DMA Capture half complete callback.
6659   * @param  hdma pointer to DMA handle.
6660   * @retval None
6661   */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6662 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6663 {
6664   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6665 
6666   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6667   {
6668     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6669   }
6670   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6671   {
6672     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6673   }
6674   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6675   {
6676     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6677   }
6678   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6679   {
6680     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6681   }
6682   else
6683   {
6684     /* nothing to do */
6685   }
6686 
6687 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6688   htim->IC_CaptureHalfCpltCallback(htim);
6689 #else
6690   HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6691 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6692 
6693   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6694 }
6695 
6696 /**
6697   * @brief  TIM DMA Period Elapse complete callback.
6698   * @param  hdma pointer to DMA handle.
6699   * @retval None
6700   */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6701 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6702 {
6703   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6704 
6705   if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6706   {
6707     htim->State = HAL_TIM_STATE_READY;
6708   }
6709 
6710 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6711   htim->PeriodElapsedCallback(htim);
6712 #else
6713   HAL_TIM_PeriodElapsedCallback(htim);
6714 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6715 }
6716 
6717 /**
6718   * @brief  TIM DMA Period Elapse half complete callback.
6719   * @param  hdma pointer to DMA handle.
6720   * @retval None
6721   */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6722 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6723 {
6724   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6725 
6726 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6727   htim->PeriodElapsedHalfCpltCallback(htim);
6728 #else
6729   HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6730 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6731 }
6732 
6733 /**
6734   * @brief  TIM DMA Trigger callback.
6735   * @param  hdma pointer to DMA handle.
6736   * @retval None
6737   */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6738 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6739 {
6740   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6741 
6742   if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6743   {
6744     htim->State = HAL_TIM_STATE_READY;
6745   }
6746 
6747 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6748   htim->TriggerCallback(htim);
6749 #else
6750   HAL_TIM_TriggerCallback(htim);
6751 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6752 }
6753 
6754 /**
6755   * @brief  TIM DMA Trigger half complete callback.
6756   * @param  hdma pointer to DMA handle.
6757   * @retval None
6758   */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6759 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6760 {
6761   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6762 
6763 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6764   htim->TriggerHalfCpltCallback(htim);
6765 #else
6766   HAL_TIM_TriggerHalfCpltCallback(htim);
6767 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6768 }
6769 
6770 /**
6771   * @brief  Time Base configuration
6772   * @param  TIMx TIM peripheral
6773   * @param  Structure TIM Base configuration structure
6774   * @retval None
6775   */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6776 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6777 {
6778   uint32_t tmpcr1;
6779   tmpcr1 = TIMx->CR1;
6780 
6781   /* Set TIM Time Base Unit parameters ---------------------------------------*/
6782   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6783   {
6784     /* Select the Counter Mode */
6785     tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6786     tmpcr1 |= Structure->CounterMode;
6787   }
6788 
6789   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6790   {
6791     /* Set the clock division */
6792     tmpcr1 &= ~TIM_CR1_CKD;
6793     tmpcr1 |= (uint32_t)Structure->ClockDivision;
6794   }
6795 
6796   /* Set the auto-reload preload */
6797   MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6798 
6799   TIMx->CR1 = tmpcr1;
6800 
6801   /* Set the Autoreload value */
6802   TIMx->ARR = (uint32_t)Structure->Period ;
6803 
6804   /* Set the Prescaler value */
6805   TIMx->PSC = Structure->Prescaler;
6806 
6807   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
6808   {
6809     /* Set the Repetition Counter value */
6810     TIMx->RCR = Structure->RepetitionCounter;
6811   }
6812 
6813   /* Generate an update event to reload the Prescaler
6814      and the repetition counter (only for advanced timer) value immediately */
6815   TIMx->EGR = TIM_EGR_UG;
6816 
6817   /* Check if the update flag is set after the Update Generation, if so clear the UIF flag */
6818   if (HAL_IS_BIT_SET(TIMx->SR, TIM_FLAG_UPDATE))
6819   {
6820     /* Clear the update flag */
6821     CLEAR_BIT(TIMx->SR, TIM_FLAG_UPDATE);
6822   }
6823 }
6824 
6825 /**
6826   * @brief  Timer Output Compare 1 configuration
6827   * @param  TIMx to select the TIM peripheral
6828   * @param  OC_Config The output configuration structure
6829   * @retval None
6830   */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6831 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6832 {
6833   uint32_t tmpccmrx;
6834   uint32_t tmpccer;
6835   uint32_t tmpcr2;
6836 
6837   /* Get the TIMx CCER register value */
6838   tmpccer = TIMx->CCER;
6839 
6840   /* Disable the Channel 1: Reset the CC1E Bit */
6841   TIMx->CCER &= ~TIM_CCER_CC1E;
6842 
6843   /* Get the TIMx CR2 register value */
6844   tmpcr2 =  TIMx->CR2;
6845 
6846   /* Get the TIMx CCMR1 register value */
6847   tmpccmrx = TIMx->CCMR1;
6848 
6849   /* Reset the Output Compare Mode Bits */
6850   tmpccmrx &= ~TIM_CCMR1_OC1M;
6851   tmpccmrx &= ~TIM_CCMR1_CC1S;
6852   /* Select the Output Compare Mode */
6853   tmpccmrx |= OC_Config->OCMode;
6854 
6855   /* Reset the Output Polarity level */
6856   tmpccer &= ~TIM_CCER_CC1P;
6857   /* Set the Output Compare Polarity */
6858   tmpccer |= OC_Config->OCPolarity;
6859 
6860   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
6861   {
6862     /* Check parameters */
6863     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
6864 
6865     /* Reset the Output N Polarity level */
6866     tmpccer &= ~TIM_CCER_CC1NP;
6867     /* Set the Output N Polarity */
6868     tmpccer |= OC_Config->OCNPolarity;
6869     /* Reset the Output N State */
6870     tmpccer &= ~TIM_CCER_CC1NE;
6871   }
6872 
6873   if (IS_TIM_BREAK_INSTANCE(TIMx))
6874   {
6875     /* Check parameters */
6876     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
6877     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
6878 
6879     /* Reset the Output Compare and Output Compare N IDLE State */
6880     tmpcr2 &= ~TIM_CR2_OIS1;
6881     tmpcr2 &= ~TIM_CR2_OIS1N;
6882     /* Set the Output Idle state */
6883     tmpcr2 |= OC_Config->OCIdleState;
6884     /* Set the Output N Idle state */
6885     tmpcr2 |= OC_Config->OCNIdleState;
6886   }
6887 
6888   /* Write to TIMx CR2 */
6889   TIMx->CR2 = tmpcr2;
6890 
6891   /* Write to TIMx CCMR1 */
6892   TIMx->CCMR1 = tmpccmrx;
6893 
6894   /* Set the Capture Compare Register value */
6895   TIMx->CCR1 = OC_Config->Pulse;
6896 
6897   /* Write to TIMx CCER */
6898   TIMx->CCER = tmpccer;
6899 }
6900 
6901 /**
6902   * @brief  Timer Output Compare 2 configuration
6903   * @param  TIMx to select the TIM peripheral
6904   * @param  OC_Config The output configuration structure
6905   * @retval None
6906   */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6907 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6908 {
6909   uint32_t tmpccmrx;
6910   uint32_t tmpccer;
6911   uint32_t tmpcr2;
6912 
6913   /* Get the TIMx CCER register value */
6914   tmpccer = TIMx->CCER;
6915 
6916   /* Disable the Channel 2: Reset the CC2E Bit */
6917   TIMx->CCER &= ~TIM_CCER_CC2E;
6918 
6919   /* Get the TIMx CR2 register value */
6920   tmpcr2 =  TIMx->CR2;
6921 
6922   /* Get the TIMx CCMR1 register value */
6923   tmpccmrx = TIMx->CCMR1;
6924 
6925   /* Reset the Output Compare mode and Capture/Compare selection Bits */
6926   tmpccmrx &= ~TIM_CCMR1_OC2M;
6927   tmpccmrx &= ~TIM_CCMR1_CC2S;
6928 
6929   /* Select the Output Compare Mode */
6930   tmpccmrx |= (OC_Config->OCMode << 8U);
6931 
6932   /* Reset the Output Polarity level */
6933   tmpccer &= ~TIM_CCER_CC2P;
6934   /* Set the Output Compare Polarity */
6935   tmpccer |= (OC_Config->OCPolarity << 4U);
6936 
6937   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
6938   {
6939     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
6940 
6941     /* Reset the Output N Polarity level */
6942     tmpccer &= ~TIM_CCER_CC2NP;
6943     /* Set the Output N Polarity */
6944     tmpccer |= (OC_Config->OCNPolarity << 4U);
6945     /* Reset the Output N State */
6946     tmpccer &= ~TIM_CCER_CC2NE;
6947   }
6948 
6949   if (IS_TIM_BREAK_INSTANCE(TIMx))
6950   {
6951     /* Check parameters */
6952     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
6953     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
6954 
6955     /* Reset the Output Compare and Output Compare N IDLE State */
6956     tmpcr2 &= ~TIM_CR2_OIS2;
6957     tmpcr2 &= ~TIM_CR2_OIS2N;
6958     /* Set the Output Idle state */
6959     tmpcr2 |= (OC_Config->OCIdleState << 2U);
6960     /* Set the Output N Idle state */
6961     tmpcr2 |= (OC_Config->OCNIdleState << 2U);
6962   }
6963 
6964   /* Write to TIMx CR2 */
6965   TIMx->CR2 = tmpcr2;
6966 
6967   /* Write to TIMx CCMR1 */
6968   TIMx->CCMR1 = tmpccmrx;
6969 
6970   /* Set the Capture Compare Register value */
6971   TIMx->CCR2 = OC_Config->Pulse;
6972 
6973   /* Write to TIMx CCER */
6974   TIMx->CCER = tmpccer;
6975 }
6976 
6977 /**
6978   * @brief  Timer Output Compare 3 configuration
6979   * @param  TIMx to select the TIM peripheral
6980   * @param  OC_Config The output configuration structure
6981   * @retval None
6982   */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6983 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6984 {
6985   uint32_t tmpccmrx;
6986   uint32_t tmpccer;
6987   uint32_t tmpcr2;
6988 
6989   /* Get the TIMx CCER register value */
6990   tmpccer = TIMx->CCER;
6991 
6992   /* Disable the Channel 3: Reset the CC2E Bit */
6993   TIMx->CCER &= ~TIM_CCER_CC3E;
6994 
6995   /* Get the TIMx CR2 register value */
6996   tmpcr2 =  TIMx->CR2;
6997 
6998   /* Get the TIMx CCMR2 register value */
6999   tmpccmrx = TIMx->CCMR2;
7000 
7001   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7002   tmpccmrx &= ~TIM_CCMR2_OC3M;
7003   tmpccmrx &= ~TIM_CCMR2_CC3S;
7004   /* Select the Output Compare Mode */
7005   tmpccmrx |= OC_Config->OCMode;
7006 
7007   /* Reset the Output Polarity level */
7008   tmpccer &= ~TIM_CCER_CC3P;
7009   /* Set the Output Compare Polarity */
7010   tmpccer |= (OC_Config->OCPolarity << 8U);
7011 
7012   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7013   {
7014     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7015 
7016     /* Reset the Output N Polarity level */
7017     tmpccer &= ~TIM_CCER_CC3NP;
7018     /* Set the Output N Polarity */
7019     tmpccer |= (OC_Config->OCNPolarity << 8U);
7020     /* Reset the Output N State */
7021     tmpccer &= ~TIM_CCER_CC3NE;
7022   }
7023 
7024   if (IS_TIM_BREAK_INSTANCE(TIMx))
7025   {
7026     /* Check parameters */
7027     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7028     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7029 
7030     /* Reset the Output Compare and Output Compare N IDLE State */
7031     tmpcr2 &= ~TIM_CR2_OIS3;
7032     tmpcr2 &= ~TIM_CR2_OIS3N;
7033     /* Set the Output Idle state */
7034     tmpcr2 |= (OC_Config->OCIdleState << 4U);
7035     /* Set the Output N Idle state */
7036     tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7037   }
7038 
7039   /* Write to TIMx CR2 */
7040   TIMx->CR2 = tmpcr2;
7041 
7042   /* Write to TIMx CCMR2 */
7043   TIMx->CCMR2 = tmpccmrx;
7044 
7045   /* Set the Capture Compare Register value */
7046   TIMx->CCR3 = OC_Config->Pulse;
7047 
7048   /* Write to TIMx CCER */
7049   TIMx->CCER = tmpccer;
7050 }
7051 
7052 /**
7053   * @brief  Timer Output Compare 4 configuration
7054   * @param  TIMx to select the TIM peripheral
7055   * @param  OC_Config The output configuration structure
7056   * @retval None
7057   */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7058 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7059 {
7060   uint32_t tmpccmrx;
7061   uint32_t tmpccer;
7062   uint32_t tmpcr2;
7063 
7064   /* Get the TIMx CCER register value */
7065   tmpccer = TIMx->CCER;
7066 
7067   /* Disable the Channel 4: Reset the CC4E Bit */
7068   TIMx->CCER &= ~TIM_CCER_CC4E;
7069 
7070   /* Get the TIMx CR2 register value */
7071   tmpcr2 =  TIMx->CR2;
7072 
7073   /* Get the TIMx CCMR2 register value */
7074   tmpccmrx = TIMx->CCMR2;
7075 
7076   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7077   tmpccmrx &= ~TIM_CCMR2_OC4M;
7078   tmpccmrx &= ~TIM_CCMR2_CC4S;
7079 
7080   /* Select the Output Compare Mode */
7081   tmpccmrx |= (OC_Config->OCMode << 8U);
7082 
7083   /* Reset the Output Polarity level */
7084   tmpccer &= ~TIM_CCER_CC4P;
7085   /* Set the Output Compare Polarity */
7086   tmpccer |= (OC_Config->OCPolarity << 12U);
7087 
7088   if (IS_TIM_BREAK_INSTANCE(TIMx))
7089   {
7090     /* Check parameters */
7091     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7092 
7093     /* Reset the Output Compare IDLE State */
7094     tmpcr2 &= ~TIM_CR2_OIS4;
7095 
7096     /* Set the Output Idle state */
7097     tmpcr2 |= (OC_Config->OCIdleState << 6U);
7098   }
7099 
7100   /* Write to TIMx CR2 */
7101   TIMx->CR2 = tmpcr2;
7102 
7103   /* Write to TIMx CCMR2 */
7104   TIMx->CCMR2 = tmpccmrx;
7105 
7106   /* Set the Capture Compare Register value */
7107   TIMx->CCR4 = OC_Config->Pulse;
7108 
7109   /* Write to TIMx CCER */
7110   TIMx->CCER = tmpccer;
7111 }
7112 
7113 /**
7114   * @brief  Slave Timer configuration function
7115   * @param  htim TIM handle
7116   * @param  sSlaveConfig Slave timer configuration
7117   * @retval None
7118   */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7119 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7120                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig)
7121 {
7122   HAL_StatusTypeDef status = HAL_OK;
7123   uint32_t tmpsmcr;
7124   uint32_t tmpccmr1;
7125   uint32_t tmpccer;
7126 
7127   /* Get the TIMx SMCR register value */
7128   tmpsmcr = htim->Instance->SMCR;
7129 
7130   /* Reset the Trigger Selection Bits */
7131   tmpsmcr &= ~TIM_SMCR_TS;
7132   /* Set the Input Trigger source */
7133   tmpsmcr |= sSlaveConfig->InputTrigger;
7134 
7135   /* Reset the slave mode Bits */
7136   tmpsmcr &= ~TIM_SMCR_SMS;
7137   /* Set the slave mode */
7138   tmpsmcr |= sSlaveConfig->SlaveMode;
7139 
7140   /* Write to TIMx SMCR */
7141   htim->Instance->SMCR = tmpsmcr;
7142 
7143   /* Configure the trigger prescaler, filter, and polarity */
7144   switch (sSlaveConfig->InputTrigger)
7145   {
7146     case TIM_TS_ETRF:
7147     {
7148       /* Check the parameters */
7149       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7150       assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7151       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7152       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7153       /* Configure the ETR Trigger source */
7154       TIM_ETR_SetConfig(htim->Instance,
7155                         sSlaveConfig->TriggerPrescaler,
7156                         sSlaveConfig->TriggerPolarity,
7157                         sSlaveConfig->TriggerFilter);
7158       break;
7159     }
7160 
7161     case TIM_TS_TI1F_ED:
7162     {
7163       /* Check the parameters */
7164       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7165       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7166 
7167       if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7168       {
7169         return HAL_ERROR;
7170       }
7171 
7172       /* Disable the Channel 1: Reset the CC1E Bit */
7173       tmpccer = htim->Instance->CCER;
7174       htim->Instance->CCER &= ~TIM_CCER_CC1E;
7175       tmpccmr1 = htim->Instance->CCMR1;
7176 
7177       /* Set the filter */
7178       tmpccmr1 &= ~TIM_CCMR1_IC1F;
7179       tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7180 
7181       /* Write to TIMx CCMR1 and CCER registers */
7182       htim->Instance->CCMR1 = tmpccmr1;
7183       htim->Instance->CCER = tmpccer;
7184       break;
7185     }
7186 
7187     case TIM_TS_TI1FP1:
7188     {
7189       /* Check the parameters */
7190       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7191       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7192       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7193 
7194       /* Configure TI1 Filter and Polarity */
7195       TIM_TI1_ConfigInputStage(htim->Instance,
7196                                sSlaveConfig->TriggerPolarity,
7197                                sSlaveConfig->TriggerFilter);
7198       break;
7199     }
7200 
7201     case TIM_TS_TI2FP2:
7202     {
7203       /* Check the parameters */
7204       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7205       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7206       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7207 
7208       /* Configure TI2 Filter and Polarity */
7209       TIM_TI2_ConfigInputStage(htim->Instance,
7210                                sSlaveConfig->TriggerPolarity,
7211                                sSlaveConfig->TriggerFilter);
7212       break;
7213     }
7214 
7215     case TIM_TS_ITR0:
7216     case TIM_TS_ITR1:
7217     case TIM_TS_ITR2:
7218     case TIM_TS_ITR3:
7219     {
7220       /* Check the parameter */
7221       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7222       break;
7223     }
7224 
7225     default:
7226       status = HAL_ERROR;
7227       break;
7228   }
7229 
7230   return status;
7231 }
7232 
7233 /**
7234   * @brief  Configure the TI1 as Input.
7235   * @param  TIMx to select the TIM peripheral.
7236   * @param  TIM_ICPolarity The Input Polarity.
7237   *          This parameter can be one of the following values:
7238   *            @arg TIM_ICPOLARITY_RISING
7239   *            @arg TIM_ICPOLARITY_FALLING
7240   *            @arg TIM_ICPOLARITY_BOTHEDGE
7241   * @param  TIM_ICSelection specifies the input to be used.
7242   *          This parameter can be one of the following values:
7243   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7244   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7245   *            @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7246   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7247   *          This parameter must be a value between 0x00 and 0x0F.
7248   * @retval None
7249   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7250   *       (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7251   *        protected against un-initialized filter and polarity values.
7252   */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7253 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7254                        uint32_t TIM_ICFilter)
7255 {
7256   uint32_t tmpccmr1;
7257   uint32_t tmpccer;
7258 
7259   /* Disable the Channel 1: Reset the CC1E Bit */
7260   tmpccer = TIMx->CCER;
7261   TIMx->CCER &= ~TIM_CCER_CC1E;
7262   tmpccmr1 = TIMx->CCMR1;
7263 
7264   /* Select the Input */
7265   if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7266   {
7267     tmpccmr1 &= ~TIM_CCMR1_CC1S;
7268     tmpccmr1 |= TIM_ICSelection;
7269   }
7270   else
7271   {
7272     tmpccmr1 |= TIM_CCMR1_CC1S_0;
7273   }
7274 
7275   /* Set the filter */
7276   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7277   tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7278 
7279   /* Select the Polarity and set the CC1E Bit */
7280   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7281   tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7282 
7283   /* Write to TIMx CCMR1 and CCER registers */
7284   TIMx->CCMR1 = tmpccmr1;
7285   TIMx->CCER = tmpccer;
7286 }
7287 
7288 /**
7289   * @brief  Configure the Polarity and Filter for TI1.
7290   * @param  TIMx to select the TIM peripheral.
7291   * @param  TIM_ICPolarity The Input Polarity.
7292   *          This parameter can be one of the following values:
7293   *            @arg TIM_ICPOLARITY_RISING
7294   *            @arg TIM_ICPOLARITY_FALLING
7295   *            @arg TIM_ICPOLARITY_BOTHEDGE
7296   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7297   *          This parameter must be a value between 0x00 and 0x0F.
7298   * @retval None
7299   */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7300 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7301 {
7302   uint32_t tmpccmr1;
7303   uint32_t tmpccer;
7304 
7305   /* Disable the Channel 1: Reset the CC1E Bit */
7306   tmpccer = TIMx->CCER;
7307   TIMx->CCER &= ~TIM_CCER_CC1E;
7308   tmpccmr1 = TIMx->CCMR1;
7309 
7310   /* Set the filter */
7311   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7312   tmpccmr1 |= (TIM_ICFilter << 4U);
7313 
7314   /* Select the Polarity and set the CC1E Bit */
7315   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7316   tmpccer |= TIM_ICPolarity;
7317 
7318   /* Write to TIMx CCMR1 and CCER registers */
7319   TIMx->CCMR1 = tmpccmr1;
7320   TIMx->CCER = tmpccer;
7321 }
7322 
7323 /**
7324   * @brief  Configure the TI2 as Input.
7325   * @param  TIMx to select the TIM peripheral
7326   * @param  TIM_ICPolarity The Input Polarity.
7327   *          This parameter can be one of the following values:
7328   *            @arg TIM_ICPOLARITY_RISING
7329   *            @arg TIM_ICPOLARITY_FALLING
7330   *            @arg TIM_ICPOLARITY_BOTHEDGE
7331   * @param  TIM_ICSelection specifies the input to be used.
7332   *          This parameter can be one of the following values:
7333   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7334   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7335   *            @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7336   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7337   *          This parameter must be a value between 0x00 and 0x0F.
7338   * @retval None
7339   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7340   *       (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7341   *        protected against un-initialized filter and polarity values.
7342   */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7343 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7344                               uint32_t TIM_ICFilter)
7345 {
7346   uint32_t tmpccmr1;
7347   uint32_t tmpccer;
7348 
7349   /* Disable the Channel 2: Reset the CC2E Bit */
7350   tmpccer = TIMx->CCER;
7351   TIMx->CCER &= ~TIM_CCER_CC2E;
7352   tmpccmr1 = TIMx->CCMR1;
7353 
7354   /* Select the Input */
7355   tmpccmr1 &= ~TIM_CCMR1_CC2S;
7356   tmpccmr1 |= (TIM_ICSelection << 8U);
7357 
7358   /* Set the filter */
7359   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7360   tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7361 
7362   /* Select the Polarity and set the CC2E Bit */
7363   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7364   tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7365 
7366   /* Write to TIMx CCMR1 and CCER registers */
7367   TIMx->CCMR1 = tmpccmr1 ;
7368   TIMx->CCER = tmpccer;
7369 }
7370 
7371 /**
7372   * @brief  Configure the Polarity and Filter for TI2.
7373   * @param  TIMx to select the TIM peripheral.
7374   * @param  TIM_ICPolarity The Input Polarity.
7375   *          This parameter can be one of the following values:
7376   *            @arg TIM_ICPOLARITY_RISING
7377   *            @arg TIM_ICPOLARITY_FALLING
7378   *            @arg TIM_ICPOLARITY_BOTHEDGE
7379   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7380   *          This parameter must be a value between 0x00 and 0x0F.
7381   * @retval None
7382   */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7383 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7384 {
7385   uint32_t tmpccmr1;
7386   uint32_t tmpccer;
7387 
7388   /* Disable the Channel 2: Reset the CC2E Bit */
7389   tmpccer = TIMx->CCER;
7390   TIMx->CCER &= ~TIM_CCER_CC2E;
7391   tmpccmr1 = TIMx->CCMR1;
7392 
7393   /* Set the filter */
7394   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7395   tmpccmr1 |= (TIM_ICFilter << 12U);
7396 
7397   /* Select the Polarity and set the CC2E Bit */
7398   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7399   tmpccer |= (TIM_ICPolarity << 4U);
7400 
7401   /* Write to TIMx CCMR1 and CCER registers */
7402   TIMx->CCMR1 = tmpccmr1 ;
7403   TIMx->CCER = tmpccer;
7404 }
7405 
7406 /**
7407   * @brief  Configure the TI3 as Input.
7408   * @param  TIMx to select the TIM peripheral
7409   * @param  TIM_ICPolarity The Input Polarity.
7410   *          This parameter can be one of the following values:
7411   *            @arg TIM_ICPOLARITY_RISING
7412   *            @arg TIM_ICPOLARITY_FALLING
7413   * @param  TIM_ICSelection specifies the input to be used.
7414   *          This parameter can be one of the following values:
7415   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7416   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7417   *            @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7418   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7419   *          This parameter must be a value between 0x00 and 0x0F.
7420   * @retval None
7421   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7422   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7423   *        protected against un-initialized filter and polarity values.
7424   */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7425 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7426                               uint32_t TIM_ICFilter)
7427 {
7428   uint32_t tmpccmr2;
7429   uint32_t tmpccer;
7430 
7431   /* Disable the Channel 3: Reset the CC3E Bit */
7432   tmpccer = TIMx->CCER;
7433   TIMx->CCER &= ~TIM_CCER_CC3E;
7434   tmpccmr2 = TIMx->CCMR2;
7435 
7436   /* Select the Input */
7437   tmpccmr2 &= ~TIM_CCMR2_CC3S;
7438   tmpccmr2 |= TIM_ICSelection;
7439 
7440   /* Set the filter */
7441   tmpccmr2 &= ~TIM_CCMR2_IC3F;
7442   tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7443 
7444   /* Select the Polarity and set the CC3E Bit */
7445   tmpccer &= ~(TIM_CCER_CC3P);
7446   tmpccer |= ((TIM_ICPolarity << 8U) & TIM_CCER_CC3P);
7447 
7448   /* Write to TIMx CCMR2 and CCER registers */
7449   TIMx->CCMR2 = tmpccmr2;
7450   TIMx->CCER = tmpccer;
7451 }
7452 
7453 /**
7454   * @brief  Configure the TI4 as Input.
7455   * @param  TIMx to select the TIM peripheral
7456   * @param  TIM_ICPolarity The Input Polarity.
7457   *          This parameter can be one of the following values:
7458   *            @arg TIM_ICPOLARITY_RISING
7459   *            @arg TIM_ICPOLARITY_FALLING
7460   * @param  TIM_ICSelection specifies the input to be used.
7461   *          This parameter can be one of the following values:
7462   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7463   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7464   *            @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7465   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7466   *          This parameter must be a value between 0x00 and 0x0F.
7467   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7468   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7469   *        protected against un-initialized filter and polarity values.
7470   * @retval None
7471   */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7472 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7473                               uint32_t TIM_ICFilter)
7474 {
7475   uint32_t tmpccmr2;
7476   uint32_t tmpccer;
7477 
7478   /* Disable the Channel 4: Reset the CC4E Bit */
7479   tmpccer = TIMx->CCER;
7480   TIMx->CCER &= ~TIM_CCER_CC4E;
7481   tmpccmr2 = TIMx->CCMR2;
7482 
7483   /* Select the Input */
7484   tmpccmr2 &= ~TIM_CCMR2_CC4S;
7485   tmpccmr2 |= (TIM_ICSelection << 8U);
7486 
7487   /* Set the filter */
7488   tmpccmr2 &= ~TIM_CCMR2_IC4F;
7489   tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7490 
7491   /* Select the Polarity and set the CC4E Bit */
7492   tmpccer &= ~(TIM_CCER_CC4P);
7493   tmpccer |= ((TIM_ICPolarity << 12U) & TIM_CCER_CC4P);
7494 
7495   /* Write to TIMx CCMR2 and CCER registers */
7496   TIMx->CCMR2 = tmpccmr2;
7497   TIMx->CCER = tmpccer ;
7498 }
7499 
7500 /**
7501   * @brief  Selects the Input Trigger source
7502   * @param  TIMx to select the TIM peripheral
7503   * @param  InputTriggerSource The Input Trigger source.
7504   *          This parameter can be one of the following values:
7505   *            @arg TIM_TS_ITR0: Internal Trigger 0
7506   *            @arg TIM_TS_ITR1: Internal Trigger 1
7507   *            @arg TIM_TS_ITR2: Internal Trigger 2
7508   *            @arg TIM_TS_ITR3: Internal Trigger 3
7509   *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7510   *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7511   *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7512   *            @arg TIM_TS_ETRF: External Trigger input
7513   * @retval None
7514   */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7515 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7516 {
7517   uint32_t tmpsmcr;
7518 
7519   /* Get the TIMx SMCR register value */
7520   tmpsmcr = TIMx->SMCR;
7521   /* Reset the TS Bits */
7522   tmpsmcr &= ~TIM_SMCR_TS;
7523   /* Set the Input Trigger source and the slave mode*/
7524   tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7525   /* Write to TIMx SMCR */
7526   TIMx->SMCR = tmpsmcr;
7527 }
7528 /**
7529   * @brief  Configures the TIMx External Trigger (ETR).
7530   * @param  TIMx to select the TIM peripheral
7531   * @param  TIM_ExtTRGPrescaler The external Trigger Prescaler.
7532   *          This parameter can be one of the following values:
7533   *            @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7534   *            @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7535   *            @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7536   *            @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7537   * @param  TIM_ExtTRGPolarity The external Trigger Polarity.
7538   *          This parameter can be one of the following values:
7539   *            @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7540   *            @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7541   * @param  ExtTRGFilter External Trigger Filter.
7542   *          This parameter must be a value between 0x00 and 0x0F
7543   * @retval None
7544   */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7545 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7546                        uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7547 {
7548   uint32_t tmpsmcr;
7549 
7550   tmpsmcr = TIMx->SMCR;
7551 
7552   /* Reset the ETR Bits */
7553   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7554 
7555   /* Set the Prescaler, the Filter value and the Polarity */
7556   tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7557 
7558   /* Write to TIMx SMCR */
7559   TIMx->SMCR = tmpsmcr;
7560 }
7561 
7562 /**
7563   * @brief  Enables or disables the TIM Capture Compare Channel x.
7564   * @param  TIMx to select the TIM peripheral
7565   * @param  Channel specifies the TIM Channel
7566   *          This parameter can be one of the following values:
7567   *            @arg TIM_CHANNEL_1: TIM Channel 1
7568   *            @arg TIM_CHANNEL_2: TIM Channel 2
7569   *            @arg TIM_CHANNEL_3: TIM Channel 3
7570   *            @arg TIM_CHANNEL_4: TIM Channel 4
7571   * @param  ChannelState specifies the TIM Channel CCxE bit new state.
7572   *          This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7573   * @retval None
7574   */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7575 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7576 {
7577   uint32_t tmp;
7578 
7579   /* Check the parameters */
7580   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7581   assert_param(IS_TIM_CHANNELS(Channel));
7582 
7583   tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7584 
7585   /* Reset the CCxE Bit */
7586   TIMx->CCER &= ~tmp;
7587 
7588   /* Set or reset the CCxE Bit */
7589   TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7590 }
7591 
7592 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7593 /**
7594   * @brief  Reset interrupt callbacks to the legacy weak callbacks.
7595   * @param  htim pointer to a TIM_HandleTypeDef structure that contains
7596   *                the configuration information for TIM module.
7597   * @retval None
7598   */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7599 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7600 {
7601   /* Reset the TIM callback to the legacy weak callbacks */
7602   htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
7603   htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
7604   htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
7605   htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
7606   htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
7607   htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
7608   htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
7609   htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
7610   htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7611   htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
7612   htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
7613   htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
7614   htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
7615 }
7616 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7617 
7618 /**
7619   * @}
7620   */
7621 
7622 #endif /* HAL_TIM_MODULE_ENABLED */
7623 /**
7624   * @}
7625   */
7626 
7627 /**
7628   * @}
7629   */
7630