1 /**
2 ******************************************************************************
3 * @file stm32f0xx_hal_uart_ex.c
4 * @author MCD Application Team
5 * @brief Extended UART HAL module driver.
6 * This file provides firmware functions to manage the following extended
7 * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8 * + Initialization and de-initialization functions
9 * + Peripheral Control functions
10 *
11 *
12 ******************************************************************************
13 * @attention
14 *
15 * Copyright (c) 2016 STMicroelectronics.
16 * All rights reserved.
17 *
18 * This software is licensed under terms that can be found in the LICENSE file
19 * in the root directory of this software component.
20 * If no LICENSE file comes with this software, it is provided AS-IS.
21 *
22 ******************************************************************************
23 @verbatim
24 ==============================================================================
25 ##### UART peripheral extended features #####
26 ==============================================================================
27
28 (#) Declare a UART_HandleTypeDef handle structure.
29
30 (#) For the UART RS485 Driver Enable mode, initialize the UART registers
31 by calling the HAL_RS485Ex_Init() API.
32
33 @endverbatim
34 ******************************************************************************
35 */
36
37 /* Includes ------------------------------------------------------------------*/
38 #include "stm32f0xx_hal.h"
39
40 /** @addtogroup STM32F0xx_HAL_Driver
41 * @{
42 */
43
44 /** @defgroup UARTEx UARTEx
45 * @brief UART Extended HAL module driver
46 * @{
47 */
48
49 #ifdef HAL_UART_MODULE_ENABLED
50
51 /* Private typedef -----------------------------------------------------------*/
52 /* Private define ------------------------------------------------------------*/
53
54 /* Private macros ------------------------------------------------------------*/
55 /* Private variables ---------------------------------------------------------*/
56 /* Private function prototypes -----------------------------------------------*/
57 /** @defgroup UARTEx_Private_Functions UARTEx Private Functions
58 * @{
59 */
60 #if defined(USART_CR1_UESM)
61 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
62 #endif /* USART_CR1_UESM */
63 /**
64 * @}
65 */
66
67 /* Exported functions --------------------------------------------------------*/
68
69 /** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
70 * @{
71 */
72
73 /** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
74 * @brief Extended Initialization and Configuration Functions
75 *
76 @verbatim
77 ===============================================================================
78 ##### Initialization and Configuration functions #####
79 ===============================================================================
80 [..]
81 This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
82 in asynchronous mode.
83 (+) For the asynchronous mode the parameters below can be configured:
84 (++) Baud Rate
85 (++) Word Length
86 (++) Stop Bit
87 (++) Parity: If the parity is enabled, then the MSB bit of the data written
88 in the data register is transmitted but is changed by the parity bit.
89 (++) Hardware flow control
90 (++) Receiver/transmitter modes
91 (++) Over Sampling Method
92 (++) One-Bit Sampling Method
93 (+) For the asynchronous mode, the following advanced features can be configured as well:
94 (++) TX and/or RX pin level inversion
95 (++) data logical level inversion
96 (++) RX and TX pins swap
97 (++) RX overrun detection disabling
98 (++) DMA disabling on RX error
99 (++) MSB first on communication line
100 (++) auto Baud rate detection
101 [..]
102 The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
103 procedures (details for the procedures are available in reference manual).
104
105 @endverbatim
106
107 Depending on the frame length defined by the M1 and M0 bits (7-bit,
108 8-bit or 9-bit), the possible UART formats are listed in the
109 following table.
110
111 Table 1. UART frame format.
112 +-----------------------------------------------------------------------+
113 | M1 bit | M0 bit | PCE bit | UART frame |
114 |---------|---------|-----------|---------------------------------------|
115 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
116 |---------|---------|-----------|---------------------------------------|
117 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
118 |---------|---------|-----------|---------------------------------------|
119 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
120 |---------|---------|-----------|---------------------------------------|
121 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
122 |---------|---------|-----------|---------------------------------------|
123 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
124 |---------|---------|-----------|---------------------------------------|
125 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
126 +-----------------------------------------------------------------------+
127
128 * @{
129 */
130
131 /**
132 * @brief Initialize the RS485 Driver enable feature according to the specified
133 * parameters in the UART_InitTypeDef and creates the associated handle.
134 * @param huart UART handle.
135 * @param Polarity Select the driver enable polarity.
136 * This parameter can be one of the following values:
137 * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
138 * @arg @ref UART_DE_POLARITY_LOW DE signal is active low
139 * @param AssertionTime Driver Enable assertion time:
140 * 5-bit value defining the time between the activation of the DE (Driver Enable)
141 * signal and the beginning of the start bit. It is expressed in sample time
142 * units (1/8 or 1/16 bit time, depending on the oversampling rate)
143 * @param DeassertionTime Driver Enable deassertion time:
144 * 5-bit value defining the time between the end of the last stop bit, in a
145 * transmitted message, and the de-activation of the DE (Driver Enable) signal.
146 * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
147 * oversampling rate).
148 * @retval HAL status
149 */
HAL_RS485Ex_Init(UART_HandleTypeDef * huart,uint32_t Polarity,uint32_t AssertionTime,uint32_t DeassertionTime)150 HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
151 uint32_t DeassertionTime)
152 {
153 uint32_t temp;
154
155 /* Check the UART handle allocation */
156 if (huart == NULL)
157 {
158 return HAL_ERROR;
159 }
160 /* Check the Driver Enable UART instance */
161 assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
162
163 /* Check the Driver Enable polarity */
164 assert_param(IS_UART_DE_POLARITY(Polarity));
165
166 /* Check the Driver Enable assertion time */
167 assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
168
169 /* Check the Driver Enable deassertion time */
170 assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
171
172 if (huart->gState == HAL_UART_STATE_RESET)
173 {
174 /* Allocate lock resource and initialize it */
175 huart->Lock = HAL_UNLOCKED;
176
177 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
178 UART_InitCallbacksToDefault(huart);
179
180 if (huart->MspInitCallback == NULL)
181 {
182 huart->MspInitCallback = HAL_UART_MspInit;
183 }
184
185 /* Init the low level hardware */
186 huart->MspInitCallback(huart);
187 #else
188 /* Init the low level hardware : GPIO, CLOCK, CORTEX */
189 HAL_UART_MspInit(huart);
190 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
191 }
192
193 huart->gState = HAL_UART_STATE_BUSY;
194
195 /* Disable the Peripheral */
196 __HAL_UART_DISABLE(huart);
197
198 /* Perform advanced settings configuration */
199 /* For some items, configuration requires to be done prior TE and RE bits are set */
200 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
201 {
202 UART_AdvFeatureConfig(huart);
203 }
204
205 /* Set the UART Communication parameters */
206 if (UART_SetConfig(huart) == HAL_ERROR)
207 {
208 return HAL_ERROR;
209 }
210
211 /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
212 SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
213
214 /* Set the Driver Enable polarity */
215 MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
216
217 /* Set the Driver Enable assertion and deassertion times */
218 temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
219 temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
220 MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
221
222 /* Enable the Peripheral */
223 __HAL_UART_ENABLE(huart);
224
225 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
226 return (UART_CheckIdleState(huart));
227 }
228
229 /**
230 * @}
231 */
232
233 /** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
234 * @brief Extended functions
235 *
236 @verbatim
237 ===============================================================================
238 ##### IO operation functions #####
239 ===============================================================================
240 This subsection provides a set of Wakeup and FIFO mode related callback functions.
241
242 #if defined(USART_CR1_UESM)
243 #if defined(USART_CR3_WUFIE)
244 (#) Wakeup from Stop mode Callback:
245 (+) HAL_UARTEx_WakeupCallback()
246
247 #endif
248 #endif
249 @endverbatim
250 * @{
251 */
252
253 #if defined(USART_CR1_UESM)
254 #if defined(USART_CR3_WUFIE)
255 /**
256 * @brief UART wakeup from Stop mode callback.
257 * @param huart UART handle.
258 * @retval None
259 */
HAL_UARTEx_WakeupCallback(UART_HandleTypeDef * huart)260 __weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
261 {
262 /* Prevent unused argument(s) compilation warning */
263 UNUSED(huart);
264
265 /* NOTE : This function should not be modified, when the callback is needed,
266 the HAL_UARTEx_WakeupCallback can be implemented in the user file.
267 */
268 }
269
270 #endif /* USART_CR3_WUFIE */
271 #endif /* USART_CR1_UESM */
272
273 /**
274 * @}
275 */
276
277 /** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
278 * @brief Extended Peripheral Control functions
279 *
280 @verbatim
281 ===============================================================================
282 ##### Peripheral Control functions #####
283 ===============================================================================
284 [..] This section provides the following functions:
285 (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
286 detection length to more than 4 bits for multiprocessor address mark wake up.
287 #if defined(USART_CR1_UESM)
288 (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
289 trigger: address match, Start Bit detection or RXNE bit status.
290 (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
291 (+) HAL_UARTEx_DisableStopMode() API disables the above functionality
292 #endif
293
294 [..] This subsection also provides a set of additional functions providing enhanced reception
295 services to user. (For example, these functions allow application to handle use cases
296 where number of data to be received is unknown).
297
298 (#) Compared to standard reception services which only consider number of received
299 data elements as reception completion criteria, these functions also consider additional events
300 as triggers for updating reception status to caller :
301 (+) Detection of inactivity period (RX line has not been active for a given period).
302 (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
303 for 1 frame time, after last received byte.
304 (++) RX inactivity detected by RTO, i.e. line has been in idle state
305 for a programmable time, after last received byte.
306 (+) Detection that a specific character has been received.
307
308 (#) There are two mode of transfer:
309 (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
310 or till IDLE event occurs. Reception is handled only during function execution.
311 When function exits, no data reception could occur. HAL status and number of actually received data elements,
312 are returned by function after finishing transfer.
313 (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
314 These API's return the HAL status.
315 The end of the data processing will be indicated through the
316 dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
317 The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
318 The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
319
320 (#) Blocking mode API:
321 (+) HAL_UARTEx_ReceiveToIdle()
322
323 (#) Non-Blocking mode API with Interrupt:
324 (+) HAL_UARTEx_ReceiveToIdle_IT()
325
326 (#) Non-Blocking mode API with DMA:
327 (+) HAL_UARTEx_ReceiveToIdle_DMA()
328
329 @endverbatim
330 * @{
331 */
332
333 /**
334 * @brief By default in multiprocessor mode, when the wake up method is set
335 * to address mark, the UART handles only 4-bit long addresses detection;
336 * this API allows to enable longer addresses detection (6-, 7- or 8-bit
337 * long).
338 * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
339 * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
340 * @param huart UART handle.
341 * @param AddressLength This parameter can be one of the following values:
342 * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
343 * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
344 * @retval HAL status
345 */
HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef * huart,uint32_t AddressLength)346 HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
347 {
348 /* Check the UART handle allocation */
349 if (huart == NULL)
350 {
351 return HAL_ERROR;
352 }
353
354 /* Check the address length parameter */
355 assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
356
357 huart->gState = HAL_UART_STATE_BUSY;
358
359 /* Disable the Peripheral */
360 __HAL_UART_DISABLE(huart);
361
362 /* Set the address length */
363 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
364
365 /* Enable the Peripheral */
366 __HAL_UART_ENABLE(huart);
367
368 /* TEACK and/or REACK to check before moving huart->gState to Ready */
369 return (UART_CheckIdleState(huart));
370 }
371
372 #if defined(USART_CR1_UESM)
373 /**
374 * @brief Set Wakeup from Stop mode interrupt flag selection.
375 * @note It is the application responsibility to enable the interrupt used as
376 * usart_wkup interrupt source before entering low-power mode.
377 * @param huart UART handle.
378 * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
379 * This parameter can be one of the following values:
380 * @arg @ref UART_WAKEUP_ON_ADDRESS
381 * @arg @ref UART_WAKEUP_ON_STARTBIT
382 * @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
383 * @retval HAL status
384 */
HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)385 HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
386 {
387 HAL_StatusTypeDef status = HAL_OK;
388 uint32_t tickstart;
389
390 /* check the wake-up from stop mode UART instance */
391 assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
392 /* check the wake-up selection parameter */
393 assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
394
395 /* Process Locked */
396 __HAL_LOCK(huart);
397
398 huart->gState = HAL_UART_STATE_BUSY;
399
400 /* Disable the Peripheral */
401 __HAL_UART_DISABLE(huart);
402
403 #if defined(USART_CR3_WUS)
404 /* Set the wake-up selection scheme */
405 MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
406 #endif /* USART_CR3_WUS */
407
408 if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
409 {
410 UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
411 }
412
413 /* Enable the Peripheral */
414 __HAL_UART_ENABLE(huart);
415
416 /* Init tickstart for timeout management */
417 tickstart = HAL_GetTick();
418
419 /* Wait until REACK flag is set */
420 if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
421 {
422 status = HAL_TIMEOUT;
423 }
424 else
425 {
426 /* Initialize the UART State */
427 huart->gState = HAL_UART_STATE_READY;
428 }
429
430 /* Process Unlocked */
431 __HAL_UNLOCK(huart);
432
433 return status;
434 }
435
436 /**
437 * @brief Enable UART Stop Mode.
438 * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
439 * @param huart UART handle.
440 * @retval HAL status
441 */
HAL_UARTEx_EnableStopMode(UART_HandleTypeDef * huart)442 HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
443 {
444 /* Process Locked */
445 __HAL_LOCK(huart);
446
447 /* Set UESM bit */
448 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
449
450 /* Process Unlocked */
451 __HAL_UNLOCK(huart);
452
453 return HAL_OK;
454 }
455
456 /**
457 * @brief Disable UART Stop Mode.
458 * @param huart UART handle.
459 * @retval HAL status
460 */
HAL_UARTEx_DisableStopMode(UART_HandleTypeDef * huart)461 HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
462 {
463 /* Process Locked */
464 __HAL_LOCK(huart);
465
466 /* Clear UESM bit */
467 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
468
469 /* Process Unlocked */
470 __HAL_UNLOCK(huart);
471
472 return HAL_OK;
473 }
474
475 #endif /* USART_CR1_UESM */
476 /**
477 * @brief Receive an amount of data in blocking mode till either the expected number of data
478 * is received or an IDLE event occurs.
479 * @note HAL_OK is returned if reception is completed (expected number of data has been received)
480 * or if reception is stopped after IDLE event (less than the expected number of data has been received)
481 * In this case, RxLen output parameter indicates number of data available in reception buffer.
482 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
483 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
484 * of uint16_t available through pData.
485 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
486 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
487 * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
488 * use of specific alignment compilation directives or pragmas might be required to ensure proper
489 * alignment for pData.
490 * @param huart UART handle.
491 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
492 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
493 * @param RxLen Number of data elements finally received
494 * (could be lower than Size, in case reception ends on IDLE event)
495 * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
496 * @retval HAL status
497 */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)498 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
499 uint32_t Timeout)
500 {
501 uint8_t *pdata8bits;
502 uint16_t *pdata16bits;
503 uint16_t uhMask;
504 uint32_t tickstart;
505
506 /* Check that a Rx process is not already ongoing */
507 if (huart->RxState == HAL_UART_STATE_READY)
508 {
509 if ((pData == NULL) || (Size == 0U))
510 {
511 return HAL_ERROR;
512 }
513
514 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
515 should be aligned on a uint16_t frontier, as data to be received from RDR will be
516 handled through a uint16_t cast. */
517 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
518 {
519 if ((((uint32_t)pData) & 1U) != 0U)
520 {
521 return HAL_ERROR;
522 }
523 }
524
525 huart->ErrorCode = HAL_UART_ERROR_NONE;
526 huart->RxState = HAL_UART_STATE_BUSY_RX;
527 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
528 huart->RxEventType = HAL_UART_RXEVENT_TC;
529
530 /* Init tickstart for timeout management */
531 tickstart = HAL_GetTick();
532
533 huart->RxXferSize = Size;
534 huart->RxXferCount = Size;
535
536 /* Computation of UART mask to apply to RDR register */
537 UART_MASK_COMPUTATION(huart);
538 uhMask = huart->Mask;
539
540 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
541 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
542 {
543 pdata8bits = NULL;
544 pdata16bits = (uint16_t *) pData;
545 }
546 else
547 {
548 pdata8bits = pData;
549 pdata16bits = NULL;
550 }
551
552 /* Initialize output number of received elements */
553 *RxLen = 0U;
554
555 /* as long as data have to be received */
556 while (huart->RxXferCount > 0U)
557 {
558 /* Check if IDLE flag is set */
559 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
560 {
561 /* Clear IDLE flag in ISR */
562 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
563
564 /* If Set, but no data ever received, clear flag without exiting loop */
565 /* If Set, and data has already been received, this means Idle Event is valid : End reception */
566 if (*RxLen > 0U)
567 {
568 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
569 huart->RxState = HAL_UART_STATE_READY;
570
571 return HAL_OK;
572 }
573 }
574
575 /* Check if RXNE flag is set */
576 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
577 {
578 if (pdata8bits == NULL)
579 {
580 *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
581 pdata16bits++;
582 }
583 else
584 {
585 *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
586 pdata8bits++;
587 }
588 /* Increment number of received elements */
589 *RxLen += 1U;
590 huart->RxXferCount--;
591 }
592
593 /* Check for the Timeout */
594 if (Timeout != HAL_MAX_DELAY)
595 {
596 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
597 {
598 huart->RxState = HAL_UART_STATE_READY;
599
600 return HAL_TIMEOUT;
601 }
602 }
603 }
604
605 /* Set number of received elements in output parameter : RxLen */
606 *RxLen = huart->RxXferSize - huart->RxXferCount;
607 /* At end of Rx process, restore huart->RxState to Ready */
608 huart->RxState = HAL_UART_STATE_READY;
609
610 return HAL_OK;
611 }
612 else
613 {
614 return HAL_BUSY;
615 }
616 }
617
618 /**
619 * @brief Receive an amount of data in interrupt mode till either the expected number of data
620 * is received or an IDLE event occurs.
621 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
622 * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
623 * number of received data elements.
624 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
625 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
626 * of uint16_t available through pData.
627 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
628 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
629 * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
630 * use of specific alignment compilation directives or pragmas might be required
631 * to ensure proper alignment for pData.
632 * @param huart UART handle.
633 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
634 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
635 * @retval HAL status
636 */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)637 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
638 {
639 HAL_StatusTypeDef status = HAL_OK;
640
641 /* Check that a Rx process is not already ongoing */
642 if (huart->RxState == HAL_UART_STATE_READY)
643 {
644 if ((pData == NULL) || (Size == 0U))
645 {
646 return HAL_ERROR;
647 }
648
649 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
650 should be aligned on a uint16_t frontier, as data to be received from RDR will be
651 handled through a uint16_t cast. */
652 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
653 {
654 if ((((uint32_t)pData) & 1U) != 0U)
655 {
656 return HAL_ERROR;
657 }
658 }
659
660 /* Set Reception type to reception till IDLE Event*/
661 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
662 huart->RxEventType = HAL_UART_RXEVENT_TC;
663
664 (void)UART_Start_Receive_IT(huart, pData, Size);
665
666 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
667 {
668 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
669 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
670 }
671 else
672 {
673 /* In case of errors already pending when reception is started,
674 Interrupts may have already been raised and lead to reception abortion.
675 (Overrun error for instance).
676 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
677 status = HAL_ERROR;
678 }
679
680 return status;
681 }
682 else
683 {
684 return HAL_BUSY;
685 }
686 }
687
688 /**
689 * @brief Receive an amount of data in DMA mode till either the expected number
690 * of data is received or an IDLE event occurs.
691 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
692 * to DMA services, transferring automatically received data elements in user reception buffer and
693 * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
694 * reception phase as ended. In all cases, callback execution will indicate number of received data elements.
695 * @note When the UART parity is enabled (PCE = 1), the received data contain
696 * the parity bit (MSB position).
697 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
698 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
699 * of uint16_t available through pData.
700 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
701 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
702 * (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
703 * use of specific alignment compilation directives or pragmas might be required
704 * to ensure proper alignment for pData.
705 * @param huart UART handle.
706 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
707 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
708 * @retval HAL status
709 */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)710 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
711 {
712 HAL_StatusTypeDef status;
713
714 /* Check that a Rx process is not already ongoing */
715 if (huart->RxState == HAL_UART_STATE_READY)
716 {
717 if ((pData == NULL) || (Size == 0U))
718 {
719 return HAL_ERROR;
720 }
721
722 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
723 should be aligned on a uint16_t frontier, as data copy from RDR will be
724 handled by DMA from a uint16_t frontier. */
725 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
726 {
727 if ((((uint32_t)pData) & 1U) != 0U)
728 {
729 return HAL_ERROR;
730 }
731 }
732
733 /* Set Reception type to reception till IDLE Event*/
734 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
735 huart->RxEventType = HAL_UART_RXEVENT_TC;
736
737 status = UART_Start_Receive_DMA(huart, pData, Size);
738
739 /* Check Rx process has been successfully started */
740 if (status == HAL_OK)
741 {
742 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
743 {
744 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
745 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
746 }
747 else
748 {
749 /* In case of errors already pending when reception is started,
750 Interrupts may have already been raised and lead to reception abortion.
751 (Overrun error for instance).
752 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
753 status = HAL_ERROR;
754 }
755 }
756
757 return status;
758 }
759 else
760 {
761 return HAL_BUSY;
762 }
763 }
764
765 /**
766 * @brief Provide Rx Event type that has lead to RxEvent callback execution.
767 * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
768 * of reception process is provided to application through calls of Rx Event callback (either default one
769 * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
770 * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
771 * to Rx Event callback execution.
772 * @note This function is expected to be called within the user implementation of Rx Event Callback,
773 * in order to provide the accurate value :
774 * In Interrupt Mode :
775 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
776 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
777 * received data is lower than expected one)
778 * In DMA Mode :
779 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
780 * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
781 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
782 * received data is lower than expected one).
783 * In DMA mode, RxEvent callback could be called several times;
784 * When DMA is configured in Normal Mode, HT event does not stop Reception process;
785 * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
786 * @param huart UART handle.
787 * @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
788 */
HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef * huart)789 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef *huart)
790 {
791 /* Return Rx Event type value, as stored in UART handle */
792 return (huart->RxEventType);
793 }
794
795 /**
796 * @}
797 */
798
799 /**
800 * @}
801 */
802
803 /** @addtogroup UARTEx_Private_Functions
804 * @{
805 */
806 #if defined(USART_CR1_UESM)
807
808 /**
809 * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
810 * @param huart UART handle.
811 * @param WakeUpSelection UART wake up from stop mode parameters.
812 * @retval None
813 */
UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)814 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
815 {
816 assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
817
818 /* Set the USART address length */
819 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
820
821 /* Set the USART address node */
822 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
823 }
824 #endif /* USART_CR1_UESM */
825
826 /**
827 * @}
828 */
829
830 #endif /* HAL_UART_MODULE_ENABLED */
831
832 /**
833 * @}
834 */
835
836 /**
837 * @}
838 */
839
840