1 /**
2 ******************************************************************************
3 * @file stm32c0xx_hal_tim.c
4 * @author MCD Application Team
5 * @brief TIM HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Timer (TIM) peripheral:
8 * + TIM Time Base Initialization
9 * + TIM Time Base Start
10 * + TIM Time Base Start Interruption
11 * + TIM Time Base Start DMA
12 * + TIM Output Compare/PWM Initialization
13 * + TIM Output Compare/PWM Channel Configuration
14 * + TIM Output Compare/PWM Start
15 * + TIM Output Compare/PWM Start Interruption
16 * + TIM Output Compare/PWM Start DMA
17 * + TIM Input Capture Initialization
18 * + TIM Input Capture Channel Configuration
19 * + TIM Input Capture Start
20 * + TIM Input Capture Start Interruption
21 * + TIM Input Capture Start DMA
22 * + TIM One Pulse Initialization
23 * + TIM One Pulse Channel Configuration
24 * + TIM One Pulse Start
25 * + TIM Encoder Interface Initialization
26 * + TIM Encoder Interface Start
27 * + TIM Encoder Interface Start Interruption
28 * + TIM Encoder Interface Start DMA
29 * + Commutation Event configuration with Interruption and DMA
30 * + TIM OCRef clear configuration
31 * + TIM External Clock configuration
32 ******************************************************************************
33 * @attention
34 *
35 * Copyright (c) 2022 STMicroelectronics.
36 * All rights reserved.
37 *
38 * This software is licensed under terms that can be found in the LICENSE file
39 * in the root directory of this software component.
40 * If no LICENSE file comes with this software, it is provided AS-IS.
41 *
42 ******************************************************************************
43 @verbatim
44 ==============================================================================
45 ##### TIMER Generic features #####
46 ==============================================================================
47 [..] The Timer features include:
48 (#) 16-bit up, down, up/down auto-reload counter.
49 (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50 counter clock frequency either by any factor between 1 and 65536.
51 (#) Up to 4 independent channels for:
52 (++) Input Capture
53 (++) Output Compare
54 (++) PWM generation (Edge and Center-aligned Mode)
55 (++) One-pulse mode output
56 (#) Synchronization circuit to control the timer with external signals and to interconnect
57 several timers together.
58 (#) Supports incremental encoder for positioning purposes
59
60 ##### How to use this driver #####
61 ==============================================================================
62 [..]
63 (#) Initialize the TIM low level resources by implementing the following functions
64 depending on the selected feature:
65 (++) Time Base : HAL_TIM_Base_MspInit()
66 (++) Input Capture : HAL_TIM_IC_MspInit()
67 (++) Output Compare : HAL_TIM_OC_MspInit()
68 (++) PWM generation : HAL_TIM_PWM_MspInit()
69 (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70 (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71
72 (#) Initialize the TIM low level resources :
73 (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74 (##) TIM pins configuration
75 (+++) Enable the clock for the TIM GPIOs using the following function:
76 __HAL_RCC_GPIOx_CLK_ENABLE();
77 (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78
79 (#) The external Clock can be configured, if needed (the default clock is the
80 internal clock from the APBx), using the following function:
81 HAL_TIM_ConfigClockSource, the clock configuration should be done before
82 any start function.
83
84 (#) Configure the TIM in the desired functioning mode using one of the
85 Initialization function of this driver:
86 (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87 (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88 Output Compare signal.
89 (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90 PWM signal.
91 (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92 external signal.
93 (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94 in One Pulse Mode.
95 (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96
97 (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98 (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99 (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100 (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101 (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102 (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103 (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104
105 (#) The DMA Burst is managed with the two following functions:
106 HAL_TIM_DMABurst_WriteStart()
107 HAL_TIM_DMABurst_ReadStart()
108
109 *** Callback registration ***
110 =============================================
111
112 [..]
113 The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114 allows the user to configure dynamically the driver callbacks.
115
116 [..]
117 Use Function HAL_TIM_RegisterCallback() to register a callback.
118 HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119 the Callback ID and a pointer to the user callback function.
120
121 [..]
122 Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123 weak function.
124 HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125 and the Callback ID.
126
127 [..]
128 These functions allow to register/unregister following callbacks:
129 (+) Base_MspInitCallback : TIM Base Msp Init Callback.
130 (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
131 (+) IC_MspInitCallback : TIM IC Msp Init Callback.
132 (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
133 (+) OC_MspInitCallback : TIM OC Msp Init Callback.
134 (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
135 (+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
136 (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
137 (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
138 (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
139 (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
140 (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
141 (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
142 (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
143 (+) PeriodElapsedCallback : TIM Period Elapsed Callback.
144 (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
145 (+) TriggerCallback : TIM Trigger Callback.
146 (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
147 (+) IC_CaptureCallback : TIM Input Capture Callback.
148 (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
149 (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
150 (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
151 (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152 (+) ErrorCallback : TIM Error Callback.
153 (+) CommutationCallback : TIM Commutation Callback.
154 (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
155 (+) BreakCallback : TIM Break Callback.
156 (+) Break2Callback : TIM Break2 Callback.
157
158 [..]
159 By default, after the Init and when the state is HAL_TIM_STATE_RESET
160 all interrupt callbacks are set to the corresponding weak functions:
161 examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
162
163 [..]
164 Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
165 functionalities in the Init / DeInit only when these callbacks are null
166 (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
167 keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
168
169 [..]
170 Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
171 Exception done MspInit / MspDeInit that can be registered / unregistered
172 in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
173 thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
174 In that case first register the MspInit/MspDeInit user callbacks
175 using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
176
177 [..]
178 When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
179 not defined, the callback registration feature is not available and all callbacks
180 are set to the corresponding weak functions.
181
182 @endverbatim
183 ******************************************************************************
184 */
185
186 /* Includes ------------------------------------------------------------------*/
187 #include "stm32c0xx_hal.h"
188
189 /** @addtogroup STM32C0xx_HAL_Driver
190 * @{
191 */
192
193 /** @defgroup TIM TIM
194 * @brief TIM HAL module driver
195 * @{
196 */
197
198 #ifdef HAL_TIM_MODULE_ENABLED
199
200 /* Private typedef -----------------------------------------------------------*/
201 /* Private define ------------------------------------------------------------*/
202 /** @addtogroup TIM_Private_Constants
203 * @{
204 */
205 #define TIMx_OR1_OCREF_CLR 0x00000001U
206 /**
207 * @}
208 */
209
210 /* Private macros ------------------------------------------------------------*/
211 /* Private variables ---------------------------------------------------------*/
212 /* Private function prototypes -----------------------------------------------*/
213 /** @addtogroup TIM_Private_Functions
214 * @{
215 */
216 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
217 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
218 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
219 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
220 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
221 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
222 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
223 uint32_t TIM_ICFilter);
224 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
225 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
226 uint32_t TIM_ICFilter);
227 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
228 uint32_t TIM_ICFilter);
229 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
230 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
231 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
232 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
233 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
234 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
235 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
236 const TIM_SlaveConfigTypeDef *sSlaveConfig);
237 /**
238 * @}
239 */
240 /* Exported functions --------------------------------------------------------*/
241
242 /** @defgroup TIM_Exported_Functions TIM Exported Functions
243 * @{
244 */
245
246 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
247 * @brief Time Base functions
248 *
249 @verbatim
250 ==============================================================================
251 ##### Time Base functions #####
252 ==============================================================================
253 [..]
254 This section provides functions allowing to:
255 (+) Initialize and configure the TIM base.
256 (+) De-initialize the TIM base.
257 (+) Start the Time Base.
258 (+) Stop the Time Base.
259 (+) Start the Time Base and enable interrupt.
260 (+) Stop the Time Base and disable interrupt.
261 (+) Start the Time Base and enable DMA transfer.
262 (+) Stop the Time Base and disable DMA transfer.
263
264 @endverbatim
265 * @{
266 */
267 /**
268 * @brief Initializes the TIM Time base Unit according to the specified
269 * parameters in the TIM_HandleTypeDef and initialize the associated handle.
270 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
271 * requires a timer reset to avoid unexpected direction
272 * due to DIR bit readonly in center aligned mode.
273 * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
274 * @param htim TIM Base handle
275 * @retval HAL status
276 */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)277 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
278 {
279 /* Check the TIM handle allocation */
280 if (htim == NULL)
281 {
282 return HAL_ERROR;
283 }
284
285 /* Check the parameters */
286 assert_param(IS_TIM_INSTANCE(htim->Instance));
287 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
288 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
289 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
290 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
291
292 if (htim->State == HAL_TIM_STATE_RESET)
293 {
294 /* Allocate lock resource and initialize it */
295 htim->Lock = HAL_UNLOCKED;
296
297 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
298 /* Reset interrupt callbacks to legacy weak callbacks */
299 TIM_ResetCallback(htim);
300
301 if (htim->Base_MspInitCallback == NULL)
302 {
303 htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
304 }
305 /* Init the low level hardware : GPIO, CLOCK, NVIC */
306 htim->Base_MspInitCallback(htim);
307 #else
308 /* Init the low level hardware : GPIO, CLOCK, NVIC */
309 HAL_TIM_Base_MspInit(htim);
310 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
311 }
312
313 /* Set the TIM state */
314 htim->State = HAL_TIM_STATE_BUSY;
315
316 /* Set the Time Base configuration */
317 TIM_Base_SetConfig(htim->Instance, &htim->Init);
318
319 /* Initialize the DMA burst operation state */
320 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
321
322 /* Initialize the TIM channels state */
323 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
324 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
325
326 /* Initialize the TIM state*/
327 htim->State = HAL_TIM_STATE_READY;
328
329 return HAL_OK;
330 }
331
332 /**
333 * @brief DeInitializes the TIM Base peripheral
334 * @param htim TIM Base handle
335 * @retval HAL status
336 */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)337 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
338 {
339 /* Check the parameters */
340 assert_param(IS_TIM_INSTANCE(htim->Instance));
341
342 htim->State = HAL_TIM_STATE_BUSY;
343
344 /* Disable the TIM Peripheral Clock */
345 __HAL_TIM_DISABLE(htim);
346
347 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
348 if (htim->Base_MspDeInitCallback == NULL)
349 {
350 htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
351 }
352 /* DeInit the low level hardware */
353 htim->Base_MspDeInitCallback(htim);
354 #else
355 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
356 HAL_TIM_Base_MspDeInit(htim);
357 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
358
359 /* Change the DMA burst operation state */
360 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
361
362 /* Change the TIM channels state */
363 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
364 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
365
366 /* Change TIM state */
367 htim->State = HAL_TIM_STATE_RESET;
368
369 /* Release Lock */
370 __HAL_UNLOCK(htim);
371
372 return HAL_OK;
373 }
374
375 /**
376 * @brief Initializes the TIM Base MSP.
377 * @param htim TIM Base handle
378 * @retval None
379 */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)380 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
381 {
382 /* Prevent unused argument(s) compilation warning */
383 UNUSED(htim);
384
385 /* NOTE : This function should not be modified, when the callback is needed,
386 the HAL_TIM_Base_MspInit could be implemented in the user file
387 */
388 }
389
390 /**
391 * @brief DeInitializes TIM Base MSP.
392 * @param htim TIM Base handle
393 * @retval None
394 */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)395 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
396 {
397 /* Prevent unused argument(s) compilation warning */
398 UNUSED(htim);
399
400 /* NOTE : This function should not be modified, when the callback is needed,
401 the HAL_TIM_Base_MspDeInit could be implemented in the user file
402 */
403 }
404
405
406 /**
407 * @brief Starts the TIM Base generation.
408 * @param htim TIM Base handle
409 * @retval HAL status
410 */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)411 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
412 {
413 uint32_t tmpsmcr;
414
415 /* Check the parameters */
416 assert_param(IS_TIM_INSTANCE(htim->Instance));
417
418 /* Check the TIM state */
419 if (htim->State != HAL_TIM_STATE_READY)
420 {
421 return HAL_ERROR;
422 }
423
424 /* Set the TIM state */
425 htim->State = HAL_TIM_STATE_BUSY;
426
427 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
428 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
429 {
430 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
431 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
432 {
433 __HAL_TIM_ENABLE(htim);
434 }
435 }
436 else
437 {
438 __HAL_TIM_ENABLE(htim);
439 }
440
441 /* Return function status */
442 return HAL_OK;
443 }
444
445 /**
446 * @brief Stops the TIM Base generation.
447 * @param htim TIM Base handle
448 * @retval HAL status
449 */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)450 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
451 {
452 /* Check the parameters */
453 assert_param(IS_TIM_INSTANCE(htim->Instance));
454
455 /* Disable the Peripheral */
456 __HAL_TIM_DISABLE(htim);
457
458 /* Set the TIM state */
459 htim->State = HAL_TIM_STATE_READY;
460
461 /* Return function status */
462 return HAL_OK;
463 }
464
465 /**
466 * @brief Starts the TIM Base generation in interrupt mode.
467 * @param htim TIM Base handle
468 * @retval HAL status
469 */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)470 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
471 {
472 uint32_t tmpsmcr;
473
474 /* Check the parameters */
475 assert_param(IS_TIM_INSTANCE(htim->Instance));
476
477 /* Check the TIM state */
478 if (htim->State != HAL_TIM_STATE_READY)
479 {
480 return HAL_ERROR;
481 }
482
483 /* Set the TIM state */
484 htim->State = HAL_TIM_STATE_BUSY;
485
486 /* Enable the TIM Update interrupt */
487 __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
488
489 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
490 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
491 {
492 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
493 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
494 {
495 __HAL_TIM_ENABLE(htim);
496 }
497 }
498 else
499 {
500 __HAL_TIM_ENABLE(htim);
501 }
502
503 /* Return function status */
504 return HAL_OK;
505 }
506
507 /**
508 * @brief Stops the TIM Base generation in interrupt mode.
509 * @param htim TIM Base handle
510 * @retval HAL status
511 */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)512 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
513 {
514 /* Check the parameters */
515 assert_param(IS_TIM_INSTANCE(htim->Instance));
516
517 /* Disable the TIM Update interrupt */
518 __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
519
520 /* Disable the Peripheral */
521 __HAL_TIM_DISABLE(htim);
522
523 /* Set the TIM state */
524 htim->State = HAL_TIM_STATE_READY;
525
526 /* Return function status */
527 return HAL_OK;
528 }
529
530 /**
531 * @brief Starts the TIM Base generation in DMA mode.
532 * @param htim TIM Base handle
533 * @param pData The source Buffer address.
534 * @param Length The length of data to be transferred from memory to peripheral.
535 * @retval HAL status
536 */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)537 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
538 {
539 uint32_t tmpsmcr;
540
541 /* Check the parameters */
542 assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
543
544 /* Set the TIM state */
545 if (htim->State == HAL_TIM_STATE_BUSY)
546 {
547 return HAL_BUSY;
548 }
549 else if (htim->State == HAL_TIM_STATE_READY)
550 {
551 if ((pData == NULL) || (Length == 0U))
552 {
553 return HAL_ERROR;
554 }
555 else
556 {
557 htim->State = HAL_TIM_STATE_BUSY;
558 }
559 }
560 else
561 {
562 return HAL_ERROR;
563 }
564
565 /* Set the DMA Period elapsed callbacks */
566 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
567 htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
568
569 /* Set the DMA error callback */
570 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
571
572 /* Enable the DMA channel */
573 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
574 Length) != HAL_OK)
575 {
576 /* Return error status */
577 return HAL_ERROR;
578 }
579
580 /* Enable the TIM Update DMA request */
581 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
582
583 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
584 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
585 {
586 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
587 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
588 {
589 __HAL_TIM_ENABLE(htim);
590 }
591 }
592 else
593 {
594 __HAL_TIM_ENABLE(htim);
595 }
596
597 /* Return function status */
598 return HAL_OK;
599 }
600
601 /**
602 * @brief Stops the TIM Base generation in DMA mode.
603 * @param htim TIM Base handle
604 * @retval HAL status
605 */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)606 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
607 {
608 /* Check the parameters */
609 assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
610
611 /* Disable the TIM Update DMA request */
612 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
613
614 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
615
616 /* Disable the Peripheral */
617 __HAL_TIM_DISABLE(htim);
618
619 /* Set the TIM state */
620 htim->State = HAL_TIM_STATE_READY;
621
622 /* Return function status */
623 return HAL_OK;
624 }
625
626 /**
627 * @}
628 */
629
630 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
631 * @brief TIM Output Compare functions
632 *
633 @verbatim
634 ==============================================================================
635 ##### TIM Output Compare functions #####
636 ==============================================================================
637 [..]
638 This section provides functions allowing to:
639 (+) Initialize and configure the TIM Output Compare.
640 (+) De-initialize the TIM Output Compare.
641 (+) Start the TIM Output Compare.
642 (+) Stop the TIM Output Compare.
643 (+) Start the TIM Output Compare and enable interrupt.
644 (+) Stop the TIM Output Compare and disable interrupt.
645 (+) Start the TIM Output Compare and enable DMA transfer.
646 (+) Stop the TIM Output Compare and disable DMA transfer.
647
648 @endverbatim
649 * @{
650 */
651 /**
652 * @brief Initializes the TIM Output Compare according to the specified
653 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
654 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
655 * requires a timer reset to avoid unexpected direction
656 * due to DIR bit readonly in center aligned mode.
657 * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
658 * @param htim TIM Output Compare handle
659 * @retval HAL status
660 */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)661 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
662 {
663 /* Check the TIM handle allocation */
664 if (htim == NULL)
665 {
666 return HAL_ERROR;
667 }
668
669 /* Check the parameters */
670 assert_param(IS_TIM_INSTANCE(htim->Instance));
671 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
672 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
673 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
674 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
675
676 if (htim->State == HAL_TIM_STATE_RESET)
677 {
678 /* Allocate lock resource and initialize it */
679 htim->Lock = HAL_UNLOCKED;
680
681 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
682 /* Reset interrupt callbacks to legacy weak callbacks */
683 TIM_ResetCallback(htim);
684
685 if (htim->OC_MspInitCallback == NULL)
686 {
687 htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
688 }
689 /* Init the low level hardware : GPIO, CLOCK, NVIC */
690 htim->OC_MspInitCallback(htim);
691 #else
692 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
693 HAL_TIM_OC_MspInit(htim);
694 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
695 }
696
697 /* Set the TIM state */
698 htim->State = HAL_TIM_STATE_BUSY;
699
700 /* Init the base time for the Output Compare */
701 TIM_Base_SetConfig(htim->Instance, &htim->Init);
702
703 /* Initialize the DMA burst operation state */
704 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
705
706 /* Initialize the TIM channels state */
707 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
708 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
709
710 /* Initialize the TIM state*/
711 htim->State = HAL_TIM_STATE_READY;
712
713 return HAL_OK;
714 }
715
716 /**
717 * @brief DeInitializes the TIM peripheral
718 * @param htim TIM Output Compare handle
719 * @retval HAL status
720 */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)721 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
722 {
723 /* Check the parameters */
724 assert_param(IS_TIM_INSTANCE(htim->Instance));
725
726 htim->State = HAL_TIM_STATE_BUSY;
727
728 /* Disable the TIM Peripheral Clock */
729 __HAL_TIM_DISABLE(htim);
730
731 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
732 if (htim->OC_MspDeInitCallback == NULL)
733 {
734 htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
735 }
736 /* DeInit the low level hardware */
737 htim->OC_MspDeInitCallback(htim);
738 #else
739 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
740 HAL_TIM_OC_MspDeInit(htim);
741 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
742
743 /* Change the DMA burst operation state */
744 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
745
746 /* Change the TIM channels state */
747 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
748 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
749
750 /* Change TIM state */
751 htim->State = HAL_TIM_STATE_RESET;
752
753 /* Release Lock */
754 __HAL_UNLOCK(htim);
755
756 return HAL_OK;
757 }
758
759 /**
760 * @brief Initializes the TIM Output Compare MSP.
761 * @param htim TIM Output Compare handle
762 * @retval None
763 */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)764 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
765 {
766 /* Prevent unused argument(s) compilation warning */
767 UNUSED(htim);
768
769 /* NOTE : This function should not be modified, when the callback is needed,
770 the HAL_TIM_OC_MspInit could be implemented in the user file
771 */
772 }
773
774 /**
775 * @brief DeInitializes TIM Output Compare MSP.
776 * @param htim TIM Output Compare handle
777 * @retval None
778 */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)779 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
780 {
781 /* Prevent unused argument(s) compilation warning */
782 UNUSED(htim);
783
784 /* NOTE : This function should not be modified, when the callback is needed,
785 the HAL_TIM_OC_MspDeInit could be implemented in the user file
786 */
787 }
788
789 /**
790 * @brief Starts the TIM Output Compare signal generation.
791 * @param htim TIM Output Compare handle
792 * @param Channel TIM Channel to be enabled
793 * This parameter can be one of the following values:
794 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
795 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
796 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
797 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
798 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
799 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
800 * @retval HAL status
801 */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)802 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
803 {
804 uint32_t tmpsmcr;
805
806 /* Check the parameters */
807 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
808
809 /* Check the TIM channel state */
810 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
811 {
812 return HAL_ERROR;
813 }
814
815 /* Set the TIM channel state */
816 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
817
818 /* Enable the Output compare channel */
819 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
820
821 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
822 {
823 /* Enable the main output */
824 __HAL_TIM_MOE_ENABLE(htim);
825 }
826
827 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
828 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
829 {
830 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
831 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
832 {
833 __HAL_TIM_ENABLE(htim);
834 }
835 }
836 else
837 {
838 __HAL_TIM_ENABLE(htim);
839 }
840
841 /* Return function status */
842 return HAL_OK;
843 }
844
845 /**
846 * @brief Stops the TIM Output Compare signal generation.
847 * @param htim TIM Output Compare handle
848 * @param Channel TIM Channel to be disabled
849 * This parameter can be one of the following values:
850 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
851 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
852 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
853 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
854 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
855 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
856 * @retval HAL status
857 */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)858 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
859 {
860 /* Check the parameters */
861 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
862
863 /* Disable the Output compare channel */
864 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
865
866 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
867 {
868 /* Disable the Main Output */
869 __HAL_TIM_MOE_DISABLE(htim);
870 }
871
872 /* Disable the Peripheral */
873 __HAL_TIM_DISABLE(htim);
874
875 /* Set the TIM channel state */
876 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
877
878 /* Return function status */
879 return HAL_OK;
880 }
881
882 /**
883 * @brief Starts the TIM Output Compare signal generation in interrupt mode.
884 * @param htim TIM Output Compare handle
885 * @param Channel TIM Channel to be enabled
886 * This parameter can be one of the following values:
887 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
888 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
889 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
890 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
891 * @retval HAL status
892 */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)893 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
894 {
895 HAL_StatusTypeDef status = HAL_OK;
896 uint32_t tmpsmcr;
897
898 /* Check the parameters */
899 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
900
901 /* Check the TIM channel state */
902 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
903 {
904 return HAL_ERROR;
905 }
906
907 /* Set the TIM channel state */
908 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
909
910 switch (Channel)
911 {
912 case TIM_CHANNEL_1:
913 {
914 /* Enable the TIM Capture/Compare 1 interrupt */
915 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
916 break;
917 }
918
919 case TIM_CHANNEL_2:
920 {
921 /* Enable the TIM Capture/Compare 2 interrupt */
922 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
923 break;
924 }
925
926 case TIM_CHANNEL_3:
927 {
928 /* Enable the TIM Capture/Compare 3 interrupt */
929 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
930 break;
931 }
932
933 case TIM_CHANNEL_4:
934 {
935 /* Enable the TIM Capture/Compare 4 interrupt */
936 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
937 break;
938 }
939
940 default:
941 status = HAL_ERROR;
942 break;
943 }
944
945 if (status == HAL_OK)
946 {
947 /* Enable the Output compare channel */
948 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
949
950 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
951 {
952 /* Enable the main output */
953 __HAL_TIM_MOE_ENABLE(htim);
954 }
955
956 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
957 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
958 {
959 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
960 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
961 {
962 __HAL_TIM_ENABLE(htim);
963 }
964 }
965 else
966 {
967 __HAL_TIM_ENABLE(htim);
968 }
969 }
970
971 /* Return function status */
972 return status;
973 }
974
975 /**
976 * @brief Stops the TIM Output Compare signal generation in interrupt mode.
977 * @param htim TIM Output Compare handle
978 * @param Channel TIM Channel to be disabled
979 * This parameter can be one of the following values:
980 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
981 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
982 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
983 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
984 * @retval HAL status
985 */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)986 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
987 {
988 HAL_StatusTypeDef status = HAL_OK;
989
990 /* Check the parameters */
991 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
992
993 switch (Channel)
994 {
995 case TIM_CHANNEL_1:
996 {
997 /* Disable the TIM Capture/Compare 1 interrupt */
998 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
999 break;
1000 }
1001
1002 case TIM_CHANNEL_2:
1003 {
1004 /* Disable the TIM Capture/Compare 2 interrupt */
1005 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1006 break;
1007 }
1008
1009 case TIM_CHANNEL_3:
1010 {
1011 /* Disable the TIM Capture/Compare 3 interrupt */
1012 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1013 break;
1014 }
1015
1016 case TIM_CHANNEL_4:
1017 {
1018 /* Disable the TIM Capture/Compare 4 interrupt */
1019 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1020 break;
1021 }
1022
1023 default:
1024 status = HAL_ERROR;
1025 break;
1026 }
1027
1028 if (status == HAL_OK)
1029 {
1030 /* Disable the Output compare channel */
1031 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1032
1033 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1034 {
1035 /* Disable the Main Output */
1036 __HAL_TIM_MOE_DISABLE(htim);
1037 }
1038
1039 /* Disable the Peripheral */
1040 __HAL_TIM_DISABLE(htim);
1041
1042 /* Set the TIM channel state */
1043 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1044 }
1045
1046 /* Return function status */
1047 return status;
1048 }
1049
1050 /**
1051 * @brief Starts the TIM Output Compare signal generation in DMA mode.
1052 * @param htim TIM Output Compare handle
1053 * @param Channel TIM Channel to be enabled
1054 * This parameter can be one of the following values:
1055 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1056 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1057 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1058 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1059 * @param pData The source Buffer address.
1060 * @param Length The length of data to be transferred from memory to TIM peripheral
1061 * @retval HAL status
1062 */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1063 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1064 uint16_t Length)
1065 {
1066 HAL_StatusTypeDef status = HAL_OK;
1067 uint32_t tmpsmcr;
1068
1069 /* Check the parameters */
1070 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1071
1072 /* Set the TIM channel state */
1073 if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1074 {
1075 return HAL_BUSY;
1076 }
1077 else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1078 {
1079 if ((pData == NULL) || (Length == 0U))
1080 {
1081 return HAL_ERROR;
1082 }
1083 else
1084 {
1085 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1086 }
1087 }
1088 else
1089 {
1090 return HAL_ERROR;
1091 }
1092
1093 switch (Channel)
1094 {
1095 case TIM_CHANNEL_1:
1096 {
1097 /* Set the DMA compare callbacks */
1098 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1099 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1100
1101 /* Set the DMA error callback */
1102 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1103
1104 /* Enable the DMA channel */
1105 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1106 Length) != HAL_OK)
1107 {
1108 /* Return error status */
1109 return HAL_ERROR;
1110 }
1111
1112 /* Enable the TIM Capture/Compare 1 DMA request */
1113 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1114 break;
1115 }
1116
1117 case TIM_CHANNEL_2:
1118 {
1119 /* Set the DMA compare callbacks */
1120 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1121 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1122
1123 /* Set the DMA error callback */
1124 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1125
1126 /* Enable the DMA channel */
1127 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1128 Length) != HAL_OK)
1129 {
1130 /* Return error status */
1131 return HAL_ERROR;
1132 }
1133
1134 /* Enable the TIM Capture/Compare 2 DMA request */
1135 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1136 break;
1137 }
1138
1139 case TIM_CHANNEL_3:
1140 {
1141 /* Set the DMA compare callbacks */
1142 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1143 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1144
1145 /* Set the DMA error callback */
1146 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1147
1148 /* Enable the DMA channel */
1149 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1150 Length) != HAL_OK)
1151 {
1152 /* Return error status */
1153 return HAL_ERROR;
1154 }
1155 /* Enable the TIM Capture/Compare 3 DMA request */
1156 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1157 break;
1158 }
1159
1160 case TIM_CHANNEL_4:
1161 {
1162 /* Set the DMA compare callbacks */
1163 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1164 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1165
1166 /* Set the DMA error callback */
1167 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1168
1169 /* Enable the DMA channel */
1170 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1171 Length) != HAL_OK)
1172 {
1173 /* Return error status */
1174 return HAL_ERROR;
1175 }
1176 /* Enable the TIM Capture/Compare 4 DMA request */
1177 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1178 break;
1179 }
1180
1181 default:
1182 status = HAL_ERROR;
1183 break;
1184 }
1185
1186 if (status == HAL_OK)
1187 {
1188 /* Enable the Output compare channel */
1189 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1190
1191 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1192 {
1193 /* Enable the main output */
1194 __HAL_TIM_MOE_ENABLE(htim);
1195 }
1196
1197 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1198 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1199 {
1200 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1201 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1202 {
1203 __HAL_TIM_ENABLE(htim);
1204 }
1205 }
1206 else
1207 {
1208 __HAL_TIM_ENABLE(htim);
1209 }
1210 }
1211
1212 /* Return function status */
1213 return status;
1214 }
1215
1216 /**
1217 * @brief Stops the TIM Output Compare signal generation in DMA mode.
1218 * @param htim TIM Output Compare handle
1219 * @param Channel TIM Channel to be disabled
1220 * This parameter can be one of the following values:
1221 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1222 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1223 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1224 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1225 * @retval HAL status
1226 */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1227 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1228 {
1229 HAL_StatusTypeDef status = HAL_OK;
1230
1231 /* Check the parameters */
1232 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1233
1234 switch (Channel)
1235 {
1236 case TIM_CHANNEL_1:
1237 {
1238 /* Disable the TIM Capture/Compare 1 DMA request */
1239 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1240 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1241 break;
1242 }
1243
1244 case TIM_CHANNEL_2:
1245 {
1246 /* Disable the TIM Capture/Compare 2 DMA request */
1247 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1248 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1249 break;
1250 }
1251
1252 case TIM_CHANNEL_3:
1253 {
1254 /* Disable the TIM Capture/Compare 3 DMA request */
1255 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1256 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1257 break;
1258 }
1259
1260 case TIM_CHANNEL_4:
1261 {
1262 /* Disable the TIM Capture/Compare 4 interrupt */
1263 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1264 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1265 break;
1266 }
1267
1268 default:
1269 status = HAL_ERROR;
1270 break;
1271 }
1272
1273 if (status == HAL_OK)
1274 {
1275 /* Disable the Output compare channel */
1276 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1277
1278 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1279 {
1280 /* Disable the Main Output */
1281 __HAL_TIM_MOE_DISABLE(htim);
1282 }
1283
1284 /* Disable the Peripheral */
1285 __HAL_TIM_DISABLE(htim);
1286
1287 /* Set the TIM channel state */
1288 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1289 }
1290
1291 /* Return function status */
1292 return status;
1293 }
1294
1295 /**
1296 * @}
1297 */
1298
1299 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1300 * @brief TIM PWM functions
1301 *
1302 @verbatim
1303 ==============================================================================
1304 ##### TIM PWM functions #####
1305 ==============================================================================
1306 [..]
1307 This section provides functions allowing to:
1308 (+) Initialize and configure the TIM PWM.
1309 (+) De-initialize the TIM PWM.
1310 (+) Start the TIM PWM.
1311 (+) Stop the TIM PWM.
1312 (+) Start the TIM PWM and enable interrupt.
1313 (+) Stop the TIM PWM and disable interrupt.
1314 (+) Start the TIM PWM and enable DMA transfer.
1315 (+) Stop the TIM PWM and disable DMA transfer.
1316
1317 @endverbatim
1318 * @{
1319 */
1320 /**
1321 * @brief Initializes the TIM PWM Time Base according to the specified
1322 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
1323 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1324 * requires a timer reset to avoid unexpected direction
1325 * due to DIR bit readonly in center aligned mode.
1326 * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1327 * @param htim TIM PWM handle
1328 * @retval HAL status
1329 */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1330 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1331 {
1332 /* Check the TIM handle allocation */
1333 if (htim == NULL)
1334 {
1335 return HAL_ERROR;
1336 }
1337
1338 /* Check the parameters */
1339 assert_param(IS_TIM_INSTANCE(htim->Instance));
1340 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1341 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1342 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1343 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1344
1345 if (htim->State == HAL_TIM_STATE_RESET)
1346 {
1347 /* Allocate lock resource and initialize it */
1348 htim->Lock = HAL_UNLOCKED;
1349
1350 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1351 /* Reset interrupt callbacks to legacy weak callbacks */
1352 TIM_ResetCallback(htim);
1353
1354 if (htim->PWM_MspInitCallback == NULL)
1355 {
1356 htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1357 }
1358 /* Init the low level hardware : GPIO, CLOCK, NVIC */
1359 htim->PWM_MspInitCallback(htim);
1360 #else
1361 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1362 HAL_TIM_PWM_MspInit(htim);
1363 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1364 }
1365
1366 /* Set the TIM state */
1367 htim->State = HAL_TIM_STATE_BUSY;
1368
1369 /* Init the base time for the PWM */
1370 TIM_Base_SetConfig(htim->Instance, &htim->Init);
1371
1372 /* Initialize the DMA burst operation state */
1373 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1374
1375 /* Initialize the TIM channels state */
1376 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1377 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1378
1379 /* Initialize the TIM state*/
1380 htim->State = HAL_TIM_STATE_READY;
1381
1382 return HAL_OK;
1383 }
1384
1385 /**
1386 * @brief DeInitializes the TIM peripheral
1387 * @param htim TIM PWM handle
1388 * @retval HAL status
1389 */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1390 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1391 {
1392 /* Check the parameters */
1393 assert_param(IS_TIM_INSTANCE(htim->Instance));
1394
1395 htim->State = HAL_TIM_STATE_BUSY;
1396
1397 /* Disable the TIM Peripheral Clock */
1398 __HAL_TIM_DISABLE(htim);
1399
1400 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1401 if (htim->PWM_MspDeInitCallback == NULL)
1402 {
1403 htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1404 }
1405 /* DeInit the low level hardware */
1406 htim->PWM_MspDeInitCallback(htim);
1407 #else
1408 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1409 HAL_TIM_PWM_MspDeInit(htim);
1410 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1411
1412 /* Change the DMA burst operation state */
1413 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1414
1415 /* Change the TIM channels state */
1416 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1417 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1418
1419 /* Change TIM state */
1420 htim->State = HAL_TIM_STATE_RESET;
1421
1422 /* Release Lock */
1423 __HAL_UNLOCK(htim);
1424
1425 return HAL_OK;
1426 }
1427
1428 /**
1429 * @brief Initializes the TIM PWM MSP.
1430 * @param htim TIM PWM handle
1431 * @retval None
1432 */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1433 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1434 {
1435 /* Prevent unused argument(s) compilation warning */
1436 UNUSED(htim);
1437
1438 /* NOTE : This function should not be modified, when the callback is needed,
1439 the HAL_TIM_PWM_MspInit could be implemented in the user file
1440 */
1441 }
1442
1443 /**
1444 * @brief DeInitializes TIM PWM MSP.
1445 * @param htim TIM PWM handle
1446 * @retval None
1447 */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1448 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1449 {
1450 /* Prevent unused argument(s) compilation warning */
1451 UNUSED(htim);
1452
1453 /* NOTE : This function should not be modified, when the callback is needed,
1454 the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1455 */
1456 }
1457
1458 /**
1459 * @brief Starts the PWM signal generation.
1460 * @param htim TIM handle
1461 * @param Channel TIM Channels to be enabled
1462 * This parameter can be one of the following values:
1463 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1464 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1465 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1466 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1467 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
1468 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
1469 * @retval HAL status
1470 */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1471 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1472 {
1473 uint32_t tmpsmcr;
1474
1475 /* Check the parameters */
1476 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1477
1478 /* Check the TIM channel state */
1479 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1480 {
1481 return HAL_ERROR;
1482 }
1483
1484 /* Set the TIM channel state */
1485 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1486
1487 /* Enable the Capture compare channel */
1488 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1489
1490 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1491 {
1492 /* Enable the main output */
1493 __HAL_TIM_MOE_ENABLE(htim);
1494 }
1495
1496 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1497 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1498 {
1499 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1500 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1501 {
1502 __HAL_TIM_ENABLE(htim);
1503 }
1504 }
1505 else
1506 {
1507 __HAL_TIM_ENABLE(htim);
1508 }
1509
1510 /* Return function status */
1511 return HAL_OK;
1512 }
1513
1514 /**
1515 * @brief Stops the PWM signal generation.
1516 * @param htim TIM PWM handle
1517 * @param Channel TIM Channels to be disabled
1518 * This parameter can be one of the following values:
1519 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1520 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1521 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1522 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1523 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
1524 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
1525 * @retval HAL status
1526 */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1527 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1528 {
1529 /* Check the parameters */
1530 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1531
1532 /* Disable the Capture compare channel */
1533 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1534
1535 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1536 {
1537 /* Disable the Main Output */
1538 __HAL_TIM_MOE_DISABLE(htim);
1539 }
1540
1541 /* Disable the Peripheral */
1542 __HAL_TIM_DISABLE(htim);
1543
1544 /* Set the TIM channel state */
1545 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1546
1547 /* Return function status */
1548 return HAL_OK;
1549 }
1550
1551 /**
1552 * @brief Starts the PWM signal generation in interrupt mode.
1553 * @param htim TIM PWM handle
1554 * @param Channel TIM Channel to be enabled
1555 * This parameter can be one of the following values:
1556 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1557 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1558 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1559 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1560 * @retval HAL status
1561 */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1562 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1563 {
1564 HAL_StatusTypeDef status = HAL_OK;
1565 uint32_t tmpsmcr;
1566
1567 /* Check the parameters */
1568 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1569
1570 /* Check the TIM channel state */
1571 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1572 {
1573 return HAL_ERROR;
1574 }
1575
1576 /* Set the TIM channel state */
1577 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1578
1579 switch (Channel)
1580 {
1581 case TIM_CHANNEL_1:
1582 {
1583 /* Enable the TIM Capture/Compare 1 interrupt */
1584 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1585 break;
1586 }
1587
1588 case TIM_CHANNEL_2:
1589 {
1590 /* Enable the TIM Capture/Compare 2 interrupt */
1591 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1592 break;
1593 }
1594
1595 case TIM_CHANNEL_3:
1596 {
1597 /* Enable the TIM Capture/Compare 3 interrupt */
1598 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1599 break;
1600 }
1601
1602 case TIM_CHANNEL_4:
1603 {
1604 /* Enable the TIM Capture/Compare 4 interrupt */
1605 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1606 break;
1607 }
1608
1609 default:
1610 status = HAL_ERROR;
1611 break;
1612 }
1613
1614 if (status == HAL_OK)
1615 {
1616 /* Enable the Capture compare channel */
1617 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1618
1619 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1620 {
1621 /* Enable the main output */
1622 __HAL_TIM_MOE_ENABLE(htim);
1623 }
1624
1625 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1626 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1627 {
1628 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1629 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1630 {
1631 __HAL_TIM_ENABLE(htim);
1632 }
1633 }
1634 else
1635 {
1636 __HAL_TIM_ENABLE(htim);
1637 }
1638 }
1639
1640 /* Return function status */
1641 return status;
1642 }
1643
1644 /**
1645 * @brief Stops the PWM signal generation in interrupt mode.
1646 * @param htim TIM PWM handle
1647 * @param Channel TIM Channels to be disabled
1648 * This parameter can be one of the following values:
1649 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1650 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1651 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1652 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1653 * @retval HAL status
1654 */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1655 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1656 {
1657 HAL_StatusTypeDef status = HAL_OK;
1658
1659 /* Check the parameters */
1660 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1661
1662 switch (Channel)
1663 {
1664 case TIM_CHANNEL_1:
1665 {
1666 /* Disable the TIM Capture/Compare 1 interrupt */
1667 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1668 break;
1669 }
1670
1671 case TIM_CHANNEL_2:
1672 {
1673 /* Disable the TIM Capture/Compare 2 interrupt */
1674 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1675 break;
1676 }
1677
1678 case TIM_CHANNEL_3:
1679 {
1680 /* Disable the TIM Capture/Compare 3 interrupt */
1681 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1682 break;
1683 }
1684
1685 case TIM_CHANNEL_4:
1686 {
1687 /* Disable the TIM Capture/Compare 4 interrupt */
1688 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1689 break;
1690 }
1691
1692 default:
1693 status = HAL_ERROR;
1694 break;
1695 }
1696
1697 if (status == HAL_OK)
1698 {
1699 /* Disable the Capture compare channel */
1700 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1701
1702 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1703 {
1704 /* Disable the Main Output */
1705 __HAL_TIM_MOE_DISABLE(htim);
1706 }
1707
1708 /* Disable the Peripheral */
1709 __HAL_TIM_DISABLE(htim);
1710
1711 /* Set the TIM channel state */
1712 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1713 }
1714
1715 /* Return function status */
1716 return status;
1717 }
1718
1719 /**
1720 * @brief Starts the TIM PWM signal generation in DMA mode.
1721 * @param htim TIM PWM handle
1722 * @param Channel TIM Channels to be enabled
1723 * This parameter can be one of the following values:
1724 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1725 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1726 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1727 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1728 * @param pData The source Buffer address.
1729 * @param Length The length of data to be transferred from memory to TIM peripheral
1730 * @retval HAL status
1731 */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1732 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1733 uint16_t Length)
1734 {
1735 HAL_StatusTypeDef status = HAL_OK;
1736 uint32_t tmpsmcr;
1737
1738 /* Check the parameters */
1739 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1740
1741 /* Set the TIM channel state */
1742 if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1743 {
1744 return HAL_BUSY;
1745 }
1746 else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1747 {
1748 if ((pData == NULL) || (Length == 0U))
1749 {
1750 return HAL_ERROR;
1751 }
1752 else
1753 {
1754 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1755 }
1756 }
1757 else
1758 {
1759 return HAL_ERROR;
1760 }
1761
1762 switch (Channel)
1763 {
1764 case TIM_CHANNEL_1:
1765 {
1766 /* Set the DMA compare callbacks */
1767 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1768 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1769
1770 /* Set the DMA error callback */
1771 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1772
1773 /* Enable the DMA channel */
1774 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1775 Length) != HAL_OK)
1776 {
1777 /* Return error status */
1778 return HAL_ERROR;
1779 }
1780
1781 /* Enable the TIM Capture/Compare 1 DMA request */
1782 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1783 break;
1784 }
1785
1786 case TIM_CHANNEL_2:
1787 {
1788 /* Set the DMA compare callbacks */
1789 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1790 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1791
1792 /* Set the DMA error callback */
1793 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1794
1795 /* Enable the DMA channel */
1796 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1797 Length) != HAL_OK)
1798 {
1799 /* Return error status */
1800 return HAL_ERROR;
1801 }
1802 /* Enable the TIM Capture/Compare 2 DMA request */
1803 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1804 break;
1805 }
1806
1807 case TIM_CHANNEL_3:
1808 {
1809 /* Set the DMA compare callbacks */
1810 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1811 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1812
1813 /* Set the DMA error callback */
1814 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1815
1816 /* Enable the DMA channel */
1817 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1818 Length) != HAL_OK)
1819 {
1820 /* Return error status */
1821 return HAL_ERROR;
1822 }
1823 /* Enable the TIM Output Capture/Compare 3 request */
1824 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1825 break;
1826 }
1827
1828 case TIM_CHANNEL_4:
1829 {
1830 /* Set the DMA compare callbacks */
1831 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1832 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1833
1834 /* Set the DMA error callback */
1835 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1836
1837 /* Enable the DMA channel */
1838 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1839 Length) != HAL_OK)
1840 {
1841 /* Return error status */
1842 return HAL_ERROR;
1843 }
1844 /* Enable the TIM Capture/Compare 4 DMA request */
1845 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1846 break;
1847 }
1848
1849 default:
1850 status = HAL_ERROR;
1851 break;
1852 }
1853
1854 if (status == HAL_OK)
1855 {
1856 /* Enable the Capture compare channel */
1857 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1858
1859 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1860 {
1861 /* Enable the main output */
1862 __HAL_TIM_MOE_ENABLE(htim);
1863 }
1864
1865 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1866 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1867 {
1868 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1869 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1870 {
1871 __HAL_TIM_ENABLE(htim);
1872 }
1873 }
1874 else
1875 {
1876 __HAL_TIM_ENABLE(htim);
1877 }
1878 }
1879
1880 /* Return function status */
1881 return status;
1882 }
1883
1884 /**
1885 * @brief Stops the TIM PWM signal generation in DMA mode.
1886 * @param htim TIM PWM handle
1887 * @param Channel TIM Channels to be disabled
1888 * This parameter can be one of the following values:
1889 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1890 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1891 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1892 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1893 * @retval HAL status
1894 */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1895 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1896 {
1897 HAL_StatusTypeDef status = HAL_OK;
1898
1899 /* Check the parameters */
1900 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1901
1902 switch (Channel)
1903 {
1904 case TIM_CHANNEL_1:
1905 {
1906 /* Disable the TIM Capture/Compare 1 DMA request */
1907 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1908 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1909 break;
1910 }
1911
1912 case TIM_CHANNEL_2:
1913 {
1914 /* Disable the TIM Capture/Compare 2 DMA request */
1915 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1916 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1917 break;
1918 }
1919
1920 case TIM_CHANNEL_3:
1921 {
1922 /* Disable the TIM Capture/Compare 3 DMA request */
1923 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1924 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1925 break;
1926 }
1927
1928 case TIM_CHANNEL_4:
1929 {
1930 /* Disable the TIM Capture/Compare 4 interrupt */
1931 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1932 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1933 break;
1934 }
1935
1936 default:
1937 status = HAL_ERROR;
1938 break;
1939 }
1940
1941 if (status == HAL_OK)
1942 {
1943 /* Disable the Capture compare channel */
1944 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1945
1946 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1947 {
1948 /* Disable the Main Output */
1949 __HAL_TIM_MOE_DISABLE(htim);
1950 }
1951
1952 /* Disable the Peripheral */
1953 __HAL_TIM_DISABLE(htim);
1954
1955 /* Set the TIM channel state */
1956 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1957 }
1958
1959 /* Return function status */
1960 return status;
1961 }
1962
1963 /**
1964 * @}
1965 */
1966
1967 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1968 * @brief TIM Input Capture functions
1969 *
1970 @verbatim
1971 ==============================================================================
1972 ##### TIM Input Capture functions #####
1973 ==============================================================================
1974 [..]
1975 This section provides functions allowing to:
1976 (+) Initialize and configure the TIM Input Capture.
1977 (+) De-initialize the TIM Input Capture.
1978 (+) Start the TIM Input Capture.
1979 (+) Stop the TIM Input Capture.
1980 (+) Start the TIM Input Capture and enable interrupt.
1981 (+) Stop the TIM Input Capture and disable interrupt.
1982 (+) Start the TIM Input Capture and enable DMA transfer.
1983 (+) Stop the TIM Input Capture and disable DMA transfer.
1984
1985 @endverbatim
1986 * @{
1987 */
1988 /**
1989 * @brief Initializes the TIM Input Capture Time base according to the specified
1990 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
1991 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1992 * requires a timer reset to avoid unexpected direction
1993 * due to DIR bit readonly in center aligned mode.
1994 * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1995 * @param htim TIM Input Capture handle
1996 * @retval HAL status
1997 */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1998 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1999 {
2000 /* Check the TIM handle allocation */
2001 if (htim == NULL)
2002 {
2003 return HAL_ERROR;
2004 }
2005
2006 /* Check the parameters */
2007 assert_param(IS_TIM_INSTANCE(htim->Instance));
2008 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2009 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2010 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2011 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2012
2013 if (htim->State == HAL_TIM_STATE_RESET)
2014 {
2015 /* Allocate lock resource and initialize it */
2016 htim->Lock = HAL_UNLOCKED;
2017
2018 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2019 /* Reset interrupt callbacks to legacy weak callbacks */
2020 TIM_ResetCallback(htim);
2021
2022 if (htim->IC_MspInitCallback == NULL)
2023 {
2024 htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2025 }
2026 /* Init the low level hardware : GPIO, CLOCK, NVIC */
2027 htim->IC_MspInitCallback(htim);
2028 #else
2029 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2030 HAL_TIM_IC_MspInit(htim);
2031 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2032 }
2033
2034 /* Set the TIM state */
2035 htim->State = HAL_TIM_STATE_BUSY;
2036
2037 /* Init the base time for the input capture */
2038 TIM_Base_SetConfig(htim->Instance, &htim->Init);
2039
2040 /* Initialize the DMA burst operation state */
2041 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2042
2043 /* Initialize the TIM channels state */
2044 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2045 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2046
2047 /* Initialize the TIM state*/
2048 htim->State = HAL_TIM_STATE_READY;
2049
2050 return HAL_OK;
2051 }
2052
2053 /**
2054 * @brief DeInitializes the TIM peripheral
2055 * @param htim TIM Input Capture handle
2056 * @retval HAL status
2057 */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2058 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2059 {
2060 /* Check the parameters */
2061 assert_param(IS_TIM_INSTANCE(htim->Instance));
2062
2063 htim->State = HAL_TIM_STATE_BUSY;
2064
2065 /* Disable the TIM Peripheral Clock */
2066 __HAL_TIM_DISABLE(htim);
2067
2068 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2069 if (htim->IC_MspDeInitCallback == NULL)
2070 {
2071 htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2072 }
2073 /* DeInit the low level hardware */
2074 htim->IC_MspDeInitCallback(htim);
2075 #else
2076 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2077 HAL_TIM_IC_MspDeInit(htim);
2078 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2079
2080 /* Change the DMA burst operation state */
2081 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2082
2083 /* Change the TIM channels state */
2084 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2085 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2086
2087 /* Change TIM state */
2088 htim->State = HAL_TIM_STATE_RESET;
2089
2090 /* Release Lock */
2091 __HAL_UNLOCK(htim);
2092
2093 return HAL_OK;
2094 }
2095
2096 /**
2097 * @brief Initializes the TIM Input Capture MSP.
2098 * @param htim TIM Input Capture handle
2099 * @retval None
2100 */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2101 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2102 {
2103 /* Prevent unused argument(s) compilation warning */
2104 UNUSED(htim);
2105
2106 /* NOTE : This function should not be modified, when the callback is needed,
2107 the HAL_TIM_IC_MspInit could be implemented in the user file
2108 */
2109 }
2110
2111 /**
2112 * @brief DeInitializes TIM Input Capture MSP.
2113 * @param htim TIM handle
2114 * @retval None
2115 */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2116 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2117 {
2118 /* Prevent unused argument(s) compilation warning */
2119 UNUSED(htim);
2120
2121 /* NOTE : This function should not be modified, when the callback is needed,
2122 the HAL_TIM_IC_MspDeInit could be implemented in the user file
2123 */
2124 }
2125
2126 /**
2127 * @brief Starts the TIM Input Capture measurement.
2128 * @param htim TIM Input Capture handle
2129 * @param Channel TIM Channels to be enabled
2130 * This parameter can be one of the following values:
2131 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2132 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2133 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2134 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2135 * @retval HAL status
2136 */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2137 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2138 {
2139 uint32_t tmpsmcr;
2140 HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2141 HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2142
2143 /* Check the parameters */
2144 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2145
2146 /* Check the TIM channel state */
2147 if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2148 || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2149 {
2150 return HAL_ERROR;
2151 }
2152
2153 /* Set the TIM channel state */
2154 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2155 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2156
2157 /* Enable the Input Capture channel */
2158 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2159
2160 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2161 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2162 {
2163 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2164 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2165 {
2166 __HAL_TIM_ENABLE(htim);
2167 }
2168 }
2169 else
2170 {
2171 __HAL_TIM_ENABLE(htim);
2172 }
2173
2174 /* Return function status */
2175 return HAL_OK;
2176 }
2177
2178 /**
2179 * @brief Stops the TIM Input Capture measurement.
2180 * @param htim TIM Input Capture handle
2181 * @param Channel TIM Channels to be disabled
2182 * This parameter can be one of the following values:
2183 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2184 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2185 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2186 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2187 * @retval HAL status
2188 */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2189 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2190 {
2191 /* Check the parameters */
2192 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2193
2194 /* Disable the Input Capture channel */
2195 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2196
2197 /* Disable the Peripheral */
2198 __HAL_TIM_DISABLE(htim);
2199
2200 /* Set the TIM channel state */
2201 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2202 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2203
2204 /* Return function status */
2205 return HAL_OK;
2206 }
2207
2208 /**
2209 * @brief Starts the TIM Input Capture measurement in interrupt mode.
2210 * @param htim TIM Input Capture handle
2211 * @param Channel TIM Channels to be enabled
2212 * This parameter can be one of the following values:
2213 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2214 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2215 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2216 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2217 * @retval HAL status
2218 */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2219 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2220 {
2221 HAL_StatusTypeDef status = HAL_OK;
2222 uint32_t tmpsmcr;
2223
2224 HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2225 HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2226
2227 /* Check the parameters */
2228 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2229
2230 /* Check the TIM channel state */
2231 if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2232 || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2233 {
2234 return HAL_ERROR;
2235 }
2236
2237 /* Set the TIM channel state */
2238 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2239 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2240
2241 switch (Channel)
2242 {
2243 case TIM_CHANNEL_1:
2244 {
2245 /* Enable the TIM Capture/Compare 1 interrupt */
2246 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2247 break;
2248 }
2249
2250 case TIM_CHANNEL_2:
2251 {
2252 /* Enable the TIM Capture/Compare 2 interrupt */
2253 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2254 break;
2255 }
2256
2257 case TIM_CHANNEL_3:
2258 {
2259 /* Enable the TIM Capture/Compare 3 interrupt */
2260 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2261 break;
2262 }
2263
2264 case TIM_CHANNEL_4:
2265 {
2266 /* Enable the TIM Capture/Compare 4 interrupt */
2267 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2268 break;
2269 }
2270
2271 default:
2272 status = HAL_ERROR;
2273 break;
2274 }
2275
2276 if (status == HAL_OK)
2277 {
2278 /* Enable the Input Capture channel */
2279 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2280
2281 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2282 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2283 {
2284 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2285 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2286 {
2287 __HAL_TIM_ENABLE(htim);
2288 }
2289 }
2290 else
2291 {
2292 __HAL_TIM_ENABLE(htim);
2293 }
2294 }
2295
2296 /* Return function status */
2297 return status;
2298 }
2299
2300 /**
2301 * @brief Stops the TIM Input Capture measurement in interrupt mode.
2302 * @param htim TIM Input Capture handle
2303 * @param Channel TIM Channels to be disabled
2304 * This parameter can be one of the following values:
2305 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2306 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2307 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2308 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2309 * @retval HAL status
2310 */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2311 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2312 {
2313 HAL_StatusTypeDef status = HAL_OK;
2314
2315 /* Check the parameters */
2316 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2317
2318 switch (Channel)
2319 {
2320 case TIM_CHANNEL_1:
2321 {
2322 /* Disable the TIM Capture/Compare 1 interrupt */
2323 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2324 break;
2325 }
2326
2327 case TIM_CHANNEL_2:
2328 {
2329 /* Disable the TIM Capture/Compare 2 interrupt */
2330 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2331 break;
2332 }
2333
2334 case TIM_CHANNEL_3:
2335 {
2336 /* Disable the TIM Capture/Compare 3 interrupt */
2337 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2338 break;
2339 }
2340
2341 case TIM_CHANNEL_4:
2342 {
2343 /* Disable the TIM Capture/Compare 4 interrupt */
2344 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2345 break;
2346 }
2347
2348 default:
2349 status = HAL_ERROR;
2350 break;
2351 }
2352
2353 if (status == HAL_OK)
2354 {
2355 /* Disable the Input Capture channel */
2356 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2357
2358 /* Disable the Peripheral */
2359 __HAL_TIM_DISABLE(htim);
2360
2361 /* Set the TIM channel state */
2362 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2363 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2364 }
2365
2366 /* Return function status */
2367 return status;
2368 }
2369
2370 /**
2371 * @brief Starts the TIM Input Capture measurement in DMA mode.
2372 * @param htim TIM Input Capture handle
2373 * @param Channel TIM Channels to be enabled
2374 * This parameter can be one of the following values:
2375 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2376 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2377 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2378 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2379 * @param pData The destination Buffer address.
2380 * @param Length The length of data to be transferred from TIM peripheral to memory.
2381 * @retval HAL status
2382 */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2383 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2384 {
2385 HAL_StatusTypeDef status = HAL_OK;
2386 uint32_t tmpsmcr;
2387
2388 HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2389 HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2390
2391 /* Check the parameters */
2392 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2393 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2394
2395 /* Set the TIM channel state */
2396 if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2397 || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2398 {
2399 return HAL_BUSY;
2400 }
2401 else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2402 && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2403 {
2404 if ((pData == NULL) || (Length == 0U))
2405 {
2406 return HAL_ERROR;
2407 }
2408 else
2409 {
2410 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2411 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2412 }
2413 }
2414 else
2415 {
2416 return HAL_ERROR;
2417 }
2418
2419 /* Enable the Input Capture channel */
2420 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2421
2422 switch (Channel)
2423 {
2424 case TIM_CHANNEL_1:
2425 {
2426 /* Set the DMA capture callbacks */
2427 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2428 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2429
2430 /* Set the DMA error callback */
2431 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2432
2433 /* Enable the DMA channel */
2434 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2435 Length) != HAL_OK)
2436 {
2437 /* Return error status */
2438 return HAL_ERROR;
2439 }
2440 /* Enable the TIM Capture/Compare 1 DMA request */
2441 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2442 break;
2443 }
2444
2445 case TIM_CHANNEL_2:
2446 {
2447 /* Set the DMA capture callbacks */
2448 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2449 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2450
2451 /* Set the DMA error callback */
2452 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2453
2454 /* Enable the DMA channel */
2455 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2456 Length) != HAL_OK)
2457 {
2458 /* Return error status */
2459 return HAL_ERROR;
2460 }
2461 /* Enable the TIM Capture/Compare 2 DMA request */
2462 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2463 break;
2464 }
2465
2466 case TIM_CHANNEL_3:
2467 {
2468 /* Set the DMA capture callbacks */
2469 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2470 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2471
2472 /* Set the DMA error callback */
2473 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2474
2475 /* Enable the DMA channel */
2476 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2477 Length) != HAL_OK)
2478 {
2479 /* Return error status */
2480 return HAL_ERROR;
2481 }
2482 /* Enable the TIM Capture/Compare 3 DMA request */
2483 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2484 break;
2485 }
2486
2487 case TIM_CHANNEL_4:
2488 {
2489 /* Set the DMA capture callbacks */
2490 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2491 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2492
2493 /* Set the DMA error callback */
2494 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2495
2496 /* Enable the DMA channel */
2497 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2498 Length) != HAL_OK)
2499 {
2500 /* Return error status */
2501 return HAL_ERROR;
2502 }
2503 /* Enable the TIM Capture/Compare 4 DMA request */
2504 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2505 break;
2506 }
2507
2508 default:
2509 status = HAL_ERROR;
2510 break;
2511 }
2512
2513 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2514 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2515 {
2516 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2517 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2518 {
2519 __HAL_TIM_ENABLE(htim);
2520 }
2521 }
2522 else
2523 {
2524 __HAL_TIM_ENABLE(htim);
2525 }
2526
2527 /* Return function status */
2528 return status;
2529 }
2530
2531 /**
2532 * @brief Stops the TIM Input Capture measurement in DMA mode.
2533 * @param htim TIM Input Capture handle
2534 * @param Channel TIM Channels to be disabled
2535 * This parameter can be one of the following values:
2536 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2537 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2538 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2539 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2540 * @retval HAL status
2541 */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2542 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2543 {
2544 HAL_StatusTypeDef status = HAL_OK;
2545
2546 /* Check the parameters */
2547 assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2548 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2549
2550 /* Disable the Input Capture channel */
2551 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2552
2553 switch (Channel)
2554 {
2555 case TIM_CHANNEL_1:
2556 {
2557 /* Disable the TIM Capture/Compare 1 DMA request */
2558 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2559 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2560 break;
2561 }
2562
2563 case TIM_CHANNEL_2:
2564 {
2565 /* Disable the TIM Capture/Compare 2 DMA request */
2566 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2567 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2568 break;
2569 }
2570
2571 case TIM_CHANNEL_3:
2572 {
2573 /* Disable the TIM Capture/Compare 3 DMA request */
2574 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2575 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2576 break;
2577 }
2578
2579 case TIM_CHANNEL_4:
2580 {
2581 /* Disable the TIM Capture/Compare 4 DMA request */
2582 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2583 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2584 break;
2585 }
2586
2587 default:
2588 status = HAL_ERROR;
2589 break;
2590 }
2591
2592 if (status == HAL_OK)
2593 {
2594 /* Disable the Peripheral */
2595 __HAL_TIM_DISABLE(htim);
2596
2597 /* Set the TIM channel state */
2598 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2599 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2600 }
2601
2602 /* Return function status */
2603 return status;
2604 }
2605 /**
2606 * @}
2607 */
2608
2609 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2610 * @brief TIM One Pulse functions
2611 *
2612 @verbatim
2613 ==============================================================================
2614 ##### TIM One Pulse functions #####
2615 ==============================================================================
2616 [..]
2617 This section provides functions allowing to:
2618 (+) Initialize and configure the TIM One Pulse.
2619 (+) De-initialize the TIM One Pulse.
2620 (+) Start the TIM One Pulse.
2621 (+) Stop the TIM One Pulse.
2622 (+) Start the TIM One Pulse and enable interrupt.
2623 (+) Stop the TIM One Pulse and disable interrupt.
2624 (+) Start the TIM One Pulse and enable DMA transfer.
2625 (+) Stop the TIM One Pulse and disable DMA transfer.
2626
2627 @endverbatim
2628 * @{
2629 */
2630 /**
2631 * @brief Initializes the TIM One Pulse Time Base according to the specified
2632 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
2633 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2634 * requires a timer reset to avoid unexpected direction
2635 * due to DIR bit readonly in center aligned mode.
2636 * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2637 * @note When the timer instance is initialized in One Pulse mode, timer
2638 * channels 1 and channel 2 are reserved and cannot be used for other
2639 * purpose.
2640 * @param htim TIM One Pulse handle
2641 * @param OnePulseMode Select the One pulse mode.
2642 * This parameter can be one of the following values:
2643 * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2644 * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2645 * @retval HAL status
2646 */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2647 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2648 {
2649 /* Check the TIM handle allocation */
2650 if (htim == NULL)
2651 {
2652 return HAL_ERROR;
2653 }
2654
2655 /* Check the parameters */
2656 assert_param(IS_TIM_INSTANCE(htim->Instance));
2657 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2658 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2659 assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2660 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2661 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2662
2663 if (htim->State == HAL_TIM_STATE_RESET)
2664 {
2665 /* Allocate lock resource and initialize it */
2666 htim->Lock = HAL_UNLOCKED;
2667
2668 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2669 /* Reset interrupt callbacks to legacy weak callbacks */
2670 TIM_ResetCallback(htim);
2671
2672 if (htim->OnePulse_MspInitCallback == NULL)
2673 {
2674 htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2675 }
2676 /* Init the low level hardware : GPIO, CLOCK, NVIC */
2677 htim->OnePulse_MspInitCallback(htim);
2678 #else
2679 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2680 HAL_TIM_OnePulse_MspInit(htim);
2681 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2682 }
2683
2684 /* Set the TIM state */
2685 htim->State = HAL_TIM_STATE_BUSY;
2686
2687 /* Configure the Time base in the One Pulse Mode */
2688 TIM_Base_SetConfig(htim->Instance, &htim->Init);
2689
2690 /* Reset the OPM Bit */
2691 htim->Instance->CR1 &= ~TIM_CR1_OPM;
2692
2693 /* Configure the OPM Mode */
2694 htim->Instance->CR1 |= OnePulseMode;
2695
2696 /* Initialize the DMA burst operation state */
2697 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2698
2699 /* Initialize the TIM channels state */
2700 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2701 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2702 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2703 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2704
2705 /* Initialize the TIM state*/
2706 htim->State = HAL_TIM_STATE_READY;
2707
2708 return HAL_OK;
2709 }
2710
2711 /**
2712 * @brief DeInitializes the TIM One Pulse
2713 * @param htim TIM One Pulse handle
2714 * @retval HAL status
2715 */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2716 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2717 {
2718 /* Check the parameters */
2719 assert_param(IS_TIM_INSTANCE(htim->Instance));
2720
2721 htim->State = HAL_TIM_STATE_BUSY;
2722
2723 /* Disable the TIM Peripheral Clock */
2724 __HAL_TIM_DISABLE(htim);
2725
2726 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2727 if (htim->OnePulse_MspDeInitCallback == NULL)
2728 {
2729 htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2730 }
2731 /* DeInit the low level hardware */
2732 htim->OnePulse_MspDeInitCallback(htim);
2733 #else
2734 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2735 HAL_TIM_OnePulse_MspDeInit(htim);
2736 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2737
2738 /* Change the DMA burst operation state */
2739 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2740
2741 /* Set the TIM channel state */
2742 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2743 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2744 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2745 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2746
2747 /* Change TIM state */
2748 htim->State = HAL_TIM_STATE_RESET;
2749
2750 /* Release Lock */
2751 __HAL_UNLOCK(htim);
2752
2753 return HAL_OK;
2754 }
2755
2756 /**
2757 * @brief Initializes the TIM One Pulse MSP.
2758 * @param htim TIM One Pulse handle
2759 * @retval None
2760 */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2761 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2762 {
2763 /* Prevent unused argument(s) compilation warning */
2764 UNUSED(htim);
2765
2766 /* NOTE : This function should not be modified, when the callback is needed,
2767 the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2768 */
2769 }
2770
2771 /**
2772 * @brief DeInitializes TIM One Pulse MSP.
2773 * @param htim TIM One Pulse handle
2774 * @retval None
2775 */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2776 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2777 {
2778 /* Prevent unused argument(s) compilation warning */
2779 UNUSED(htim);
2780
2781 /* NOTE : This function should not be modified, when the callback is needed,
2782 the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2783 */
2784 }
2785
2786 /**
2787 * @brief Starts the TIM One Pulse signal generation.
2788 * @note Though OutputChannel parameter is deprecated and ignored by the function
2789 * it has been kept to avoid HAL_TIM API compatibility break.
2790 * @note The pulse output channel is determined when calling
2791 * @ref HAL_TIM_OnePulse_ConfigChannel().
2792 * @param htim TIM One Pulse handle
2793 * @param OutputChannel See note above
2794 * @retval HAL status
2795 */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2796 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2797 {
2798 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2799 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2800 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2801 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2802
2803 /* Prevent unused argument(s) compilation warning */
2804 UNUSED(OutputChannel);
2805
2806 /* Check the TIM channels state */
2807 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2808 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2809 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2810 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2811 {
2812 return HAL_ERROR;
2813 }
2814
2815 /* Set the TIM channels state */
2816 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2817 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2818 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2819 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2820
2821 /* Enable the Capture compare and the Input Capture channels
2822 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2823 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2824 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2825 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2826
2827 No need to enable the counter, it's enabled automatically by hardware
2828 (the counter starts in response to a stimulus and generate a pulse */
2829
2830 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2831 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2832
2833 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2834 {
2835 /* Enable the main output */
2836 __HAL_TIM_MOE_ENABLE(htim);
2837 }
2838
2839 /* Return function status */
2840 return HAL_OK;
2841 }
2842
2843 /**
2844 * @brief Stops the TIM One Pulse signal generation.
2845 * @note Though OutputChannel parameter is deprecated and ignored by the function
2846 * it has been kept to avoid HAL_TIM API compatibility break.
2847 * @note The pulse output channel is determined when calling
2848 * @ref HAL_TIM_OnePulse_ConfigChannel().
2849 * @param htim TIM One Pulse handle
2850 * @param OutputChannel See note above
2851 * @retval HAL status
2852 */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2853 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2854 {
2855 /* Prevent unused argument(s) compilation warning */
2856 UNUSED(OutputChannel);
2857
2858 /* Disable the Capture compare and the Input Capture channels
2859 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2860 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2861 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2862 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2863
2864 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2865 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2866
2867 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2868 {
2869 /* Disable the Main Output */
2870 __HAL_TIM_MOE_DISABLE(htim);
2871 }
2872
2873 /* Disable the Peripheral */
2874 __HAL_TIM_DISABLE(htim);
2875
2876 /* Set the TIM channels state */
2877 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2878 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2879 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2880 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2881
2882 /* Return function status */
2883 return HAL_OK;
2884 }
2885
2886 /**
2887 * @brief Starts the TIM One Pulse signal generation in interrupt mode.
2888 * @note Though OutputChannel parameter is deprecated and ignored by the function
2889 * it has been kept to avoid HAL_TIM API compatibility break.
2890 * @note The pulse output channel is determined when calling
2891 * @ref HAL_TIM_OnePulse_ConfigChannel().
2892 * @param htim TIM One Pulse handle
2893 * @param OutputChannel See note above
2894 * @retval HAL status
2895 */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2896 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2897 {
2898 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2899 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2900 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2901 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2902
2903 /* Prevent unused argument(s) compilation warning */
2904 UNUSED(OutputChannel);
2905
2906 /* Check the TIM channels state */
2907 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2908 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2909 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2910 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2911 {
2912 return HAL_ERROR;
2913 }
2914
2915 /* Set the TIM channels state */
2916 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2917 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2918 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2919 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2920
2921 /* Enable the Capture compare and the Input Capture channels
2922 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2923 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2924 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2925 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2926
2927 No need to enable the counter, it's enabled automatically by hardware
2928 (the counter starts in response to a stimulus and generate a pulse */
2929
2930 /* Enable the TIM Capture/Compare 1 interrupt */
2931 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2932
2933 /* Enable the TIM Capture/Compare 2 interrupt */
2934 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2935
2936 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2937 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2938
2939 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2940 {
2941 /* Enable the main output */
2942 __HAL_TIM_MOE_ENABLE(htim);
2943 }
2944
2945 /* Return function status */
2946 return HAL_OK;
2947 }
2948
2949 /**
2950 * @brief Stops the TIM One Pulse signal generation in interrupt mode.
2951 * @note Though OutputChannel parameter is deprecated and ignored by the function
2952 * it has been kept to avoid HAL_TIM API compatibility break.
2953 * @note The pulse output channel is determined when calling
2954 * @ref HAL_TIM_OnePulse_ConfigChannel().
2955 * @param htim TIM One Pulse handle
2956 * @param OutputChannel See note above
2957 * @retval HAL status
2958 */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2959 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2960 {
2961 /* Prevent unused argument(s) compilation warning */
2962 UNUSED(OutputChannel);
2963
2964 /* Disable the TIM Capture/Compare 1 interrupt */
2965 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2966
2967 /* Disable the TIM Capture/Compare 2 interrupt */
2968 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2969
2970 /* Disable the Capture compare and the Input Capture channels
2971 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2972 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2973 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2974 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2975 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2976 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2977
2978 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2979 {
2980 /* Disable the Main Output */
2981 __HAL_TIM_MOE_DISABLE(htim);
2982 }
2983
2984 /* Disable the Peripheral */
2985 __HAL_TIM_DISABLE(htim);
2986
2987 /* Set the TIM channels state */
2988 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2989 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2990 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2991 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2992
2993 /* Return function status */
2994 return HAL_OK;
2995 }
2996
2997 /**
2998 * @}
2999 */
3000
3001 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
3002 * @brief TIM Encoder functions
3003 *
3004 @verbatim
3005 ==============================================================================
3006 ##### TIM Encoder functions #####
3007 ==============================================================================
3008 [..]
3009 This section provides functions allowing to:
3010 (+) Initialize and configure the TIM Encoder.
3011 (+) De-initialize the TIM Encoder.
3012 (+) Start the TIM Encoder.
3013 (+) Stop the TIM Encoder.
3014 (+) Start the TIM Encoder and enable interrupt.
3015 (+) Stop the TIM Encoder and disable interrupt.
3016 (+) Start the TIM Encoder and enable DMA transfer.
3017 (+) Stop the TIM Encoder and disable DMA transfer.
3018
3019 @endverbatim
3020 * @{
3021 */
3022 /**
3023 * @brief Initializes the TIM Encoder Interface and initialize the associated handle.
3024 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3025 * requires a timer reset to avoid unexpected direction
3026 * due to DIR bit readonly in center aligned mode.
3027 * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3028 * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
3029 * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3030 * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3031 * @note When the timer instance is initialized in Encoder mode, timer
3032 * channels 1 and channel 2 are reserved and cannot be used for other
3033 * purpose.
3034 * @param htim TIM Encoder Interface handle
3035 * @param sConfig TIM Encoder Interface configuration structure
3036 * @retval HAL status
3037 */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,const TIM_Encoder_InitTypeDef * sConfig)3038 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig)
3039 {
3040 uint32_t tmpsmcr;
3041 uint32_t tmpccmr1;
3042 uint32_t tmpccer;
3043
3044 /* Check the TIM handle allocation */
3045 if (htim == NULL)
3046 {
3047 return HAL_ERROR;
3048 }
3049
3050 /* Check the parameters */
3051 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3052 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3053 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3054 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3055 assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3056 assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3057 assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3058 assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3059 assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3060 assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3061 assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3062 assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3063 assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3064 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
3065
3066 if (htim->State == HAL_TIM_STATE_RESET)
3067 {
3068 /* Allocate lock resource and initialize it */
3069 htim->Lock = HAL_UNLOCKED;
3070
3071 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3072 /* Reset interrupt callbacks to legacy weak callbacks */
3073 TIM_ResetCallback(htim);
3074
3075 if (htim->Encoder_MspInitCallback == NULL)
3076 {
3077 htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3078 }
3079 /* Init the low level hardware : GPIO, CLOCK, NVIC */
3080 htim->Encoder_MspInitCallback(htim);
3081 #else
3082 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3083 HAL_TIM_Encoder_MspInit(htim);
3084 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3085 }
3086
3087 /* Set the TIM state */
3088 htim->State = HAL_TIM_STATE_BUSY;
3089
3090 /* Reset the SMS and ECE bits */
3091 htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3092
3093 /* Configure the Time base in the Encoder Mode */
3094 TIM_Base_SetConfig(htim->Instance, &htim->Init);
3095
3096 /* Get the TIMx SMCR register value */
3097 tmpsmcr = htim->Instance->SMCR;
3098
3099 /* Get the TIMx CCMR1 register value */
3100 tmpccmr1 = htim->Instance->CCMR1;
3101
3102 /* Get the TIMx CCER register value */
3103 tmpccer = htim->Instance->CCER;
3104
3105 /* Set the encoder Mode */
3106 tmpsmcr |= sConfig->EncoderMode;
3107
3108 /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3109 tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3110 tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3111
3112 /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3113 tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3114 tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3115 tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3116 tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3117
3118 /* Set the TI1 and the TI2 Polarities */
3119 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3120 tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
3121 tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3122
3123 /* Write to TIMx SMCR */
3124 htim->Instance->SMCR = tmpsmcr;
3125
3126 /* Write to TIMx CCMR1 */
3127 htim->Instance->CCMR1 = tmpccmr1;
3128
3129 /* Write to TIMx CCER */
3130 htim->Instance->CCER = tmpccer;
3131
3132 /* Initialize the DMA burst operation state */
3133 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3134
3135 /* Set the TIM channels state */
3136 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3137 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3138 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3139 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3140
3141 /* Initialize the TIM state*/
3142 htim->State = HAL_TIM_STATE_READY;
3143
3144 return HAL_OK;
3145 }
3146
3147
3148 /**
3149 * @brief DeInitializes the TIM Encoder interface
3150 * @param htim TIM Encoder Interface handle
3151 * @retval HAL status
3152 */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3153 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3154 {
3155 /* Check the parameters */
3156 assert_param(IS_TIM_INSTANCE(htim->Instance));
3157
3158 htim->State = HAL_TIM_STATE_BUSY;
3159
3160 /* Disable the TIM Peripheral Clock */
3161 __HAL_TIM_DISABLE(htim);
3162
3163 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3164 if (htim->Encoder_MspDeInitCallback == NULL)
3165 {
3166 htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3167 }
3168 /* DeInit the low level hardware */
3169 htim->Encoder_MspDeInitCallback(htim);
3170 #else
3171 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3172 HAL_TIM_Encoder_MspDeInit(htim);
3173 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3174
3175 /* Change the DMA burst operation state */
3176 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3177
3178 /* Set the TIM channels state */
3179 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3180 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3181 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3182 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3183
3184 /* Change TIM state */
3185 htim->State = HAL_TIM_STATE_RESET;
3186
3187 /* Release Lock */
3188 __HAL_UNLOCK(htim);
3189
3190 return HAL_OK;
3191 }
3192
3193 /**
3194 * @brief Initializes the TIM Encoder Interface MSP.
3195 * @param htim TIM Encoder Interface handle
3196 * @retval None
3197 */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3198 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3199 {
3200 /* Prevent unused argument(s) compilation warning */
3201 UNUSED(htim);
3202
3203 /* NOTE : This function should not be modified, when the callback is needed,
3204 the HAL_TIM_Encoder_MspInit could be implemented in the user file
3205 */
3206 }
3207
3208 /**
3209 * @brief DeInitializes TIM Encoder Interface MSP.
3210 * @param htim TIM Encoder Interface handle
3211 * @retval None
3212 */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3213 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3214 {
3215 /* Prevent unused argument(s) compilation warning */
3216 UNUSED(htim);
3217
3218 /* NOTE : This function should not be modified, when the callback is needed,
3219 the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3220 */
3221 }
3222
3223 /**
3224 * @brief Starts the TIM Encoder Interface.
3225 * @param htim TIM Encoder Interface handle
3226 * @param Channel TIM Channels to be enabled
3227 * This parameter can be one of the following values:
3228 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3229 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3230 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3231 * @retval HAL status
3232 */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3233 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3234 {
3235 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3236 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3237 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3238 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3239
3240 /* Check the parameters */
3241 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3242
3243 /* Set the TIM channel(s) state */
3244 if (Channel == TIM_CHANNEL_1)
3245 {
3246 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3247 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3248 {
3249 return HAL_ERROR;
3250 }
3251 else
3252 {
3253 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3254 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3255 }
3256 }
3257 else if (Channel == TIM_CHANNEL_2)
3258 {
3259 if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3260 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3261 {
3262 return HAL_ERROR;
3263 }
3264 else
3265 {
3266 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3267 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3268 }
3269 }
3270 else
3271 {
3272 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3273 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3274 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3275 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3276 {
3277 return HAL_ERROR;
3278 }
3279 else
3280 {
3281 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3282 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3283 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3284 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3285 }
3286 }
3287
3288 /* Enable the encoder interface channels */
3289 switch (Channel)
3290 {
3291 case TIM_CHANNEL_1:
3292 {
3293 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3294 break;
3295 }
3296
3297 case TIM_CHANNEL_2:
3298 {
3299 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3300 break;
3301 }
3302
3303 default :
3304 {
3305 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3306 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3307 break;
3308 }
3309 }
3310 /* Enable the Peripheral */
3311 __HAL_TIM_ENABLE(htim);
3312
3313 /* Return function status */
3314 return HAL_OK;
3315 }
3316
3317 /**
3318 * @brief Stops the TIM Encoder Interface.
3319 * @param htim TIM Encoder Interface handle
3320 * @param Channel TIM Channels to be disabled
3321 * This parameter can be one of the following values:
3322 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3323 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3324 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3325 * @retval HAL status
3326 */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3327 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3328 {
3329 /* Check the parameters */
3330 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3331
3332 /* Disable the Input Capture channels 1 and 2
3333 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3334 switch (Channel)
3335 {
3336 case TIM_CHANNEL_1:
3337 {
3338 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3339 break;
3340 }
3341
3342 case TIM_CHANNEL_2:
3343 {
3344 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3345 break;
3346 }
3347
3348 default :
3349 {
3350 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3351 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3352 break;
3353 }
3354 }
3355
3356 /* Disable the Peripheral */
3357 __HAL_TIM_DISABLE(htim);
3358
3359 /* Set the TIM channel(s) state */
3360 if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3361 {
3362 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3363 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3364 }
3365 else
3366 {
3367 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3368 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3369 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3370 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3371 }
3372
3373 /* Return function status */
3374 return HAL_OK;
3375 }
3376
3377 /**
3378 * @brief Starts the TIM Encoder Interface in interrupt mode.
3379 * @param htim TIM Encoder Interface handle
3380 * @param Channel TIM Channels to be enabled
3381 * This parameter can be one of the following values:
3382 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3383 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3384 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3385 * @retval HAL status
3386 */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3387 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3388 {
3389 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3390 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3391 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3392 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3393
3394 /* Check the parameters */
3395 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3396
3397 /* Set the TIM channel(s) state */
3398 if (Channel == TIM_CHANNEL_1)
3399 {
3400 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3401 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3402 {
3403 return HAL_ERROR;
3404 }
3405 else
3406 {
3407 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3408 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3409 }
3410 }
3411 else if (Channel == TIM_CHANNEL_2)
3412 {
3413 if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3414 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3415 {
3416 return HAL_ERROR;
3417 }
3418 else
3419 {
3420 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3421 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3422 }
3423 }
3424 else
3425 {
3426 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3427 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3428 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3429 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3430 {
3431 return HAL_ERROR;
3432 }
3433 else
3434 {
3435 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3436 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3437 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3438 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3439 }
3440 }
3441
3442 /* Enable the encoder interface channels */
3443 /* Enable the capture compare Interrupts 1 and/or 2 */
3444 switch (Channel)
3445 {
3446 case TIM_CHANNEL_1:
3447 {
3448 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3449 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3450 break;
3451 }
3452
3453 case TIM_CHANNEL_2:
3454 {
3455 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3456 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3457 break;
3458 }
3459
3460 default :
3461 {
3462 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3463 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3464 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3465 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3466 break;
3467 }
3468 }
3469
3470 /* Enable the Peripheral */
3471 __HAL_TIM_ENABLE(htim);
3472
3473 /* Return function status */
3474 return HAL_OK;
3475 }
3476
3477 /**
3478 * @brief Stops the TIM Encoder Interface in interrupt mode.
3479 * @param htim TIM Encoder Interface handle
3480 * @param Channel TIM Channels to be disabled
3481 * This parameter can be one of the following values:
3482 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3483 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3484 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3485 * @retval HAL status
3486 */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3487 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3488 {
3489 /* Check the parameters */
3490 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3491
3492 /* Disable the Input Capture channels 1 and 2
3493 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3494 if (Channel == TIM_CHANNEL_1)
3495 {
3496 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3497
3498 /* Disable the capture compare Interrupts 1 */
3499 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3500 }
3501 else if (Channel == TIM_CHANNEL_2)
3502 {
3503 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3504
3505 /* Disable the capture compare Interrupts 2 */
3506 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3507 }
3508 else
3509 {
3510 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3511 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3512
3513 /* Disable the capture compare Interrupts 1 and 2 */
3514 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3515 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3516 }
3517
3518 /* Disable the Peripheral */
3519 __HAL_TIM_DISABLE(htim);
3520
3521 /* Set the TIM channel(s) state */
3522 if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3523 {
3524 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3525 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3526 }
3527 else
3528 {
3529 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3530 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3531 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3532 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3533 }
3534
3535 /* Return function status */
3536 return HAL_OK;
3537 }
3538
3539 /**
3540 * @brief Starts the TIM Encoder Interface in DMA mode.
3541 * @param htim TIM Encoder Interface handle
3542 * @param Channel TIM Channels to be enabled
3543 * This parameter can be one of the following values:
3544 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3545 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3546 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3547 * @param pData1 The destination Buffer address for IC1.
3548 * @param pData2 The destination Buffer address for IC2.
3549 * @param Length The length of data to be transferred from TIM peripheral to memory.
3550 * @retval HAL status
3551 */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3552 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3553 uint32_t *pData2, uint16_t Length)
3554 {
3555 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3556 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3557 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3558 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3559
3560 /* Check the parameters */
3561 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3562
3563 /* Set the TIM channel(s) state */
3564 if (Channel == TIM_CHANNEL_1)
3565 {
3566 if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3567 || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3568 {
3569 return HAL_BUSY;
3570 }
3571 else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3572 && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3573 {
3574 if ((pData1 == NULL) || (Length == 0U))
3575 {
3576 return HAL_ERROR;
3577 }
3578 else
3579 {
3580 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3581 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3582 }
3583 }
3584 else
3585 {
3586 return HAL_ERROR;
3587 }
3588 }
3589 else if (Channel == TIM_CHANNEL_2)
3590 {
3591 if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3592 || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3593 {
3594 return HAL_BUSY;
3595 }
3596 else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3597 && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3598 {
3599 if ((pData2 == NULL) || (Length == 0U))
3600 {
3601 return HAL_ERROR;
3602 }
3603 else
3604 {
3605 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3606 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3607 }
3608 }
3609 else
3610 {
3611 return HAL_ERROR;
3612 }
3613 }
3614 else
3615 {
3616 if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3617 || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3618 || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3619 || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3620 {
3621 return HAL_BUSY;
3622 }
3623 else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3624 && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3625 && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3626 && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3627 {
3628 if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3629 {
3630 return HAL_ERROR;
3631 }
3632 else
3633 {
3634 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3635 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3636 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3637 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3638 }
3639 }
3640 else
3641 {
3642 return HAL_ERROR;
3643 }
3644 }
3645
3646 switch (Channel)
3647 {
3648 case TIM_CHANNEL_1:
3649 {
3650 /* Set the DMA capture callbacks */
3651 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3652 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3653
3654 /* Set the DMA error callback */
3655 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3656
3657 /* Enable the DMA channel */
3658 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3659 Length) != HAL_OK)
3660 {
3661 /* Return error status */
3662 return HAL_ERROR;
3663 }
3664 /* Enable the TIM Input Capture DMA request */
3665 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3666
3667 /* Enable the Capture compare channel */
3668 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3669
3670 /* Enable the Peripheral */
3671 __HAL_TIM_ENABLE(htim);
3672
3673 break;
3674 }
3675
3676 case TIM_CHANNEL_2:
3677 {
3678 /* Set the DMA capture callbacks */
3679 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3680 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3681
3682 /* Set the DMA error callback */
3683 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3684 /* Enable the DMA channel */
3685 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3686 Length) != HAL_OK)
3687 {
3688 /* Return error status */
3689 return HAL_ERROR;
3690 }
3691 /* Enable the TIM Input Capture DMA request */
3692 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3693
3694 /* Enable the Capture compare channel */
3695 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3696
3697 /* Enable the Peripheral */
3698 __HAL_TIM_ENABLE(htim);
3699
3700 break;
3701 }
3702
3703 default:
3704 {
3705 /* Set the DMA capture callbacks */
3706 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3707 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3708
3709 /* Set the DMA error callback */
3710 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3711
3712 /* Enable the DMA channel */
3713 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3714 Length) != HAL_OK)
3715 {
3716 /* Return error status */
3717 return HAL_ERROR;
3718 }
3719
3720 /* Set the DMA capture callbacks */
3721 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3722 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3723
3724 /* Set the DMA error callback */
3725 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3726
3727 /* Enable the DMA channel */
3728 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3729 Length) != HAL_OK)
3730 {
3731 /* Return error status */
3732 return HAL_ERROR;
3733 }
3734
3735 /* Enable the TIM Input Capture DMA request */
3736 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3737 /* Enable the TIM Input Capture DMA request */
3738 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3739
3740 /* Enable the Capture compare channel */
3741 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3742 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3743
3744 /* Enable the Peripheral */
3745 __HAL_TIM_ENABLE(htim);
3746
3747 break;
3748 }
3749 }
3750
3751 /* Return function status */
3752 return HAL_OK;
3753 }
3754
3755 /**
3756 * @brief Stops the TIM Encoder Interface in DMA mode.
3757 * @param htim TIM Encoder Interface handle
3758 * @param Channel TIM Channels to be enabled
3759 * This parameter can be one of the following values:
3760 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3761 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3762 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3763 * @retval HAL status
3764 */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3765 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3766 {
3767 /* Check the parameters */
3768 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3769
3770 /* Disable the Input Capture channels 1 and 2
3771 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3772 if (Channel == TIM_CHANNEL_1)
3773 {
3774 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3775
3776 /* Disable the capture compare DMA Request 1 */
3777 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3778 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3779 }
3780 else if (Channel == TIM_CHANNEL_2)
3781 {
3782 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3783
3784 /* Disable the capture compare DMA Request 2 */
3785 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3786 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3787 }
3788 else
3789 {
3790 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3791 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3792
3793 /* Disable the capture compare DMA Request 1 and 2 */
3794 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3795 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3796 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3797 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3798 }
3799
3800 /* Disable the Peripheral */
3801 __HAL_TIM_DISABLE(htim);
3802
3803 /* Set the TIM channel(s) state */
3804 if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3805 {
3806 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3807 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3808 }
3809 else
3810 {
3811 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3812 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3813 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3814 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3815 }
3816
3817 /* Return function status */
3818 return HAL_OK;
3819 }
3820
3821 /**
3822 * @}
3823 */
3824 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3825 * @brief TIM IRQ handler management
3826 *
3827 @verbatim
3828 ==============================================================================
3829 ##### IRQ handler management #####
3830 ==============================================================================
3831 [..]
3832 This section provides Timer IRQ handler function.
3833
3834 @endverbatim
3835 * @{
3836 */
3837 /**
3838 * @brief This function handles TIM interrupts requests.
3839 * @param htim TIM handle
3840 * @retval None
3841 */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3842 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3843 {
3844 uint32_t itsource = htim->Instance->DIER;
3845 uint32_t itflag = htim->Instance->SR;
3846
3847 /* Capture compare 1 event */
3848 if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1))
3849 {
3850 if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1))
3851 {
3852 {
3853 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC1);
3854 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3855
3856 /* Input capture event */
3857 if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3858 {
3859 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3860 htim->IC_CaptureCallback(htim);
3861 #else
3862 HAL_TIM_IC_CaptureCallback(htim);
3863 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3864 }
3865 /* Output compare event */
3866 else
3867 {
3868 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3869 htim->OC_DelayElapsedCallback(htim);
3870 htim->PWM_PulseFinishedCallback(htim);
3871 #else
3872 HAL_TIM_OC_DelayElapsedCallback(htim);
3873 HAL_TIM_PWM_PulseFinishedCallback(htim);
3874 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3875 }
3876 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3877 }
3878 }
3879 }
3880 /* Capture compare 2 event */
3881 if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2))
3882 {
3883 if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2))
3884 {
3885 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC2);
3886 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3887 /* Input capture event */
3888 if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3889 {
3890 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3891 htim->IC_CaptureCallback(htim);
3892 #else
3893 HAL_TIM_IC_CaptureCallback(htim);
3894 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3895 }
3896 /* Output compare event */
3897 else
3898 {
3899 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3900 htim->OC_DelayElapsedCallback(htim);
3901 htim->PWM_PulseFinishedCallback(htim);
3902 #else
3903 HAL_TIM_OC_DelayElapsedCallback(htim);
3904 HAL_TIM_PWM_PulseFinishedCallback(htim);
3905 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3906 }
3907 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3908 }
3909 }
3910 /* Capture compare 3 event */
3911 if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3))
3912 {
3913 if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3))
3914 {
3915 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC3);
3916 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3917 /* Input capture event */
3918 if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3919 {
3920 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3921 htim->IC_CaptureCallback(htim);
3922 #else
3923 HAL_TIM_IC_CaptureCallback(htim);
3924 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3925 }
3926 /* Output compare event */
3927 else
3928 {
3929 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3930 htim->OC_DelayElapsedCallback(htim);
3931 htim->PWM_PulseFinishedCallback(htim);
3932 #else
3933 HAL_TIM_OC_DelayElapsedCallback(htim);
3934 HAL_TIM_PWM_PulseFinishedCallback(htim);
3935 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3936 }
3937 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3938 }
3939 }
3940 /* Capture compare 4 event */
3941 if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4))
3942 {
3943 if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4))
3944 {
3945 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC4);
3946 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3947 /* Input capture event */
3948 if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3949 {
3950 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3951 htim->IC_CaptureCallback(htim);
3952 #else
3953 HAL_TIM_IC_CaptureCallback(htim);
3954 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3955 }
3956 /* Output compare event */
3957 else
3958 {
3959 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3960 htim->OC_DelayElapsedCallback(htim);
3961 htim->PWM_PulseFinishedCallback(htim);
3962 #else
3963 HAL_TIM_OC_DelayElapsedCallback(htim);
3964 HAL_TIM_PWM_PulseFinishedCallback(htim);
3965 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3966 }
3967 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3968 }
3969 }
3970 /* TIM Update event */
3971 if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE))
3972 {
3973 if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE))
3974 {
3975 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_UPDATE);
3976 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3977 htim->PeriodElapsedCallback(htim);
3978 #else
3979 HAL_TIM_PeriodElapsedCallback(htim);
3980 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3981 }
3982 }
3983 /* TIM Break input event */
3984 if (((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK)) || \
3985 ((itflag & (TIM_FLAG_SYSTEM_BREAK)) == (TIM_FLAG_SYSTEM_BREAK)))
3986 {
3987 if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
3988 {
3989 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK | TIM_FLAG_SYSTEM_BREAK);
3990 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3991 htim->BreakCallback(htim);
3992 #else
3993 HAL_TIMEx_BreakCallback(htim);
3994 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3995 }
3996 }
3997 /* TIM Break2 input event */
3998 if ((itflag & (TIM_FLAG_BREAK2)) == (TIM_FLAG_BREAK2))
3999 {
4000 if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
4001 {
4002 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
4003 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4004 htim->Break2Callback(htim);
4005 #else
4006 HAL_TIMEx_Break2Callback(htim);
4007 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4008 }
4009 }
4010 /* TIM Trigger detection event */
4011 if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER))
4012 {
4013 if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER))
4014 {
4015 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_TRIGGER);
4016 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4017 htim->TriggerCallback(htim);
4018 #else
4019 HAL_TIM_TriggerCallback(htim);
4020 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4021 }
4022 }
4023 /* TIM commutation event */
4024 if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM))
4025 {
4026 if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM))
4027 {
4028 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_COM);
4029 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4030 htim->CommutationCallback(htim);
4031 #else
4032 HAL_TIMEx_CommutCallback(htim);
4033 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4034 }
4035 }
4036 }
4037
4038 /**
4039 * @}
4040 */
4041
4042 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4043 * @brief TIM Peripheral Control functions
4044 *
4045 @verbatim
4046 ==============================================================================
4047 ##### Peripheral Control functions #####
4048 ==============================================================================
4049 [..]
4050 This section provides functions allowing to:
4051 (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4052 (+) Configure External Clock source.
4053 (+) Configure Complementary channels, break features and dead time.
4054 (+) Configure Master and the Slave synchronization.
4055 (+) Configure the DMA Burst Mode.
4056
4057 @endverbatim
4058 * @{
4059 */
4060
4061 /**
4062 * @brief Initializes the TIM Output Compare Channels according to the specified
4063 * parameters in the TIM_OC_InitTypeDef.
4064 * @param htim TIM Output Compare handle
4065 * @param sConfig TIM Output Compare configuration structure
4066 * @param Channel TIM Channels to configure
4067 * This parameter can be one of the following values:
4068 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4069 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4070 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
4071 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
4072 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
4073 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
4074 * @retval HAL status
4075 */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4076 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4077 const TIM_OC_InitTypeDef *sConfig,
4078 uint32_t Channel)
4079 {
4080 HAL_StatusTypeDef status = HAL_OK;
4081
4082 /* Check the parameters */
4083 assert_param(IS_TIM_CHANNELS(Channel));
4084 assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4085 assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4086
4087 /* Process Locked */
4088 __HAL_LOCK(htim);
4089
4090 switch (Channel)
4091 {
4092 case TIM_CHANNEL_1:
4093 {
4094 /* Check the parameters */
4095 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4096
4097 /* Configure the TIM Channel 1 in Output Compare */
4098 TIM_OC1_SetConfig(htim->Instance, sConfig);
4099 break;
4100 }
4101
4102 case TIM_CHANNEL_2:
4103 {
4104 /* Check the parameters */
4105 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4106
4107 /* Configure the TIM Channel 2 in Output Compare */
4108 TIM_OC2_SetConfig(htim->Instance, sConfig);
4109 break;
4110 }
4111
4112 case TIM_CHANNEL_3:
4113 {
4114 /* Check the parameters */
4115 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4116
4117 /* Configure the TIM Channel 3 in Output Compare */
4118 TIM_OC3_SetConfig(htim->Instance, sConfig);
4119 break;
4120 }
4121
4122 case TIM_CHANNEL_4:
4123 {
4124 /* Check the parameters */
4125 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4126
4127 /* Configure the TIM Channel 4 in Output Compare */
4128 TIM_OC4_SetConfig(htim->Instance, sConfig);
4129 break;
4130 }
4131
4132 case TIM_CHANNEL_5:
4133 {
4134 /* Check the parameters */
4135 assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4136
4137 /* Configure the TIM Channel 5 in Output Compare */
4138 TIM_OC5_SetConfig(htim->Instance, sConfig);
4139 break;
4140 }
4141
4142 case TIM_CHANNEL_6:
4143 {
4144 /* Check the parameters */
4145 assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4146
4147 /* Configure the TIM Channel 6 in Output Compare */
4148 TIM_OC6_SetConfig(htim->Instance, sConfig);
4149 break;
4150 }
4151
4152 default:
4153 status = HAL_ERROR;
4154 break;
4155 }
4156
4157 __HAL_UNLOCK(htim);
4158
4159 return status;
4160 }
4161
4162 /**
4163 * @brief Initializes the TIM Input Capture Channels according to the specified
4164 * parameters in the TIM_IC_InitTypeDef.
4165 * @param htim TIM IC handle
4166 * @param sConfig TIM Input Capture configuration structure
4167 * @param Channel TIM Channel to configure
4168 * This parameter can be one of the following values:
4169 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4170 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4171 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
4172 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
4173 * @retval HAL status
4174 */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4175 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4176 {
4177 HAL_StatusTypeDef status = HAL_OK;
4178
4179 /* Check the parameters */
4180 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4181 assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4182 assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4183 assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4184 assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4185
4186 /* Process Locked */
4187 __HAL_LOCK(htim);
4188
4189 if (Channel == TIM_CHANNEL_1)
4190 {
4191 /* TI1 Configuration */
4192 TIM_TI1_SetConfig(htim->Instance,
4193 sConfig->ICPolarity,
4194 sConfig->ICSelection,
4195 sConfig->ICFilter);
4196
4197 /* Reset the IC1PSC Bits */
4198 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4199
4200 /* Set the IC1PSC value */
4201 htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4202 }
4203 else if (Channel == TIM_CHANNEL_2)
4204 {
4205 /* TI2 Configuration */
4206 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4207
4208 TIM_TI2_SetConfig(htim->Instance,
4209 sConfig->ICPolarity,
4210 sConfig->ICSelection,
4211 sConfig->ICFilter);
4212
4213 /* Reset the IC2PSC Bits */
4214 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4215
4216 /* Set the IC2PSC value */
4217 htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4218 }
4219 else if (Channel == TIM_CHANNEL_3)
4220 {
4221 /* TI3 Configuration */
4222 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4223
4224 TIM_TI3_SetConfig(htim->Instance,
4225 sConfig->ICPolarity,
4226 sConfig->ICSelection,
4227 sConfig->ICFilter);
4228
4229 /* Reset the IC3PSC Bits */
4230 htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4231
4232 /* Set the IC3PSC value */
4233 htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4234 }
4235 else if (Channel == TIM_CHANNEL_4)
4236 {
4237 /* TI4 Configuration */
4238 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4239
4240 TIM_TI4_SetConfig(htim->Instance,
4241 sConfig->ICPolarity,
4242 sConfig->ICSelection,
4243 sConfig->ICFilter);
4244
4245 /* Reset the IC4PSC Bits */
4246 htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4247
4248 /* Set the IC4PSC value */
4249 htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4250 }
4251 else
4252 {
4253 status = HAL_ERROR;
4254 }
4255
4256 __HAL_UNLOCK(htim);
4257
4258 return status;
4259 }
4260
4261 /**
4262 * @brief Initializes the TIM PWM channels according to the specified
4263 * parameters in the TIM_OC_InitTypeDef.
4264 * @param htim TIM PWM handle
4265 * @param sConfig TIM PWM configuration structure
4266 * @param Channel TIM Channels to be configured
4267 * This parameter can be one of the following values:
4268 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4269 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4270 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
4271 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
4272 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
4273 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
4274 * @retval HAL status
4275 */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4276 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4277 const TIM_OC_InitTypeDef *sConfig,
4278 uint32_t Channel)
4279 {
4280 HAL_StatusTypeDef status = HAL_OK;
4281
4282 /* Check the parameters */
4283 assert_param(IS_TIM_CHANNELS(Channel));
4284 assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4285 assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4286 assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4287
4288 /* Process Locked */
4289 __HAL_LOCK(htim);
4290
4291 switch (Channel)
4292 {
4293 case TIM_CHANNEL_1:
4294 {
4295 /* Check the parameters */
4296 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4297
4298 /* Configure the Channel 1 in PWM mode */
4299 TIM_OC1_SetConfig(htim->Instance, sConfig);
4300
4301 /* Set the Preload enable bit for channel1 */
4302 htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4303
4304 /* Configure the Output Fast mode */
4305 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4306 htim->Instance->CCMR1 |= sConfig->OCFastMode;
4307 break;
4308 }
4309
4310 case TIM_CHANNEL_2:
4311 {
4312 /* Check the parameters */
4313 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4314
4315 /* Configure the Channel 2 in PWM mode */
4316 TIM_OC2_SetConfig(htim->Instance, sConfig);
4317
4318 /* Set the Preload enable bit for channel2 */
4319 htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4320
4321 /* Configure the Output Fast mode */
4322 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4323 htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4324 break;
4325 }
4326
4327 case TIM_CHANNEL_3:
4328 {
4329 /* Check the parameters */
4330 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4331
4332 /* Configure the Channel 3 in PWM mode */
4333 TIM_OC3_SetConfig(htim->Instance, sConfig);
4334
4335 /* Set the Preload enable bit for channel3 */
4336 htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4337
4338 /* Configure the Output Fast mode */
4339 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4340 htim->Instance->CCMR2 |= sConfig->OCFastMode;
4341 break;
4342 }
4343
4344 case TIM_CHANNEL_4:
4345 {
4346 /* Check the parameters */
4347 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4348
4349 /* Configure the Channel 4 in PWM mode */
4350 TIM_OC4_SetConfig(htim->Instance, sConfig);
4351
4352 /* Set the Preload enable bit for channel4 */
4353 htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4354
4355 /* Configure the Output Fast mode */
4356 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4357 htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4358 break;
4359 }
4360
4361 case TIM_CHANNEL_5:
4362 {
4363 /* Check the parameters */
4364 assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4365
4366 /* Configure the Channel 5 in PWM mode */
4367 TIM_OC5_SetConfig(htim->Instance, sConfig);
4368
4369 /* Set the Preload enable bit for channel5*/
4370 htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
4371
4372 /* Configure the Output Fast mode */
4373 htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
4374 htim->Instance->CCMR3 |= sConfig->OCFastMode;
4375 break;
4376 }
4377
4378 case TIM_CHANNEL_6:
4379 {
4380 /* Check the parameters */
4381 assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4382
4383 /* Configure the Channel 6 in PWM mode */
4384 TIM_OC6_SetConfig(htim->Instance, sConfig);
4385
4386 /* Set the Preload enable bit for channel6 */
4387 htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
4388
4389 /* Configure the Output Fast mode */
4390 htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
4391 htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
4392 break;
4393 }
4394
4395 default:
4396 status = HAL_ERROR;
4397 break;
4398 }
4399
4400 __HAL_UNLOCK(htim);
4401
4402 return status;
4403 }
4404
4405 /**
4406 * @brief Initializes the TIM One Pulse Channels according to the specified
4407 * parameters in the TIM_OnePulse_InitTypeDef.
4408 * @param htim TIM One Pulse handle
4409 * @param sConfig TIM One Pulse configuration structure
4410 * @param OutputChannel TIM output channel to configure
4411 * This parameter can be one of the following values:
4412 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4413 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4414 * @param InputChannel TIM input Channel to configure
4415 * This parameter can be one of the following values:
4416 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4417 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4418 * @note To output a waveform with a minimum delay user can enable the fast
4419 * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4420 * output is forced in response to the edge detection on TIx input,
4421 * without taking in account the comparison.
4422 * @retval HAL status
4423 */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4424 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig,
4425 uint32_t OutputChannel, uint32_t InputChannel)
4426 {
4427 HAL_StatusTypeDef status = HAL_OK;
4428 TIM_OC_InitTypeDef temp1;
4429
4430 /* Check the parameters */
4431 assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4432 assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4433
4434 if (OutputChannel != InputChannel)
4435 {
4436 /* Process Locked */
4437 __HAL_LOCK(htim);
4438
4439 htim->State = HAL_TIM_STATE_BUSY;
4440
4441 /* Extract the Output compare configuration from sConfig structure */
4442 temp1.OCMode = sConfig->OCMode;
4443 temp1.Pulse = sConfig->Pulse;
4444 temp1.OCPolarity = sConfig->OCPolarity;
4445 temp1.OCNPolarity = sConfig->OCNPolarity;
4446 temp1.OCIdleState = sConfig->OCIdleState;
4447 temp1.OCNIdleState = sConfig->OCNIdleState;
4448
4449 switch (OutputChannel)
4450 {
4451 case TIM_CHANNEL_1:
4452 {
4453 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4454
4455 TIM_OC1_SetConfig(htim->Instance, &temp1);
4456 break;
4457 }
4458
4459 case TIM_CHANNEL_2:
4460 {
4461 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4462
4463 TIM_OC2_SetConfig(htim->Instance, &temp1);
4464 break;
4465 }
4466
4467 default:
4468 status = HAL_ERROR;
4469 break;
4470 }
4471
4472 if (status == HAL_OK)
4473 {
4474 switch (InputChannel)
4475 {
4476 case TIM_CHANNEL_1:
4477 {
4478 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4479
4480 TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4481 sConfig->ICSelection, sConfig->ICFilter);
4482
4483 /* Reset the IC1PSC Bits */
4484 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4485
4486 /* Select the Trigger source */
4487 htim->Instance->SMCR &= ~TIM_SMCR_TS;
4488 htim->Instance->SMCR |= TIM_TS_TI1FP1;
4489
4490 /* Select the Slave Mode */
4491 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4492 htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4493 break;
4494 }
4495
4496 case TIM_CHANNEL_2:
4497 {
4498 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4499
4500 TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4501 sConfig->ICSelection, sConfig->ICFilter);
4502
4503 /* Reset the IC2PSC Bits */
4504 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4505
4506 /* Select the Trigger source */
4507 htim->Instance->SMCR &= ~TIM_SMCR_TS;
4508 htim->Instance->SMCR |= TIM_TS_TI2FP2;
4509
4510 /* Select the Slave Mode */
4511 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4512 htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4513 break;
4514 }
4515
4516 default:
4517 status = HAL_ERROR;
4518 break;
4519 }
4520 }
4521
4522 htim->State = HAL_TIM_STATE_READY;
4523
4524 __HAL_UNLOCK(htim);
4525
4526 return status;
4527 }
4528 else
4529 {
4530 return HAL_ERROR;
4531 }
4532 }
4533
4534 /**
4535 * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4536 * @param htim TIM handle
4537 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
4538 * This parameter can be one of the following values:
4539 * @arg TIM_DMABASE_CR1
4540 * @arg TIM_DMABASE_CR2
4541 * @arg TIM_DMABASE_SMCR
4542 * @arg TIM_DMABASE_DIER
4543 * @arg TIM_DMABASE_SR
4544 * @arg TIM_DMABASE_EGR
4545 * @arg TIM_DMABASE_CCMR1
4546 * @arg TIM_DMABASE_CCMR2
4547 * @arg TIM_DMABASE_CCER
4548 * @arg TIM_DMABASE_CNT
4549 * @arg TIM_DMABASE_PSC
4550 * @arg TIM_DMABASE_ARR
4551 * @arg TIM_DMABASE_RCR
4552 * @arg TIM_DMABASE_CCR1
4553 * @arg TIM_DMABASE_CCR2
4554 * @arg TIM_DMABASE_CCR3
4555 * @arg TIM_DMABASE_CCR4
4556 * @arg TIM_DMABASE_BDTR
4557 * @arg TIM_DMABASE_CCMR3
4558 * @arg TIM_DMABASE_CCR5
4559 * @arg TIM_DMABASE_CCR6
4560 * @arg TIM_DMABASE_AF1
4561 * @arg TIM_DMABASE_AF2
4562 * @arg TIM_DMABASE_TISEL
4563 * @param BurstRequestSrc TIM DMA Request sources
4564 * This parameter can be one of the following values:
4565 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4566 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4567 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4568 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4569 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4570 * @arg TIM_DMA_COM: TIM Commutation DMA source
4571 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4572 * @param BurstBuffer The Buffer address.
4573 * @param BurstLength DMA Burst length. This parameter can be one value
4574 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4575 * @note This function should be used only when BurstLength is equal to DMA data transfer length.
4576 * @retval HAL status
4577 */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4578 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4579 uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4580 uint32_t BurstLength)
4581 {
4582 HAL_StatusTypeDef status;
4583
4584 status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4585 ((BurstLength) >> 8U) + 1U);
4586
4587
4588 return status;
4589 }
4590
4591 /**
4592 * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4593 * @param htim TIM handle
4594 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
4595 * This parameter can be one of the following values:
4596 * @arg TIM_DMABASE_CR1
4597 * @arg TIM_DMABASE_CR2
4598 * @arg TIM_DMABASE_SMCR
4599 * @arg TIM_DMABASE_DIER
4600 * @arg TIM_DMABASE_SR
4601 * @arg TIM_DMABASE_EGR
4602 * @arg TIM_DMABASE_CCMR1
4603 * @arg TIM_DMABASE_CCMR2
4604 * @arg TIM_DMABASE_CCER
4605 * @arg TIM_DMABASE_CNT
4606 * @arg TIM_DMABASE_PSC
4607 * @arg TIM_DMABASE_ARR
4608 * @arg TIM_DMABASE_RCR
4609 * @arg TIM_DMABASE_CCR1
4610 * @arg TIM_DMABASE_CCR2
4611 * @arg TIM_DMABASE_CCR3
4612 * @arg TIM_DMABASE_CCR4
4613 * @arg TIM_DMABASE_BDTR
4614 * @arg TIM_DMABASE_CCMR3
4615 * @arg TIM_DMABASE_CCR5
4616 * @arg TIM_DMABASE_CCR6
4617 * @arg TIM_DMABASE_AF1
4618 * @arg TIM_DMABASE_AF2
4619 * @arg TIM_DMABASE_TISEL
4620 * @param BurstRequestSrc TIM DMA Request sources
4621 * This parameter can be one of the following values:
4622 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4623 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4624 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4625 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4626 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4627 * @arg TIM_DMA_COM: TIM Commutation DMA source
4628 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4629 * @param BurstBuffer The Buffer address.
4630 * @param BurstLength DMA Burst length. This parameter can be one value
4631 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4632 * @param DataLength Data length. This parameter can be one value
4633 * between 1 and 0xFFFF.
4634 * @retval HAL status
4635 */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4636 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4637 uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4638 uint32_t BurstLength, uint32_t DataLength)
4639 {
4640 HAL_StatusTypeDef status = HAL_OK;
4641
4642 /* Check the parameters */
4643 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4644 assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4645 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4646 assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4647 assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4648
4649 if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4650 {
4651 return HAL_BUSY;
4652 }
4653 else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4654 {
4655 if ((BurstBuffer == NULL) && (BurstLength > 0U))
4656 {
4657 return HAL_ERROR;
4658 }
4659 else
4660 {
4661 htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4662 }
4663 }
4664 else
4665 {
4666 /* nothing to do */
4667 }
4668
4669 switch (BurstRequestSrc)
4670 {
4671 case TIM_DMA_UPDATE:
4672 {
4673 /* Set the DMA Period elapsed callbacks */
4674 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4675 htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4676
4677 /* Set the DMA error callback */
4678 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4679
4680 /* Enable the DMA channel */
4681 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4682 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4683 {
4684 /* Return error status */
4685 return HAL_ERROR;
4686 }
4687 break;
4688 }
4689 case TIM_DMA_CC1:
4690 {
4691 /* Set the DMA compare callbacks */
4692 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4693 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4694
4695 /* Set the DMA error callback */
4696 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4697
4698 /* Enable the DMA channel */
4699 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4700 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4701 {
4702 /* Return error status */
4703 return HAL_ERROR;
4704 }
4705 break;
4706 }
4707 case TIM_DMA_CC2:
4708 {
4709 /* Set the DMA compare callbacks */
4710 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4711 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4712
4713 /* Set the DMA error callback */
4714 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4715
4716 /* Enable the DMA channel */
4717 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4718 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4719 {
4720 /* Return error status */
4721 return HAL_ERROR;
4722 }
4723 break;
4724 }
4725 case TIM_DMA_CC3:
4726 {
4727 /* Set the DMA compare callbacks */
4728 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4729 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4730
4731 /* Set the DMA error callback */
4732 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4733
4734 /* Enable the DMA channel */
4735 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4736 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4737 {
4738 /* Return error status */
4739 return HAL_ERROR;
4740 }
4741 break;
4742 }
4743 case TIM_DMA_CC4:
4744 {
4745 /* Set the DMA compare callbacks */
4746 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4747 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4748
4749 /* Set the DMA error callback */
4750 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4751
4752 /* Enable the DMA channel */
4753 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4754 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4755 {
4756 /* Return error status */
4757 return HAL_ERROR;
4758 }
4759 break;
4760 }
4761 case TIM_DMA_COM:
4762 {
4763 /* Set the DMA commutation callbacks */
4764 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
4765 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
4766
4767 /* Set the DMA error callback */
4768 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4769
4770 /* Enable the DMA channel */
4771 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4772 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4773 {
4774 /* Return error status */
4775 return HAL_ERROR;
4776 }
4777 break;
4778 }
4779 case TIM_DMA_TRIGGER:
4780 {
4781 /* Set the DMA trigger callbacks */
4782 htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4783 htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4784
4785 /* Set the DMA error callback */
4786 htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4787
4788 /* Enable the DMA channel */
4789 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4790 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4791 {
4792 /* Return error status */
4793 return HAL_ERROR;
4794 }
4795 break;
4796 }
4797 default:
4798 status = HAL_ERROR;
4799 break;
4800 }
4801
4802 if (status == HAL_OK)
4803 {
4804 /* Configure the DMA Burst Mode */
4805 htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4806 /* Enable the TIM DMA Request */
4807 __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4808 }
4809
4810 /* Return function status */
4811 return status;
4812 }
4813
4814 /**
4815 * @brief Stops the TIM DMA Burst mode
4816 * @param htim TIM handle
4817 * @param BurstRequestSrc TIM DMA Request sources to disable
4818 * @retval HAL status
4819 */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4820 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4821 {
4822 HAL_StatusTypeDef status = HAL_OK;
4823
4824 /* Check the parameters */
4825 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4826
4827 /* Abort the DMA transfer (at least disable the DMA channel) */
4828 switch (BurstRequestSrc)
4829 {
4830 case TIM_DMA_UPDATE:
4831 {
4832 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4833 break;
4834 }
4835 case TIM_DMA_CC1:
4836 {
4837 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4838 break;
4839 }
4840 case TIM_DMA_CC2:
4841 {
4842 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4843 break;
4844 }
4845 case TIM_DMA_CC3:
4846 {
4847 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4848 break;
4849 }
4850 case TIM_DMA_CC4:
4851 {
4852 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4853 break;
4854 }
4855 case TIM_DMA_COM:
4856 {
4857 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4858 break;
4859 }
4860 case TIM_DMA_TRIGGER:
4861 {
4862 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4863 break;
4864 }
4865 default:
4866 status = HAL_ERROR;
4867 break;
4868 }
4869
4870 if (status == HAL_OK)
4871 {
4872 /* Disable the TIM Update DMA request */
4873 __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4874
4875 /* Change the DMA burst operation state */
4876 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4877 }
4878
4879 /* Return function status */
4880 return status;
4881 }
4882
4883 /**
4884 * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4885 * @param htim TIM handle
4886 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
4887 * This parameter can be one of the following values:
4888 * @arg TIM_DMABASE_CR1
4889 * @arg TIM_DMABASE_CR2
4890 * @arg TIM_DMABASE_SMCR
4891 * @arg TIM_DMABASE_DIER
4892 * @arg TIM_DMABASE_SR
4893 * @arg TIM_DMABASE_EGR
4894 * @arg TIM_DMABASE_CCMR1
4895 * @arg TIM_DMABASE_CCMR2
4896 * @arg TIM_DMABASE_CCER
4897 * @arg TIM_DMABASE_CNT
4898 * @arg TIM_DMABASE_PSC
4899 * @arg TIM_DMABASE_ARR
4900 * @arg TIM_DMABASE_RCR
4901 * @arg TIM_DMABASE_CCR1
4902 * @arg TIM_DMABASE_CCR2
4903 * @arg TIM_DMABASE_CCR3
4904 * @arg TIM_DMABASE_CCR4
4905 * @arg TIM_DMABASE_BDTR
4906 * @arg TIM_DMABASE_CCMR3
4907 * @arg TIM_DMABASE_CCR5
4908 * @arg TIM_DMABASE_CCR6
4909 * @arg TIM_DMABASE_AF1
4910 * @arg TIM_DMABASE_AF2
4911 * @arg TIM_DMABASE_TISEL
4912 * @param BurstRequestSrc TIM DMA Request sources
4913 * This parameter can be one of the following values:
4914 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4915 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4916 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4917 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4918 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4919 * @arg TIM_DMA_COM: TIM Commutation DMA source
4920 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4921 * @param BurstBuffer The Buffer address.
4922 * @param BurstLength DMA Burst length. This parameter can be one value
4923 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4924 * @note This function should be used only when BurstLength is equal to DMA data transfer length.
4925 * @retval HAL status
4926 */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4927 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4928 uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength)
4929 {
4930 HAL_StatusTypeDef status;
4931
4932 status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4933 ((BurstLength) >> 8U) + 1U);
4934
4935
4936 return status;
4937 }
4938
4939 /**
4940 * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4941 * @param htim TIM handle
4942 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
4943 * This parameter can be one of the following values:
4944 * @arg TIM_DMABASE_CR1
4945 * @arg TIM_DMABASE_CR2
4946 * @arg TIM_DMABASE_SMCR
4947 * @arg TIM_DMABASE_DIER
4948 * @arg TIM_DMABASE_SR
4949 * @arg TIM_DMABASE_EGR
4950 * @arg TIM_DMABASE_CCMR1
4951 * @arg TIM_DMABASE_CCMR2
4952 * @arg TIM_DMABASE_CCER
4953 * @arg TIM_DMABASE_CNT
4954 * @arg TIM_DMABASE_PSC
4955 * @arg TIM_DMABASE_ARR
4956 * @arg TIM_DMABASE_RCR
4957 * @arg TIM_DMABASE_CCR1
4958 * @arg TIM_DMABASE_CCR2
4959 * @arg TIM_DMABASE_CCR3
4960 * @arg TIM_DMABASE_CCR4
4961 * @arg TIM_DMABASE_BDTR
4962 * @arg TIM_DMABASE_CCMR3
4963 * @arg TIM_DMABASE_CCR5
4964 * @arg TIM_DMABASE_CCR6
4965 * @arg TIM_DMABASE_AF1
4966 * @arg TIM_DMABASE_AF2
4967 * @arg TIM_DMABASE_TISEL
4968 * @param BurstRequestSrc TIM DMA Request sources
4969 * This parameter can be one of the following values:
4970 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4971 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4972 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4973 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4974 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4975 * @arg TIM_DMA_COM: TIM Commutation DMA source
4976 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4977 * @param BurstBuffer The Buffer address.
4978 * @param BurstLength DMA Burst length. This parameter can be one value
4979 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4980 * @param DataLength Data length. This parameter can be one value
4981 * between 1 and 0xFFFF.
4982 * @retval HAL status
4983 */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4984 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4985 uint32_t BurstRequestSrc, uint32_t *BurstBuffer,
4986 uint32_t BurstLength, uint32_t DataLength)
4987 {
4988 HAL_StatusTypeDef status = HAL_OK;
4989
4990 /* Check the parameters */
4991 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4992 assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4993 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4994 assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4995 assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4996
4997 if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4998 {
4999 return HAL_BUSY;
5000 }
5001 else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
5002 {
5003 if ((BurstBuffer == NULL) && (BurstLength > 0U))
5004 {
5005 return HAL_ERROR;
5006 }
5007 else
5008 {
5009 htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
5010 }
5011 }
5012 else
5013 {
5014 /* nothing to do */
5015 }
5016 switch (BurstRequestSrc)
5017 {
5018 case TIM_DMA_UPDATE:
5019 {
5020 /* Set the DMA Period elapsed callbacks */
5021 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
5022 htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
5023
5024 /* Set the DMA error callback */
5025 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
5026
5027 /* Enable the DMA channel */
5028 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5029 DataLength) != HAL_OK)
5030 {
5031 /* Return error status */
5032 return HAL_ERROR;
5033 }
5034 break;
5035 }
5036 case TIM_DMA_CC1:
5037 {
5038 /* Set the DMA capture callbacks */
5039 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
5040 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5041
5042 /* Set the DMA error callback */
5043 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
5044
5045 /* Enable the DMA channel */
5046 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5047 DataLength) != HAL_OK)
5048 {
5049 /* Return error status */
5050 return HAL_ERROR;
5051 }
5052 break;
5053 }
5054 case TIM_DMA_CC2:
5055 {
5056 /* Set the DMA capture callbacks */
5057 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
5058 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5059
5060 /* Set the DMA error callback */
5061 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
5062
5063 /* Enable the DMA channel */
5064 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5065 DataLength) != HAL_OK)
5066 {
5067 /* Return error status */
5068 return HAL_ERROR;
5069 }
5070 break;
5071 }
5072 case TIM_DMA_CC3:
5073 {
5074 /* Set the DMA capture callbacks */
5075 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
5076 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5077
5078 /* Set the DMA error callback */
5079 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
5080
5081 /* Enable the DMA channel */
5082 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5083 DataLength) != HAL_OK)
5084 {
5085 /* Return error status */
5086 return HAL_ERROR;
5087 }
5088 break;
5089 }
5090 case TIM_DMA_CC4:
5091 {
5092 /* Set the DMA capture callbacks */
5093 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
5094 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5095
5096 /* Set the DMA error callback */
5097 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
5098
5099 /* Enable the DMA channel */
5100 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5101 DataLength) != HAL_OK)
5102 {
5103 /* Return error status */
5104 return HAL_ERROR;
5105 }
5106 break;
5107 }
5108 case TIM_DMA_COM:
5109 {
5110 /* Set the DMA commutation callbacks */
5111 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
5112 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
5113
5114 /* Set the DMA error callback */
5115 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
5116
5117 /* Enable the DMA channel */
5118 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5119 DataLength) != HAL_OK)
5120 {
5121 /* Return error status */
5122 return HAL_ERROR;
5123 }
5124 break;
5125 }
5126 case TIM_DMA_TRIGGER:
5127 {
5128 /* Set the DMA trigger callbacks */
5129 htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5130 htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5131
5132 /* Set the DMA error callback */
5133 htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5134
5135 /* Enable the DMA channel */
5136 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5137 DataLength) != HAL_OK)
5138 {
5139 /* Return error status */
5140 return HAL_ERROR;
5141 }
5142 break;
5143 }
5144 default:
5145 status = HAL_ERROR;
5146 break;
5147 }
5148
5149 if (status == HAL_OK)
5150 {
5151 /* Configure the DMA Burst Mode */
5152 htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5153
5154 /* Enable the TIM DMA Request */
5155 __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5156 }
5157
5158 /* Return function status */
5159 return status;
5160 }
5161
5162 /**
5163 * @brief Stop the DMA burst reading
5164 * @param htim TIM handle
5165 * @param BurstRequestSrc TIM DMA Request sources to disable.
5166 * @retval HAL status
5167 */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5168 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5169 {
5170 HAL_StatusTypeDef status = HAL_OK;
5171
5172 /* Check the parameters */
5173 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5174
5175 /* Abort the DMA transfer (at least disable the DMA channel) */
5176 switch (BurstRequestSrc)
5177 {
5178 case TIM_DMA_UPDATE:
5179 {
5180 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5181 break;
5182 }
5183 case TIM_DMA_CC1:
5184 {
5185 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5186 break;
5187 }
5188 case TIM_DMA_CC2:
5189 {
5190 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5191 break;
5192 }
5193 case TIM_DMA_CC3:
5194 {
5195 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5196 break;
5197 }
5198 case TIM_DMA_CC4:
5199 {
5200 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5201 break;
5202 }
5203 case TIM_DMA_COM:
5204 {
5205 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5206 break;
5207 }
5208 case TIM_DMA_TRIGGER:
5209 {
5210 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5211 break;
5212 }
5213 default:
5214 status = HAL_ERROR;
5215 break;
5216 }
5217
5218 if (status == HAL_OK)
5219 {
5220 /* Disable the TIM Update DMA request */
5221 __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5222
5223 /* Change the DMA burst operation state */
5224 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5225 }
5226
5227 /* Return function status */
5228 return status;
5229 }
5230
5231 /**
5232 * @brief Generate a software event
5233 * @param htim TIM handle
5234 * @param EventSource specifies the event source.
5235 * This parameter can be one of the following values:
5236 * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5237 * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5238 * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5239 * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5240 * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5241 * @arg TIM_EVENTSOURCE_COM: Timer COM event source
5242 * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5243 * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5244 * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
5245 * @note Basic timers can only generate an update event.
5246 * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5247 * @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant
5248 * only for timer instances supporting break input(s).
5249 * @retval HAL status
5250 */
5251
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5252 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5253 {
5254 /* Check the parameters */
5255 assert_param(IS_TIM_INSTANCE(htim->Instance));
5256 assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5257
5258 /* Process Locked */
5259 __HAL_LOCK(htim);
5260
5261 /* Change the TIM state */
5262 htim->State = HAL_TIM_STATE_BUSY;
5263
5264 /* Set the event sources */
5265 htim->Instance->EGR = EventSource;
5266
5267 /* Change the TIM state */
5268 htim->State = HAL_TIM_STATE_READY;
5269
5270 __HAL_UNLOCK(htim);
5271
5272 /* Return function status */
5273 return HAL_OK;
5274 }
5275
5276 /**
5277 * @brief Configures the OCRef clear feature
5278 * @param htim TIM handle
5279 * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5280 * contains the OCREF clear feature and parameters for the TIM peripheral.
5281 * @param Channel specifies the TIM Channel
5282 * This parameter can be one of the following values:
5283 * @arg TIM_CHANNEL_1: TIM Channel 1
5284 * @arg TIM_CHANNEL_2: TIM Channel 2
5285 * @arg TIM_CHANNEL_3: TIM Channel 3
5286 * @arg TIM_CHANNEL_4: TIM Channel 4
5287 * @arg TIM_CHANNEL_5: TIM Channel 5
5288 * @arg TIM_CHANNEL_6: TIM Channel 6
5289 * @retval HAL status
5290 */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5291 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5292 const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5293 uint32_t Channel)
5294 {
5295 HAL_StatusTypeDef status = HAL_OK;
5296
5297 /* Check the parameters */
5298 assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5299 assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5300
5301 /* Process Locked */
5302 __HAL_LOCK(htim);
5303
5304 htim->State = HAL_TIM_STATE_BUSY;
5305
5306 switch (sClearInputConfig->ClearInputSource)
5307 {
5308 case TIM_CLEARINPUTSOURCE_NONE:
5309 {
5310 /* Clear the OCREF clear selection bit and the the ETR Bits */
5311 CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5312 break;
5313 }
5314
5315 case TIM_CLEARINPUTSOURCE_ETR:
5316 {
5317 /* Check the parameters */
5318 assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5319 assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5320 assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5321
5322 /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5323 if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5324 {
5325 htim->State = HAL_TIM_STATE_READY;
5326 __HAL_UNLOCK(htim);
5327 return HAL_ERROR;
5328 }
5329
5330 TIM_ETR_SetConfig(htim->Instance,
5331 sClearInputConfig->ClearInputPrescaler,
5332 sClearInputConfig->ClearInputPolarity,
5333 sClearInputConfig->ClearInputFilter);
5334
5335 /* Set the OCREF clear selection bit */
5336 SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5337 break;
5338 }
5339
5340 default:
5341 status = HAL_ERROR;
5342 break;
5343 }
5344
5345 if (status == HAL_OK)
5346 {
5347 switch (Channel)
5348 {
5349 case TIM_CHANNEL_1:
5350 {
5351 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5352 {
5353 /* Enable the OCREF clear feature for Channel 1 */
5354 SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5355 }
5356 else
5357 {
5358 /* Disable the OCREF clear feature for Channel 1 */
5359 CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5360 }
5361 break;
5362 }
5363 case TIM_CHANNEL_2:
5364 {
5365 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5366 {
5367 /* Enable the OCREF clear feature for Channel 2 */
5368 SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5369 }
5370 else
5371 {
5372 /* Disable the OCREF clear feature for Channel 2 */
5373 CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5374 }
5375 break;
5376 }
5377 case TIM_CHANNEL_3:
5378 {
5379 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5380 {
5381 /* Enable the OCREF clear feature for Channel 3 */
5382 SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5383 }
5384 else
5385 {
5386 /* Disable the OCREF clear feature for Channel 3 */
5387 CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5388 }
5389 break;
5390 }
5391 case TIM_CHANNEL_4:
5392 {
5393 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5394 {
5395 /* Enable the OCREF clear feature for Channel 4 */
5396 SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5397 }
5398 else
5399 {
5400 /* Disable the OCREF clear feature for Channel 4 */
5401 CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5402 }
5403 break;
5404 }
5405 case TIM_CHANNEL_5:
5406 {
5407 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5408 {
5409 /* Enable the OCREF clear feature for Channel 5 */
5410 SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5411 }
5412 else
5413 {
5414 /* Disable the OCREF clear feature for Channel 5 */
5415 CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5416 }
5417 break;
5418 }
5419 case TIM_CHANNEL_6:
5420 {
5421 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5422 {
5423 /* Enable the OCREF clear feature for Channel 6 */
5424 SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5425 }
5426 else
5427 {
5428 /* Disable the OCREF clear feature for Channel 6 */
5429 CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5430 }
5431 break;
5432 }
5433 default:
5434 break;
5435 }
5436 }
5437
5438 htim->State = HAL_TIM_STATE_READY;
5439
5440 __HAL_UNLOCK(htim);
5441
5442 return status;
5443 }
5444
5445 /**
5446 * @brief Configures the clock source to be used
5447 * @param htim TIM handle
5448 * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5449 * contains the clock source information for the TIM peripheral.
5450 * @retval HAL status
5451 */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5452 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5453 {
5454 HAL_StatusTypeDef status = HAL_OK;
5455 uint32_t tmpsmcr;
5456
5457 /* Process Locked */
5458 __HAL_LOCK(htim);
5459
5460 htim->State = HAL_TIM_STATE_BUSY;
5461
5462 /* Check the parameters */
5463 assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5464
5465 /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5466 tmpsmcr = htim->Instance->SMCR;
5467 tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5468 tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5469 htim->Instance->SMCR = tmpsmcr;
5470
5471 switch (sClockSourceConfig->ClockSource)
5472 {
5473 case TIM_CLOCKSOURCE_INTERNAL:
5474 {
5475 assert_param(IS_TIM_INSTANCE(htim->Instance));
5476 break;
5477 }
5478
5479 case TIM_CLOCKSOURCE_ETRMODE1:
5480 {
5481 /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5482 assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5483
5484 /* Check ETR input conditioning related parameters */
5485 assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5486 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5487 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5488
5489 /* Configure the ETR Clock source */
5490 TIM_ETR_SetConfig(htim->Instance,
5491 sClockSourceConfig->ClockPrescaler,
5492 sClockSourceConfig->ClockPolarity,
5493 sClockSourceConfig->ClockFilter);
5494
5495 /* Select the External clock mode1 and the ETRF trigger */
5496 tmpsmcr = htim->Instance->SMCR;
5497 tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5498 /* Write to TIMx SMCR */
5499 htim->Instance->SMCR = tmpsmcr;
5500 break;
5501 }
5502
5503 case TIM_CLOCKSOURCE_ETRMODE2:
5504 {
5505 /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5506 assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5507
5508 /* Check ETR input conditioning related parameters */
5509 assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5510 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5511 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5512
5513 /* Configure the ETR Clock source */
5514 TIM_ETR_SetConfig(htim->Instance,
5515 sClockSourceConfig->ClockPrescaler,
5516 sClockSourceConfig->ClockPolarity,
5517 sClockSourceConfig->ClockFilter);
5518 /* Enable the External clock mode2 */
5519 htim->Instance->SMCR |= TIM_SMCR_ECE;
5520 break;
5521 }
5522
5523 case TIM_CLOCKSOURCE_TI1:
5524 {
5525 /* Check whether or not the timer instance supports external clock mode 1 */
5526 assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5527
5528 /* Check TI1 input conditioning related parameters */
5529 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5530 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5531
5532 TIM_TI1_ConfigInputStage(htim->Instance,
5533 sClockSourceConfig->ClockPolarity,
5534 sClockSourceConfig->ClockFilter);
5535 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5536 break;
5537 }
5538
5539 case TIM_CLOCKSOURCE_TI2:
5540 {
5541 /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5542 assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5543
5544 /* Check TI2 input conditioning related parameters */
5545 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5546 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5547
5548 TIM_TI2_ConfigInputStage(htim->Instance,
5549 sClockSourceConfig->ClockPolarity,
5550 sClockSourceConfig->ClockFilter);
5551 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5552 break;
5553 }
5554
5555 case TIM_CLOCKSOURCE_TI1ED:
5556 {
5557 /* Check whether or not the timer instance supports external clock mode 1 */
5558 assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5559
5560 /* Check TI1 input conditioning related parameters */
5561 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5562 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5563
5564 TIM_TI1_ConfigInputStage(htim->Instance,
5565 sClockSourceConfig->ClockPolarity,
5566 sClockSourceConfig->ClockFilter);
5567 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5568 break;
5569 }
5570
5571 case TIM_CLOCKSOURCE_ITR0:
5572 case TIM_CLOCKSOURCE_ITR1:
5573 case TIM_CLOCKSOURCE_ITR2:
5574 case TIM_CLOCKSOURCE_ITR3:
5575 {
5576 /* Check whether or not the timer instance supports internal trigger input */
5577 assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5578
5579 TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5580 break;
5581 }
5582
5583 default:
5584 status = HAL_ERROR;
5585 break;
5586 }
5587 htim->State = HAL_TIM_STATE_READY;
5588
5589 __HAL_UNLOCK(htim);
5590
5591 return status;
5592 }
5593
5594 /**
5595 * @brief Selects the signal connected to the TI1 input: direct from CH1_input
5596 * or a XOR combination between CH1_input, CH2_input & CH3_input
5597 * @param htim TIM handle.
5598 * @param TI1_Selection Indicate whether or not channel 1 is connected to the
5599 * output of a XOR gate.
5600 * This parameter can be one of the following values:
5601 * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5602 * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5603 * pins are connected to the TI1 input (XOR combination)
5604 * @retval HAL status
5605 */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5606 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5607 {
5608 uint32_t tmpcr2;
5609
5610 /* Check the parameters */
5611 assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5612 assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5613
5614 /* Get the TIMx CR2 register value */
5615 tmpcr2 = htim->Instance->CR2;
5616
5617 /* Reset the TI1 selection */
5618 tmpcr2 &= ~TIM_CR2_TI1S;
5619
5620 /* Set the TI1 selection */
5621 tmpcr2 |= TI1_Selection;
5622
5623 /* Write to TIMxCR2 */
5624 htim->Instance->CR2 = tmpcr2;
5625
5626 return HAL_OK;
5627 }
5628
5629 /**
5630 * @brief Configures the TIM in Slave mode
5631 * @param htim TIM handle.
5632 * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5633 * contains the selected trigger (internal trigger input, filtered
5634 * timer input or external trigger input) and the Slave mode
5635 * (Disable, Reset, Gated, Trigger, External clock mode 1).
5636 * @retval HAL status
5637 */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5638 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5639 {
5640 /* Check the parameters */
5641 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5642 assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5643 assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5644
5645 __HAL_LOCK(htim);
5646
5647 htim->State = HAL_TIM_STATE_BUSY;
5648
5649 if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5650 {
5651 htim->State = HAL_TIM_STATE_READY;
5652 __HAL_UNLOCK(htim);
5653 return HAL_ERROR;
5654 }
5655
5656 /* Disable Trigger Interrupt */
5657 __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5658
5659 /* Disable Trigger DMA request */
5660 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5661
5662 htim->State = HAL_TIM_STATE_READY;
5663
5664 __HAL_UNLOCK(htim);
5665
5666 return HAL_OK;
5667 }
5668
5669 /**
5670 * @brief Configures the TIM in Slave mode in interrupt mode
5671 * @param htim TIM handle.
5672 * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5673 * contains the selected trigger (internal trigger input, filtered
5674 * timer input or external trigger input) and the Slave mode
5675 * (Disable, Reset, Gated, Trigger, External clock mode 1).
5676 * @retval HAL status
5677 */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5678 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5679 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5680 {
5681 /* Check the parameters */
5682 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5683 assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5684 assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5685
5686 __HAL_LOCK(htim);
5687
5688 htim->State = HAL_TIM_STATE_BUSY;
5689
5690 if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5691 {
5692 htim->State = HAL_TIM_STATE_READY;
5693 __HAL_UNLOCK(htim);
5694 return HAL_ERROR;
5695 }
5696
5697 /* Enable Trigger Interrupt */
5698 __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5699
5700 /* Disable Trigger DMA request */
5701 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5702
5703 htim->State = HAL_TIM_STATE_READY;
5704
5705 __HAL_UNLOCK(htim);
5706
5707 return HAL_OK;
5708 }
5709
5710 /**
5711 * @brief Read the captured value from Capture Compare unit
5712 * @param htim TIM handle.
5713 * @param Channel TIM Channels to be enabled
5714 * This parameter can be one of the following values:
5715 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
5716 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
5717 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
5718 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
5719 * @retval Captured value
5720 */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5721 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5722 {
5723 uint32_t tmpreg = 0U;
5724
5725 switch (Channel)
5726 {
5727 case TIM_CHANNEL_1:
5728 {
5729 /* Check the parameters */
5730 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5731
5732 /* Return the capture 1 value */
5733 tmpreg = htim->Instance->CCR1;
5734
5735 break;
5736 }
5737 case TIM_CHANNEL_2:
5738 {
5739 /* Check the parameters */
5740 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5741
5742 /* Return the capture 2 value */
5743 tmpreg = htim->Instance->CCR2;
5744
5745 break;
5746 }
5747
5748 case TIM_CHANNEL_3:
5749 {
5750 /* Check the parameters */
5751 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5752
5753 /* Return the capture 3 value */
5754 tmpreg = htim->Instance->CCR3;
5755
5756 break;
5757 }
5758
5759 case TIM_CHANNEL_4:
5760 {
5761 /* Check the parameters */
5762 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5763
5764 /* Return the capture 4 value */
5765 tmpreg = htim->Instance->CCR4;
5766
5767 break;
5768 }
5769
5770 default:
5771 break;
5772 }
5773
5774 return tmpreg;
5775 }
5776
5777 /**
5778 * @}
5779 */
5780
5781 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5782 * @brief TIM Callbacks functions
5783 *
5784 @verbatim
5785 ==============================================================================
5786 ##### TIM Callbacks functions #####
5787 ==============================================================================
5788 [..]
5789 This section provides TIM callback functions:
5790 (+) TIM Period elapsed callback
5791 (+) TIM Output Compare callback
5792 (+) TIM Input capture callback
5793 (+) TIM Trigger callback
5794 (+) TIM Error callback
5795
5796 @endverbatim
5797 * @{
5798 */
5799
5800 /**
5801 * @brief Period elapsed callback in non-blocking mode
5802 * @param htim TIM handle
5803 * @retval None
5804 */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5805 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5806 {
5807 /* Prevent unused argument(s) compilation warning */
5808 UNUSED(htim);
5809
5810 /* NOTE : This function should not be modified, when the callback is needed,
5811 the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5812 */
5813 }
5814
5815 /**
5816 * @brief Period elapsed half complete callback in non-blocking mode
5817 * @param htim TIM handle
5818 * @retval None
5819 */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5820 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5821 {
5822 /* Prevent unused argument(s) compilation warning */
5823 UNUSED(htim);
5824
5825 /* NOTE : This function should not be modified, when the callback is needed,
5826 the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5827 */
5828 }
5829
5830 /**
5831 * @brief Output Compare callback in non-blocking mode
5832 * @param htim TIM OC handle
5833 * @retval None
5834 */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5835 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5836 {
5837 /* Prevent unused argument(s) compilation warning */
5838 UNUSED(htim);
5839
5840 /* NOTE : This function should not be modified, when the callback is needed,
5841 the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5842 */
5843 }
5844
5845 /**
5846 * @brief Input Capture callback in non-blocking mode
5847 * @param htim TIM IC handle
5848 * @retval None
5849 */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5850 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5851 {
5852 /* Prevent unused argument(s) compilation warning */
5853 UNUSED(htim);
5854
5855 /* NOTE : This function should not be modified, when the callback is needed,
5856 the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5857 */
5858 }
5859
5860 /**
5861 * @brief Input Capture half complete callback in non-blocking mode
5862 * @param htim TIM IC handle
5863 * @retval None
5864 */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5865 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5866 {
5867 /* Prevent unused argument(s) compilation warning */
5868 UNUSED(htim);
5869
5870 /* NOTE : This function should not be modified, when the callback is needed,
5871 the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5872 */
5873 }
5874
5875 /**
5876 * @brief PWM Pulse finished callback in non-blocking mode
5877 * @param htim TIM handle
5878 * @retval None
5879 */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5880 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5881 {
5882 /* Prevent unused argument(s) compilation warning */
5883 UNUSED(htim);
5884
5885 /* NOTE : This function should not be modified, when the callback is needed,
5886 the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5887 */
5888 }
5889
5890 /**
5891 * @brief PWM Pulse finished half complete callback in non-blocking mode
5892 * @param htim TIM handle
5893 * @retval None
5894 */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5895 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5896 {
5897 /* Prevent unused argument(s) compilation warning */
5898 UNUSED(htim);
5899
5900 /* NOTE : This function should not be modified, when the callback is needed,
5901 the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5902 */
5903 }
5904
5905 /**
5906 * @brief Hall Trigger detection callback in non-blocking mode
5907 * @param htim TIM handle
5908 * @retval None
5909 */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5910 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5911 {
5912 /* Prevent unused argument(s) compilation warning */
5913 UNUSED(htim);
5914
5915 /* NOTE : This function should not be modified, when the callback is needed,
5916 the HAL_TIM_TriggerCallback could be implemented in the user file
5917 */
5918 }
5919
5920 /**
5921 * @brief Hall Trigger detection half complete callback in non-blocking mode
5922 * @param htim TIM handle
5923 * @retval None
5924 */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5925 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5926 {
5927 /* Prevent unused argument(s) compilation warning */
5928 UNUSED(htim);
5929
5930 /* NOTE : This function should not be modified, when the callback is needed,
5931 the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5932 */
5933 }
5934
5935 /**
5936 * @brief Timer error callback in non-blocking mode
5937 * @param htim TIM handle
5938 * @retval None
5939 */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5940 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5941 {
5942 /* Prevent unused argument(s) compilation warning */
5943 UNUSED(htim);
5944
5945 /* NOTE : This function should not be modified, when the callback is needed,
5946 the HAL_TIM_ErrorCallback could be implemented in the user file
5947 */
5948 }
5949
5950 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5951 /**
5952 * @brief Register a User TIM callback to be used instead of the weak predefined callback
5953 * @param htim tim handle
5954 * @param CallbackID ID of the callback to be registered
5955 * This parameter can be one of the following values:
5956 * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5957 * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5958 * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5959 * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5960 * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5961 * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5962 * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5963 * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5964 * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5965 * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5966 * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5967 * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5968 * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5969 * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5970 * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5971 * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5972 * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5973 * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5974 * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5975 * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5976 * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
5977 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
5978 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
5979 * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
5980 * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
5981 * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
5982 * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
5983 * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
5984 * @param pCallback pointer to the callback function
5985 * @retval status
5986 */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)5987 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
5988 pTIM_CallbackTypeDef pCallback)
5989 {
5990 HAL_StatusTypeDef status = HAL_OK;
5991
5992 if (pCallback == NULL)
5993 {
5994 return HAL_ERROR;
5995 }
5996
5997 if (htim->State == HAL_TIM_STATE_READY)
5998 {
5999 switch (CallbackID)
6000 {
6001 case HAL_TIM_BASE_MSPINIT_CB_ID :
6002 htim->Base_MspInitCallback = pCallback;
6003 break;
6004
6005 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6006 htim->Base_MspDeInitCallback = pCallback;
6007 break;
6008
6009 case HAL_TIM_IC_MSPINIT_CB_ID :
6010 htim->IC_MspInitCallback = pCallback;
6011 break;
6012
6013 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6014 htim->IC_MspDeInitCallback = pCallback;
6015 break;
6016
6017 case HAL_TIM_OC_MSPINIT_CB_ID :
6018 htim->OC_MspInitCallback = pCallback;
6019 break;
6020
6021 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6022 htim->OC_MspDeInitCallback = pCallback;
6023 break;
6024
6025 case HAL_TIM_PWM_MSPINIT_CB_ID :
6026 htim->PWM_MspInitCallback = pCallback;
6027 break;
6028
6029 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6030 htim->PWM_MspDeInitCallback = pCallback;
6031 break;
6032
6033 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6034 htim->OnePulse_MspInitCallback = pCallback;
6035 break;
6036
6037 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6038 htim->OnePulse_MspDeInitCallback = pCallback;
6039 break;
6040
6041 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6042 htim->Encoder_MspInitCallback = pCallback;
6043 break;
6044
6045 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6046 htim->Encoder_MspDeInitCallback = pCallback;
6047 break;
6048
6049 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6050 htim->HallSensor_MspInitCallback = pCallback;
6051 break;
6052
6053 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6054 htim->HallSensor_MspDeInitCallback = pCallback;
6055 break;
6056
6057 case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6058 htim->PeriodElapsedCallback = pCallback;
6059 break;
6060
6061 case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6062 htim->PeriodElapsedHalfCpltCallback = pCallback;
6063 break;
6064
6065 case HAL_TIM_TRIGGER_CB_ID :
6066 htim->TriggerCallback = pCallback;
6067 break;
6068
6069 case HAL_TIM_TRIGGER_HALF_CB_ID :
6070 htim->TriggerHalfCpltCallback = pCallback;
6071 break;
6072
6073 case HAL_TIM_IC_CAPTURE_CB_ID :
6074 htim->IC_CaptureCallback = pCallback;
6075 break;
6076
6077 case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6078 htim->IC_CaptureHalfCpltCallback = pCallback;
6079 break;
6080
6081 case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6082 htim->OC_DelayElapsedCallback = pCallback;
6083 break;
6084
6085 case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6086 htim->PWM_PulseFinishedCallback = pCallback;
6087 break;
6088
6089 case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6090 htim->PWM_PulseFinishedHalfCpltCallback = pCallback;
6091 break;
6092
6093 case HAL_TIM_ERROR_CB_ID :
6094 htim->ErrorCallback = pCallback;
6095 break;
6096
6097 case HAL_TIM_COMMUTATION_CB_ID :
6098 htim->CommutationCallback = pCallback;
6099 break;
6100
6101 case HAL_TIM_COMMUTATION_HALF_CB_ID :
6102 htim->CommutationHalfCpltCallback = pCallback;
6103 break;
6104
6105 case HAL_TIM_BREAK_CB_ID :
6106 htim->BreakCallback = pCallback;
6107 break;
6108
6109 case HAL_TIM_BREAK2_CB_ID :
6110 htim->Break2Callback = pCallback;
6111 break;
6112
6113 default :
6114 /* Return error status */
6115 status = HAL_ERROR;
6116 break;
6117 }
6118 }
6119 else if (htim->State == HAL_TIM_STATE_RESET)
6120 {
6121 switch (CallbackID)
6122 {
6123 case HAL_TIM_BASE_MSPINIT_CB_ID :
6124 htim->Base_MspInitCallback = pCallback;
6125 break;
6126
6127 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6128 htim->Base_MspDeInitCallback = pCallback;
6129 break;
6130
6131 case HAL_TIM_IC_MSPINIT_CB_ID :
6132 htim->IC_MspInitCallback = pCallback;
6133 break;
6134
6135 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6136 htim->IC_MspDeInitCallback = pCallback;
6137 break;
6138
6139 case HAL_TIM_OC_MSPINIT_CB_ID :
6140 htim->OC_MspInitCallback = pCallback;
6141 break;
6142
6143 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6144 htim->OC_MspDeInitCallback = pCallback;
6145 break;
6146
6147 case HAL_TIM_PWM_MSPINIT_CB_ID :
6148 htim->PWM_MspInitCallback = pCallback;
6149 break;
6150
6151 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6152 htim->PWM_MspDeInitCallback = pCallback;
6153 break;
6154
6155 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6156 htim->OnePulse_MspInitCallback = pCallback;
6157 break;
6158
6159 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6160 htim->OnePulse_MspDeInitCallback = pCallback;
6161 break;
6162
6163 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6164 htim->Encoder_MspInitCallback = pCallback;
6165 break;
6166
6167 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6168 htim->Encoder_MspDeInitCallback = pCallback;
6169 break;
6170
6171 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6172 htim->HallSensor_MspInitCallback = pCallback;
6173 break;
6174
6175 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6176 htim->HallSensor_MspDeInitCallback = pCallback;
6177 break;
6178
6179 default :
6180 /* Return error status */
6181 status = HAL_ERROR;
6182 break;
6183 }
6184 }
6185 else
6186 {
6187 /* Return error status */
6188 status = HAL_ERROR;
6189 }
6190
6191 return status;
6192 }
6193
6194 /**
6195 * @brief Unregister a TIM callback
6196 * TIM callback is redirected to the weak predefined callback
6197 * @param htim tim handle
6198 * @param CallbackID ID of the callback to be unregistered
6199 * This parameter can be one of the following values:
6200 * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6201 * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6202 * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6203 * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6204 * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6205 * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6206 * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6207 * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6208 * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6209 * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6210 * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6211 * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6212 * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6213 * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6214 * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6215 * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6216 * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6217 * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6218 * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6219 * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6220 * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6221 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6222 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6223 * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6224 * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6225 * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6226 * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6227 * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6228 * @retval status
6229 */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6230 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6231 {
6232 HAL_StatusTypeDef status = HAL_OK;
6233
6234 if (htim->State == HAL_TIM_STATE_READY)
6235 {
6236 switch (CallbackID)
6237 {
6238 case HAL_TIM_BASE_MSPINIT_CB_ID :
6239 /* Legacy weak Base MspInit Callback */
6240 htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
6241 break;
6242
6243 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6244 /* Legacy weak Base Msp DeInit Callback */
6245 htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
6246 break;
6247
6248 case HAL_TIM_IC_MSPINIT_CB_ID :
6249 /* Legacy weak IC Msp Init Callback */
6250 htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
6251 break;
6252
6253 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6254 /* Legacy weak IC Msp DeInit Callback */
6255 htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
6256 break;
6257
6258 case HAL_TIM_OC_MSPINIT_CB_ID :
6259 /* Legacy weak OC Msp Init Callback */
6260 htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
6261 break;
6262
6263 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6264 /* Legacy weak OC Msp DeInit Callback */
6265 htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
6266 break;
6267
6268 case HAL_TIM_PWM_MSPINIT_CB_ID :
6269 /* Legacy weak PWM Msp Init Callback */
6270 htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
6271 break;
6272
6273 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6274 /* Legacy weak PWM Msp DeInit Callback */
6275 htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
6276 break;
6277
6278 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6279 /* Legacy weak One Pulse Msp Init Callback */
6280 htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
6281 break;
6282
6283 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6284 /* Legacy weak One Pulse Msp DeInit Callback */
6285 htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
6286 break;
6287
6288 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6289 /* Legacy weak Encoder Msp Init Callback */
6290 htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
6291 break;
6292
6293 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6294 /* Legacy weak Encoder Msp DeInit Callback */
6295 htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
6296 break;
6297
6298 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6299 /* Legacy weak Hall Sensor Msp Init Callback */
6300 htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
6301 break;
6302
6303 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6304 /* Legacy weak Hall Sensor Msp DeInit Callback */
6305 htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6306 break;
6307
6308 case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6309 /* Legacy weak Period Elapsed Callback */
6310 htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
6311 break;
6312
6313 case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6314 /* Legacy weak Period Elapsed half complete Callback */
6315 htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
6316 break;
6317
6318 case HAL_TIM_TRIGGER_CB_ID :
6319 /* Legacy weak Trigger Callback */
6320 htim->TriggerCallback = HAL_TIM_TriggerCallback;
6321 break;
6322
6323 case HAL_TIM_TRIGGER_HALF_CB_ID :
6324 /* Legacy weak Trigger half complete Callback */
6325 htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
6326 break;
6327
6328 case HAL_TIM_IC_CAPTURE_CB_ID :
6329 /* Legacy weak IC Capture Callback */
6330 htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
6331 break;
6332
6333 case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6334 /* Legacy weak IC Capture half complete Callback */
6335 htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
6336 break;
6337
6338 case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6339 /* Legacy weak OC Delay Elapsed Callback */
6340 htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
6341 break;
6342
6343 case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6344 /* Legacy weak PWM Pulse Finished Callback */
6345 htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
6346 break;
6347
6348 case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6349 /* Legacy weak PWM Pulse Finished half complete Callback */
6350 htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6351 break;
6352
6353 case HAL_TIM_ERROR_CB_ID :
6354 /* Legacy weak Error Callback */
6355 htim->ErrorCallback = HAL_TIM_ErrorCallback;
6356 break;
6357
6358 case HAL_TIM_COMMUTATION_CB_ID :
6359 /* Legacy weak Commutation Callback */
6360 htim->CommutationCallback = HAL_TIMEx_CommutCallback;
6361 break;
6362
6363 case HAL_TIM_COMMUTATION_HALF_CB_ID :
6364 /* Legacy weak Commutation half complete Callback */
6365 htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
6366 break;
6367
6368 case HAL_TIM_BREAK_CB_ID :
6369 /* Legacy weak Break Callback */
6370 htim->BreakCallback = HAL_TIMEx_BreakCallback;
6371 break;
6372
6373 case HAL_TIM_BREAK2_CB_ID :
6374 /* Legacy weak Break2 Callback */
6375 htim->Break2Callback = HAL_TIMEx_Break2Callback;
6376 break;
6377
6378 default :
6379 /* Return error status */
6380 status = HAL_ERROR;
6381 break;
6382 }
6383 }
6384 else if (htim->State == HAL_TIM_STATE_RESET)
6385 {
6386 switch (CallbackID)
6387 {
6388 case HAL_TIM_BASE_MSPINIT_CB_ID :
6389 /* Legacy weak Base MspInit Callback */
6390 htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
6391 break;
6392
6393 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6394 /* Legacy weak Base Msp DeInit Callback */
6395 htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
6396 break;
6397
6398 case HAL_TIM_IC_MSPINIT_CB_ID :
6399 /* Legacy weak IC Msp Init Callback */
6400 htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
6401 break;
6402
6403 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6404 /* Legacy weak IC Msp DeInit Callback */
6405 htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
6406 break;
6407
6408 case HAL_TIM_OC_MSPINIT_CB_ID :
6409 /* Legacy weak OC Msp Init Callback */
6410 htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
6411 break;
6412
6413 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6414 /* Legacy weak OC Msp DeInit Callback */
6415 htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
6416 break;
6417
6418 case HAL_TIM_PWM_MSPINIT_CB_ID :
6419 /* Legacy weak PWM Msp Init Callback */
6420 htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
6421 break;
6422
6423 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6424 /* Legacy weak PWM Msp DeInit Callback */
6425 htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
6426 break;
6427
6428 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6429 /* Legacy weak One Pulse Msp Init Callback */
6430 htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
6431 break;
6432
6433 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6434 /* Legacy weak One Pulse Msp DeInit Callback */
6435 htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
6436 break;
6437
6438 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6439 /* Legacy weak Encoder Msp Init Callback */
6440 htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
6441 break;
6442
6443 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6444 /* Legacy weak Encoder Msp DeInit Callback */
6445 htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
6446 break;
6447
6448 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6449 /* Legacy weak Hall Sensor Msp Init Callback */
6450 htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
6451 break;
6452
6453 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6454 /* Legacy weak Hall Sensor Msp DeInit Callback */
6455 htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6456 break;
6457
6458 default :
6459 /* Return error status */
6460 status = HAL_ERROR;
6461 break;
6462 }
6463 }
6464 else
6465 {
6466 /* Return error status */
6467 status = HAL_ERROR;
6468 }
6469
6470 return status;
6471 }
6472 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6473
6474 /**
6475 * @}
6476 */
6477
6478 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6479 * @brief TIM Peripheral State functions
6480 *
6481 @verbatim
6482 ==============================================================================
6483 ##### Peripheral State functions #####
6484 ==============================================================================
6485 [..]
6486 This subsection permits to get in run-time the status of the peripheral
6487 and the data flow.
6488
6489 @endverbatim
6490 * @{
6491 */
6492
6493 /**
6494 * @brief Return the TIM Base handle state.
6495 * @param htim TIM Base handle
6496 * @retval HAL state
6497 */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6498 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6499 {
6500 return htim->State;
6501 }
6502
6503 /**
6504 * @brief Return the TIM OC handle state.
6505 * @param htim TIM Output Compare handle
6506 * @retval HAL state
6507 */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6508 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6509 {
6510 return htim->State;
6511 }
6512
6513 /**
6514 * @brief Return the TIM PWM handle state.
6515 * @param htim TIM handle
6516 * @retval HAL state
6517 */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6518 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6519 {
6520 return htim->State;
6521 }
6522
6523 /**
6524 * @brief Return the TIM Input Capture handle state.
6525 * @param htim TIM IC handle
6526 * @retval HAL state
6527 */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6528 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6529 {
6530 return htim->State;
6531 }
6532
6533 /**
6534 * @brief Return the TIM One Pulse Mode handle state.
6535 * @param htim TIM OPM handle
6536 * @retval HAL state
6537 */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6538 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6539 {
6540 return htim->State;
6541 }
6542
6543 /**
6544 * @brief Return the TIM Encoder Mode handle state.
6545 * @param htim TIM Encoder Interface handle
6546 * @retval HAL state
6547 */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6548 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6549 {
6550 return htim->State;
6551 }
6552
6553 /**
6554 * @brief Return the TIM Encoder Mode handle state.
6555 * @param htim TIM handle
6556 * @retval Active channel
6557 */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6558 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6559 {
6560 return htim->Channel;
6561 }
6562
6563 /**
6564 * @brief Return actual state of the TIM channel.
6565 * @param htim TIM handle
6566 * @param Channel TIM Channel
6567 * This parameter can be one of the following values:
6568 * @arg TIM_CHANNEL_1: TIM Channel 1
6569 * @arg TIM_CHANNEL_2: TIM Channel 2
6570 * @arg TIM_CHANNEL_3: TIM Channel 3
6571 * @arg TIM_CHANNEL_4: TIM Channel 4
6572 * @arg TIM_CHANNEL_5: TIM Channel 5
6573 * @arg TIM_CHANNEL_6: TIM Channel 6
6574 * @retval TIM Channel state
6575 */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6576 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel)
6577 {
6578 HAL_TIM_ChannelStateTypeDef channel_state;
6579
6580 /* Check the parameters */
6581 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6582
6583 channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6584
6585 return channel_state;
6586 }
6587
6588 /**
6589 * @brief Return actual state of a DMA burst operation.
6590 * @param htim TIM handle
6591 * @retval DMA burst state
6592 */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6593 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6594 {
6595 /* Check the parameters */
6596 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6597
6598 return htim->DMABurstState;
6599 }
6600
6601 /**
6602 * @}
6603 */
6604
6605 /**
6606 * @}
6607 */
6608
6609 /** @defgroup TIM_Private_Functions TIM Private Functions
6610 * @{
6611 */
6612
6613 /**
6614 * @brief TIM DMA error callback
6615 * @param hdma pointer to DMA handle.
6616 * @retval None
6617 */
TIM_DMAError(DMA_HandleTypeDef * hdma)6618 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6619 {
6620 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6621
6622 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6623 {
6624 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6625 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6626 }
6627 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6628 {
6629 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6630 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6631 }
6632 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6633 {
6634 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6635 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6636 }
6637 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6638 {
6639 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6640 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6641 }
6642 else
6643 {
6644 htim->State = HAL_TIM_STATE_READY;
6645 }
6646
6647 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6648 htim->ErrorCallback(htim);
6649 #else
6650 HAL_TIM_ErrorCallback(htim);
6651 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6652
6653 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6654 }
6655
6656 /**
6657 * @brief TIM DMA Delay Pulse complete callback.
6658 * @param hdma pointer to DMA handle.
6659 * @retval None
6660 */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6661 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6662 {
6663 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6664
6665 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6666 {
6667 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6668
6669 if (hdma->Init.Mode == DMA_NORMAL)
6670 {
6671 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6672 }
6673 }
6674 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6675 {
6676 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6677
6678 if (hdma->Init.Mode == DMA_NORMAL)
6679 {
6680 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6681 }
6682 }
6683 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6684 {
6685 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6686
6687 if (hdma->Init.Mode == DMA_NORMAL)
6688 {
6689 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6690 }
6691 }
6692 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6693 {
6694 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6695
6696 if (hdma->Init.Mode == DMA_NORMAL)
6697 {
6698 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6699 }
6700 }
6701 else
6702 {
6703 /* nothing to do */
6704 }
6705
6706 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6707 htim->PWM_PulseFinishedCallback(htim);
6708 #else
6709 HAL_TIM_PWM_PulseFinishedCallback(htim);
6710 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6711
6712 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6713 }
6714
6715 /**
6716 * @brief TIM DMA Delay Pulse half complete callback.
6717 * @param hdma pointer to DMA handle.
6718 * @retval None
6719 */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6720 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6721 {
6722 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6723
6724 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6725 {
6726 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6727 }
6728 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6729 {
6730 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6731 }
6732 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6733 {
6734 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6735 }
6736 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6737 {
6738 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6739 }
6740 else
6741 {
6742 /* nothing to do */
6743 }
6744
6745 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6746 htim->PWM_PulseFinishedHalfCpltCallback(htim);
6747 #else
6748 HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6749 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6750
6751 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6752 }
6753
6754 /**
6755 * @brief TIM DMA Capture complete callback.
6756 * @param hdma pointer to DMA handle.
6757 * @retval None
6758 */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6759 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6760 {
6761 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6762
6763 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6764 {
6765 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6766
6767 if (hdma->Init.Mode == DMA_NORMAL)
6768 {
6769 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6770 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6771 }
6772 }
6773 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6774 {
6775 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6776
6777 if (hdma->Init.Mode == DMA_NORMAL)
6778 {
6779 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6780 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6781 }
6782 }
6783 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6784 {
6785 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6786
6787 if (hdma->Init.Mode == DMA_NORMAL)
6788 {
6789 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6790 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6791 }
6792 }
6793 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6794 {
6795 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6796
6797 if (hdma->Init.Mode == DMA_NORMAL)
6798 {
6799 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6800 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6801 }
6802 }
6803 else
6804 {
6805 /* nothing to do */
6806 }
6807
6808 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6809 htim->IC_CaptureCallback(htim);
6810 #else
6811 HAL_TIM_IC_CaptureCallback(htim);
6812 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6813
6814 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6815 }
6816
6817 /**
6818 * @brief TIM DMA Capture half complete callback.
6819 * @param hdma pointer to DMA handle.
6820 * @retval None
6821 */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6822 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6823 {
6824 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6825
6826 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6827 {
6828 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6829 }
6830 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6831 {
6832 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6833 }
6834 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6835 {
6836 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6837 }
6838 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6839 {
6840 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6841 }
6842 else
6843 {
6844 /* nothing to do */
6845 }
6846
6847 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6848 htim->IC_CaptureHalfCpltCallback(htim);
6849 #else
6850 HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6851 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6852
6853 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6854 }
6855
6856 /**
6857 * @brief TIM DMA Period Elapse complete callback.
6858 * @param hdma pointer to DMA handle.
6859 * @retval None
6860 */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6861 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6862 {
6863 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6864
6865 if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6866 {
6867 htim->State = HAL_TIM_STATE_READY;
6868 }
6869
6870 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6871 htim->PeriodElapsedCallback(htim);
6872 #else
6873 HAL_TIM_PeriodElapsedCallback(htim);
6874 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6875 }
6876
6877 /**
6878 * @brief TIM DMA Period Elapse half complete callback.
6879 * @param hdma pointer to DMA handle.
6880 * @retval None
6881 */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6882 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6883 {
6884 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6885
6886 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6887 htim->PeriodElapsedHalfCpltCallback(htim);
6888 #else
6889 HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6890 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6891 }
6892
6893 /**
6894 * @brief TIM DMA Trigger callback.
6895 * @param hdma pointer to DMA handle.
6896 * @retval None
6897 */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6898 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6899 {
6900 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6901
6902 if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6903 {
6904 htim->State = HAL_TIM_STATE_READY;
6905 }
6906
6907 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6908 htim->TriggerCallback(htim);
6909 #else
6910 HAL_TIM_TriggerCallback(htim);
6911 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6912 }
6913
6914 /**
6915 * @brief TIM DMA Trigger half complete callback.
6916 * @param hdma pointer to DMA handle.
6917 * @retval None
6918 */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6919 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6920 {
6921 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6922
6923 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6924 htim->TriggerHalfCpltCallback(htim);
6925 #else
6926 HAL_TIM_TriggerHalfCpltCallback(htim);
6927 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6928 }
6929
6930 /**
6931 * @brief Time Base configuration
6932 * @param TIMx TIM peripheral
6933 * @param Structure TIM Base configuration structure
6934 * @retval None
6935 */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6936 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6937 {
6938 uint32_t tmpcr1;
6939 tmpcr1 = TIMx->CR1;
6940
6941 /* Set TIM Time Base Unit parameters ---------------------------------------*/
6942 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6943 {
6944 /* Select the Counter Mode */
6945 tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6946 tmpcr1 |= Structure->CounterMode;
6947 }
6948
6949 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6950 {
6951 /* Set the clock division */
6952 tmpcr1 &= ~TIM_CR1_CKD;
6953 tmpcr1 |= (uint32_t)Structure->ClockDivision;
6954 }
6955
6956 /* Set the auto-reload preload */
6957 MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6958
6959 TIMx->CR1 = tmpcr1;
6960
6961 /* Set the Autoreload value */
6962 TIMx->ARR = (uint32_t)Structure->Period ;
6963
6964 /* Set the Prescaler value */
6965 TIMx->PSC = Structure->Prescaler;
6966
6967 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
6968 {
6969 /* Set the Repetition Counter value */
6970 TIMx->RCR = Structure->RepetitionCounter;
6971 }
6972
6973 /* Generate an update event to reload the Prescaler
6974 and the repetition counter (only for advanced timer) value immediately */
6975 TIMx->EGR = TIM_EGR_UG;
6976
6977 /* Check if the update flag is set after the Update Generation, if so clear the UIF flag */
6978 if (HAL_IS_BIT_SET(TIMx->SR, TIM_FLAG_UPDATE))
6979 {
6980 /* Clear the update flag */
6981 CLEAR_BIT(TIMx->SR, TIM_FLAG_UPDATE);
6982 }
6983 }
6984
6985 /**
6986 * @brief Timer Output Compare 1 configuration
6987 * @param TIMx to select the TIM peripheral
6988 * @param OC_Config The output configuration structure
6989 * @retval None
6990 */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)6991 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
6992 {
6993 uint32_t tmpccmrx;
6994 uint32_t tmpccer;
6995 uint32_t tmpcr2;
6996
6997 /* Get the TIMx CCER register value */
6998 tmpccer = TIMx->CCER;
6999
7000 /* Disable the Channel 1: Reset the CC1E Bit */
7001 TIMx->CCER &= ~TIM_CCER_CC1E;
7002
7003 /* Get the TIMx CR2 register value */
7004 tmpcr2 = TIMx->CR2;
7005
7006 /* Get the TIMx CCMR1 register value */
7007 tmpccmrx = TIMx->CCMR1;
7008
7009 /* Reset the Output Compare Mode Bits */
7010 tmpccmrx &= ~TIM_CCMR1_OC1M;
7011 tmpccmrx &= ~TIM_CCMR1_CC1S;
7012 /* Select the Output Compare Mode */
7013 tmpccmrx |= OC_Config->OCMode;
7014
7015 /* Reset the Output Polarity level */
7016 tmpccer &= ~TIM_CCER_CC1P;
7017 /* Set the Output Compare Polarity */
7018 tmpccer |= OC_Config->OCPolarity;
7019
7020 if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
7021 {
7022 /* Check parameters */
7023 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7024
7025 /* Reset the Output N Polarity level */
7026 tmpccer &= ~TIM_CCER_CC1NP;
7027 /* Set the Output N Polarity */
7028 tmpccer |= OC_Config->OCNPolarity;
7029 /* Reset the Output N State */
7030 tmpccer &= ~TIM_CCER_CC1NE;
7031 }
7032
7033 if (IS_TIM_BREAK_INSTANCE(TIMx))
7034 {
7035 /* Check parameters */
7036 assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7037 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7038
7039 /* Reset the Output Compare and Output Compare N IDLE State */
7040 tmpcr2 &= ~TIM_CR2_OIS1;
7041 tmpcr2 &= ~TIM_CR2_OIS1N;
7042 /* Set the Output Idle state */
7043 tmpcr2 |= OC_Config->OCIdleState;
7044 /* Set the Output N Idle state */
7045 tmpcr2 |= OC_Config->OCNIdleState;
7046 }
7047
7048 /* Write to TIMx CR2 */
7049 TIMx->CR2 = tmpcr2;
7050
7051 /* Write to TIMx CCMR1 */
7052 TIMx->CCMR1 = tmpccmrx;
7053
7054 /* Set the Capture Compare Register value */
7055 TIMx->CCR1 = OC_Config->Pulse;
7056
7057 /* Write to TIMx CCER */
7058 TIMx->CCER = tmpccer;
7059 }
7060
7061 /**
7062 * @brief Timer Output Compare 2 configuration
7063 * @param TIMx to select the TIM peripheral
7064 * @param OC_Config The output configuration structure
7065 * @retval None
7066 */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7067 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7068 {
7069 uint32_t tmpccmrx;
7070 uint32_t tmpccer;
7071 uint32_t tmpcr2;
7072
7073 /* Get the TIMx CCER register value */
7074 tmpccer = TIMx->CCER;
7075
7076 /* Disable the Channel 2: Reset the CC2E Bit */
7077 TIMx->CCER &= ~TIM_CCER_CC2E;
7078
7079 /* Get the TIMx CR2 register value */
7080 tmpcr2 = TIMx->CR2;
7081
7082 /* Get the TIMx CCMR1 register value */
7083 tmpccmrx = TIMx->CCMR1;
7084
7085 /* Reset the Output Compare mode and Capture/Compare selection Bits */
7086 tmpccmrx &= ~TIM_CCMR1_OC2M;
7087 tmpccmrx &= ~TIM_CCMR1_CC2S;
7088
7089 /* Select the Output Compare Mode */
7090 tmpccmrx |= (OC_Config->OCMode << 8U);
7091
7092 /* Reset the Output Polarity level */
7093 tmpccer &= ~TIM_CCER_CC2P;
7094 /* Set the Output Compare Polarity */
7095 tmpccer |= (OC_Config->OCPolarity << 4U);
7096
7097 if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
7098 {
7099 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7100
7101 /* Reset the Output N Polarity level */
7102 tmpccer &= ~TIM_CCER_CC2NP;
7103 /* Set the Output N Polarity */
7104 tmpccer |= (OC_Config->OCNPolarity << 4U);
7105 /* Reset the Output N State */
7106 tmpccer &= ~TIM_CCER_CC2NE;
7107 }
7108
7109 if (IS_TIM_BREAK_INSTANCE(TIMx))
7110 {
7111 /* Check parameters */
7112 assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7113 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7114
7115 /* Reset the Output Compare and Output Compare N IDLE State */
7116 tmpcr2 &= ~TIM_CR2_OIS2;
7117 tmpcr2 &= ~TIM_CR2_OIS2N;
7118 /* Set the Output Idle state */
7119 tmpcr2 |= (OC_Config->OCIdleState << 2U);
7120 /* Set the Output N Idle state */
7121 tmpcr2 |= (OC_Config->OCNIdleState << 2U);
7122 }
7123
7124 /* Write to TIMx CR2 */
7125 TIMx->CR2 = tmpcr2;
7126
7127 /* Write to TIMx CCMR1 */
7128 TIMx->CCMR1 = tmpccmrx;
7129
7130 /* Set the Capture Compare Register value */
7131 TIMx->CCR2 = OC_Config->Pulse;
7132
7133 /* Write to TIMx CCER */
7134 TIMx->CCER = tmpccer;
7135 }
7136
7137 /**
7138 * @brief Timer Output Compare 3 configuration
7139 * @param TIMx to select the TIM peripheral
7140 * @param OC_Config The output configuration structure
7141 * @retval None
7142 */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7143 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7144 {
7145 uint32_t tmpccmrx;
7146 uint32_t tmpccer;
7147 uint32_t tmpcr2;
7148
7149 /* Get the TIMx CCER register value */
7150 tmpccer = TIMx->CCER;
7151
7152 /* Disable the Channel 3: Reset the CC2E Bit */
7153 TIMx->CCER &= ~TIM_CCER_CC3E;
7154
7155 /* Get the TIMx CR2 register value */
7156 tmpcr2 = TIMx->CR2;
7157
7158 /* Get the TIMx CCMR2 register value */
7159 tmpccmrx = TIMx->CCMR2;
7160
7161 /* Reset the Output Compare mode and Capture/Compare selection Bits */
7162 tmpccmrx &= ~TIM_CCMR2_OC3M;
7163 tmpccmrx &= ~TIM_CCMR2_CC3S;
7164 /* Select the Output Compare Mode */
7165 tmpccmrx |= OC_Config->OCMode;
7166
7167 /* Reset the Output Polarity level */
7168 tmpccer &= ~TIM_CCER_CC3P;
7169 /* Set the Output Compare Polarity */
7170 tmpccer |= (OC_Config->OCPolarity << 8U);
7171
7172 if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7173 {
7174 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7175
7176 /* Reset the Output N Polarity level */
7177 tmpccer &= ~TIM_CCER_CC3NP;
7178 /* Set the Output N Polarity */
7179 tmpccer |= (OC_Config->OCNPolarity << 8U);
7180 /* Reset the Output N State */
7181 tmpccer &= ~TIM_CCER_CC3NE;
7182 }
7183
7184 if (IS_TIM_BREAK_INSTANCE(TIMx))
7185 {
7186 /* Check parameters */
7187 assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7188 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7189
7190 /* Reset the Output Compare and Output Compare N IDLE State */
7191 tmpcr2 &= ~TIM_CR2_OIS3;
7192 tmpcr2 &= ~TIM_CR2_OIS3N;
7193 /* Set the Output Idle state */
7194 tmpcr2 |= (OC_Config->OCIdleState << 4U);
7195 /* Set the Output N Idle state */
7196 tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7197 }
7198
7199 /* Write to TIMx CR2 */
7200 TIMx->CR2 = tmpcr2;
7201
7202 /* Write to TIMx CCMR2 */
7203 TIMx->CCMR2 = tmpccmrx;
7204
7205 /* Set the Capture Compare Register value */
7206 TIMx->CCR3 = OC_Config->Pulse;
7207
7208 /* Write to TIMx CCER */
7209 TIMx->CCER = tmpccer;
7210 }
7211
7212 /**
7213 * @brief Timer Output Compare 4 configuration
7214 * @param TIMx to select the TIM peripheral
7215 * @param OC_Config The output configuration structure
7216 * @retval None
7217 */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7218 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7219 {
7220 uint32_t tmpccmrx;
7221 uint32_t tmpccer;
7222 uint32_t tmpcr2;
7223
7224 /* Get the TIMx CCER register value */
7225 tmpccer = TIMx->CCER;
7226
7227 /* Disable the Channel 4: Reset the CC4E Bit */
7228 TIMx->CCER &= ~TIM_CCER_CC4E;
7229
7230 /* Get the TIMx CR2 register value */
7231 tmpcr2 = TIMx->CR2;
7232
7233 /* Get the TIMx CCMR2 register value */
7234 tmpccmrx = TIMx->CCMR2;
7235
7236 /* Reset the Output Compare mode and Capture/Compare selection Bits */
7237 tmpccmrx &= ~TIM_CCMR2_OC4M;
7238 tmpccmrx &= ~TIM_CCMR2_CC4S;
7239
7240 /* Select the Output Compare Mode */
7241 tmpccmrx |= (OC_Config->OCMode << 8U);
7242
7243 /* Reset the Output Polarity level */
7244 tmpccer &= ~TIM_CCER_CC4P;
7245 /* Set the Output Compare Polarity */
7246 tmpccer |= (OC_Config->OCPolarity << 12U);
7247
7248 if (IS_TIM_BREAK_INSTANCE(TIMx))
7249 {
7250 /* Check parameters */
7251 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7252
7253 /* Reset the Output Compare IDLE State */
7254 tmpcr2 &= ~TIM_CR2_OIS4;
7255
7256 /* Set the Output Idle state */
7257 tmpcr2 |= (OC_Config->OCIdleState << 6U);
7258 }
7259
7260 /* Write to TIMx CR2 */
7261 TIMx->CR2 = tmpcr2;
7262
7263 /* Write to TIMx CCMR2 */
7264 TIMx->CCMR2 = tmpccmrx;
7265
7266 /* Set the Capture Compare Register value */
7267 TIMx->CCR4 = OC_Config->Pulse;
7268
7269 /* Write to TIMx CCER */
7270 TIMx->CCER = tmpccer;
7271 }
7272
7273 /**
7274 * @brief Timer Output Compare 5 configuration
7275 * @param TIMx to select the TIM peripheral
7276 * @param OC_Config The output configuration structure
7277 * @retval None
7278 */
TIM_OC5_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7279 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
7280 const TIM_OC_InitTypeDef *OC_Config)
7281 {
7282 uint32_t tmpccmrx;
7283 uint32_t tmpccer;
7284 uint32_t tmpcr2;
7285
7286 /* Get the TIMx CCER register value */
7287 tmpccer = TIMx->CCER;
7288
7289 /* Disable the output: Reset the CCxE Bit */
7290 TIMx->CCER &= ~TIM_CCER_CC5E;
7291
7292 /* Get the TIMx CR2 register value */
7293 tmpcr2 = TIMx->CR2;
7294 /* Get the TIMx CCMR1 register value */
7295 tmpccmrx = TIMx->CCMR3;
7296
7297 /* Reset the Output Compare Mode Bits */
7298 tmpccmrx &= ~(TIM_CCMR3_OC5M);
7299 /* Select the Output Compare Mode */
7300 tmpccmrx |= OC_Config->OCMode;
7301
7302 /* Reset the Output Polarity level */
7303 tmpccer &= ~TIM_CCER_CC5P;
7304 /* Set the Output Compare Polarity */
7305 tmpccer |= (OC_Config->OCPolarity << 16U);
7306
7307 if (IS_TIM_BREAK_INSTANCE(TIMx))
7308 {
7309 /* Reset the Output Compare IDLE State */
7310 tmpcr2 &= ~TIM_CR2_OIS5;
7311 /* Set the Output Idle state */
7312 tmpcr2 |= (OC_Config->OCIdleState << 8U);
7313 }
7314 /* Write to TIMx CR2 */
7315 TIMx->CR2 = tmpcr2;
7316
7317 /* Write to TIMx CCMR3 */
7318 TIMx->CCMR3 = tmpccmrx;
7319
7320 /* Set the Capture Compare Register value */
7321 TIMx->CCR5 = OC_Config->Pulse;
7322
7323 /* Write to TIMx CCER */
7324 TIMx->CCER = tmpccer;
7325 }
7326
7327 /**
7328 * @brief Timer Output Compare 6 configuration
7329 * @param TIMx to select the TIM peripheral
7330 * @param OC_Config The output configuration structure
7331 * @retval None
7332 */
TIM_OC6_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7333 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
7334 const TIM_OC_InitTypeDef *OC_Config)
7335 {
7336 uint32_t tmpccmrx;
7337 uint32_t tmpccer;
7338 uint32_t tmpcr2;
7339
7340 /* Get the TIMx CCER register value */
7341 tmpccer = TIMx->CCER;
7342
7343 /* Disable the output: Reset the CCxE Bit */
7344 TIMx->CCER &= ~TIM_CCER_CC6E;
7345
7346 /* Get the TIMx CR2 register value */
7347 tmpcr2 = TIMx->CR2;
7348 /* Get the TIMx CCMR1 register value */
7349 tmpccmrx = TIMx->CCMR3;
7350
7351 /* Reset the Output Compare Mode Bits */
7352 tmpccmrx &= ~(TIM_CCMR3_OC6M);
7353 /* Select the Output Compare Mode */
7354 tmpccmrx |= (OC_Config->OCMode << 8U);
7355
7356 /* Reset the Output Polarity level */
7357 tmpccer &= (uint32_t)~TIM_CCER_CC6P;
7358 /* Set the Output Compare Polarity */
7359 tmpccer |= (OC_Config->OCPolarity << 20U);
7360
7361 if (IS_TIM_BREAK_INSTANCE(TIMx))
7362 {
7363 /* Reset the Output Compare IDLE State */
7364 tmpcr2 &= ~TIM_CR2_OIS6;
7365 /* Set the Output Idle state */
7366 tmpcr2 |= (OC_Config->OCIdleState << 10U);
7367 }
7368
7369 /* Write to TIMx CR2 */
7370 TIMx->CR2 = tmpcr2;
7371
7372 /* Write to TIMx CCMR3 */
7373 TIMx->CCMR3 = tmpccmrx;
7374
7375 /* Set the Capture Compare Register value */
7376 TIMx->CCR6 = OC_Config->Pulse;
7377
7378 /* Write to TIMx CCER */
7379 TIMx->CCER = tmpccer;
7380 }
7381
7382 /**
7383 * @brief Slave Timer configuration function
7384 * @param htim TIM handle
7385 * @param sSlaveConfig Slave timer configuration
7386 * @retval None
7387 */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7388 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7389 const TIM_SlaveConfigTypeDef *sSlaveConfig)
7390 {
7391 HAL_StatusTypeDef status = HAL_OK;
7392 uint32_t tmpsmcr;
7393 uint32_t tmpccmr1;
7394 uint32_t tmpccer;
7395
7396 /* Get the TIMx SMCR register value */
7397 tmpsmcr = htim->Instance->SMCR;
7398
7399 /* Reset the Trigger Selection Bits */
7400 tmpsmcr &= ~TIM_SMCR_TS;
7401 /* Set the Input Trigger source */
7402 tmpsmcr |= sSlaveConfig->InputTrigger;
7403
7404 /* Reset the slave mode Bits */
7405 tmpsmcr &= ~TIM_SMCR_SMS;
7406 /* Set the slave mode */
7407 tmpsmcr |= sSlaveConfig->SlaveMode;
7408
7409 /* Write to TIMx SMCR */
7410 htim->Instance->SMCR = tmpsmcr;
7411
7412 /* Configure the trigger prescaler, filter, and polarity */
7413 switch (sSlaveConfig->InputTrigger)
7414 {
7415 case TIM_TS_ETRF:
7416 {
7417 /* Check the parameters */
7418 assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7419 assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7420 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7421 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7422 /* Configure the ETR Trigger source */
7423 TIM_ETR_SetConfig(htim->Instance,
7424 sSlaveConfig->TriggerPrescaler,
7425 sSlaveConfig->TriggerPolarity,
7426 sSlaveConfig->TriggerFilter);
7427 break;
7428 }
7429
7430 case TIM_TS_TI1F_ED:
7431 {
7432 /* Check the parameters */
7433 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7434 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7435
7436 if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7437 {
7438 return HAL_ERROR;
7439 }
7440
7441 /* Disable the Channel 1: Reset the CC1E Bit */
7442 tmpccer = htim->Instance->CCER;
7443 htim->Instance->CCER &= ~TIM_CCER_CC1E;
7444 tmpccmr1 = htim->Instance->CCMR1;
7445
7446 /* Set the filter */
7447 tmpccmr1 &= ~TIM_CCMR1_IC1F;
7448 tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7449
7450 /* Write to TIMx CCMR1 and CCER registers */
7451 htim->Instance->CCMR1 = tmpccmr1;
7452 htim->Instance->CCER = tmpccer;
7453 break;
7454 }
7455
7456 case TIM_TS_TI1FP1:
7457 {
7458 /* Check the parameters */
7459 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7460 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7461 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7462
7463 /* Configure TI1 Filter and Polarity */
7464 TIM_TI1_ConfigInputStage(htim->Instance,
7465 sSlaveConfig->TriggerPolarity,
7466 sSlaveConfig->TriggerFilter);
7467 break;
7468 }
7469
7470 case TIM_TS_TI2FP2:
7471 {
7472 /* Check the parameters */
7473 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7474 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7475 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7476
7477 /* Configure TI2 Filter and Polarity */
7478 TIM_TI2_ConfigInputStage(htim->Instance,
7479 sSlaveConfig->TriggerPolarity,
7480 sSlaveConfig->TriggerFilter);
7481 break;
7482 }
7483
7484 case TIM_TS_ITR0:
7485 case TIM_TS_ITR1:
7486 case TIM_TS_ITR2:
7487 case TIM_TS_ITR3:
7488 {
7489 /* Check the parameter */
7490 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7491 break;
7492 }
7493
7494 default:
7495 status = HAL_ERROR;
7496 break;
7497 }
7498
7499 return status;
7500 }
7501
7502 /**
7503 * @brief Configure the TI1 as Input.
7504 * @param TIMx to select the TIM peripheral.
7505 * @param TIM_ICPolarity The Input Polarity.
7506 * This parameter can be one of the following values:
7507 * @arg TIM_ICPOLARITY_RISING
7508 * @arg TIM_ICPOLARITY_FALLING
7509 * @arg TIM_ICPOLARITY_BOTHEDGE
7510 * @param TIM_ICSelection specifies the input to be used.
7511 * This parameter can be one of the following values:
7512 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7513 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7514 * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7515 * @param TIM_ICFilter Specifies the Input Capture Filter.
7516 * This parameter must be a value between 0x00 and 0x0F.
7517 * @retval None
7518 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7519 * (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7520 * protected against un-initialized filter and polarity values.
7521 */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7522 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7523 uint32_t TIM_ICFilter)
7524 {
7525 uint32_t tmpccmr1;
7526 uint32_t tmpccer;
7527
7528 /* Disable the Channel 1: Reset the CC1E Bit */
7529 tmpccer = TIMx->CCER;
7530 TIMx->CCER &= ~TIM_CCER_CC1E;
7531 tmpccmr1 = TIMx->CCMR1;
7532
7533 /* Select the Input */
7534 if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7535 {
7536 tmpccmr1 &= ~TIM_CCMR1_CC1S;
7537 tmpccmr1 |= TIM_ICSelection;
7538 }
7539 else
7540 {
7541 tmpccmr1 |= TIM_CCMR1_CC1S_0;
7542 }
7543
7544 /* Set the filter */
7545 tmpccmr1 &= ~TIM_CCMR1_IC1F;
7546 tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7547
7548 /* Select the Polarity and set the CC1E Bit */
7549 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7550 tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7551
7552 /* Write to TIMx CCMR1 and CCER registers */
7553 TIMx->CCMR1 = tmpccmr1;
7554 TIMx->CCER = tmpccer;
7555 }
7556
7557 /**
7558 * @brief Configure the Polarity and Filter for TI1.
7559 * @param TIMx to select the TIM peripheral.
7560 * @param TIM_ICPolarity The Input Polarity.
7561 * This parameter can be one of the following values:
7562 * @arg TIM_ICPOLARITY_RISING
7563 * @arg TIM_ICPOLARITY_FALLING
7564 * @arg TIM_ICPOLARITY_BOTHEDGE
7565 * @param TIM_ICFilter Specifies the Input Capture Filter.
7566 * This parameter must be a value between 0x00 and 0x0F.
7567 * @retval None
7568 */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7569 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7570 {
7571 uint32_t tmpccmr1;
7572 uint32_t tmpccer;
7573
7574 /* Disable the Channel 1: Reset the CC1E Bit */
7575 tmpccer = TIMx->CCER;
7576 TIMx->CCER &= ~TIM_CCER_CC1E;
7577 tmpccmr1 = TIMx->CCMR1;
7578
7579 /* Set the filter */
7580 tmpccmr1 &= ~TIM_CCMR1_IC1F;
7581 tmpccmr1 |= (TIM_ICFilter << 4U);
7582
7583 /* Select the Polarity and set the CC1E Bit */
7584 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7585 tmpccer |= TIM_ICPolarity;
7586
7587 /* Write to TIMx CCMR1 and CCER registers */
7588 TIMx->CCMR1 = tmpccmr1;
7589 TIMx->CCER = tmpccer;
7590 }
7591
7592 /**
7593 * @brief Configure the TI2 as Input.
7594 * @param TIMx to select the TIM peripheral
7595 * @param TIM_ICPolarity The Input Polarity.
7596 * This parameter can be one of the following values:
7597 * @arg TIM_ICPOLARITY_RISING
7598 * @arg TIM_ICPOLARITY_FALLING
7599 * @arg TIM_ICPOLARITY_BOTHEDGE
7600 * @param TIM_ICSelection specifies the input to be used.
7601 * This parameter can be one of the following values:
7602 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7603 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7604 * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7605 * @param TIM_ICFilter Specifies the Input Capture Filter.
7606 * This parameter must be a value between 0x00 and 0x0F.
7607 * @retval None
7608 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7609 * (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7610 * protected against un-initialized filter and polarity values.
7611 */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7612 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7613 uint32_t TIM_ICFilter)
7614 {
7615 uint32_t tmpccmr1;
7616 uint32_t tmpccer;
7617
7618 /* Disable the Channel 2: Reset the CC2E Bit */
7619 tmpccer = TIMx->CCER;
7620 TIMx->CCER &= ~TIM_CCER_CC2E;
7621 tmpccmr1 = TIMx->CCMR1;
7622
7623 /* Select the Input */
7624 tmpccmr1 &= ~TIM_CCMR1_CC2S;
7625 tmpccmr1 |= (TIM_ICSelection << 8U);
7626
7627 /* Set the filter */
7628 tmpccmr1 &= ~TIM_CCMR1_IC2F;
7629 tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7630
7631 /* Select the Polarity and set the CC2E Bit */
7632 tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7633 tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7634
7635 /* Write to TIMx CCMR1 and CCER registers */
7636 TIMx->CCMR1 = tmpccmr1 ;
7637 TIMx->CCER = tmpccer;
7638 }
7639
7640 /**
7641 * @brief Configure the Polarity and Filter for TI2.
7642 * @param TIMx to select the TIM peripheral.
7643 * @param TIM_ICPolarity The Input Polarity.
7644 * This parameter can be one of the following values:
7645 * @arg TIM_ICPOLARITY_RISING
7646 * @arg TIM_ICPOLARITY_FALLING
7647 * @arg TIM_ICPOLARITY_BOTHEDGE
7648 * @param TIM_ICFilter Specifies the Input Capture Filter.
7649 * This parameter must be a value between 0x00 and 0x0F.
7650 * @retval None
7651 */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7652 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7653 {
7654 uint32_t tmpccmr1;
7655 uint32_t tmpccer;
7656
7657 /* Disable the Channel 2: Reset the CC2E Bit */
7658 tmpccer = TIMx->CCER;
7659 TIMx->CCER &= ~TIM_CCER_CC2E;
7660 tmpccmr1 = TIMx->CCMR1;
7661
7662 /* Set the filter */
7663 tmpccmr1 &= ~TIM_CCMR1_IC2F;
7664 tmpccmr1 |= (TIM_ICFilter << 12U);
7665
7666 /* Select the Polarity and set the CC2E Bit */
7667 tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7668 tmpccer |= (TIM_ICPolarity << 4U);
7669
7670 /* Write to TIMx CCMR1 and CCER registers */
7671 TIMx->CCMR1 = tmpccmr1 ;
7672 TIMx->CCER = tmpccer;
7673 }
7674
7675 /**
7676 * @brief Configure the TI3 as Input.
7677 * @param TIMx to select the TIM peripheral
7678 * @param TIM_ICPolarity The Input Polarity.
7679 * This parameter can be one of the following values:
7680 * @arg TIM_ICPOLARITY_RISING
7681 * @arg TIM_ICPOLARITY_FALLING
7682 * @arg TIM_ICPOLARITY_BOTHEDGE
7683 * @param TIM_ICSelection specifies the input to be used.
7684 * This parameter can be one of the following values:
7685 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7686 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7687 * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7688 * @param TIM_ICFilter Specifies the Input Capture Filter.
7689 * This parameter must be a value between 0x00 and 0x0F.
7690 * @retval None
7691 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7692 * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7693 * protected against un-initialized filter and polarity values.
7694 */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7695 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7696 uint32_t TIM_ICFilter)
7697 {
7698 uint32_t tmpccmr2;
7699 uint32_t tmpccer;
7700
7701 /* Disable the Channel 3: Reset the CC3E Bit */
7702 tmpccer = TIMx->CCER;
7703 TIMx->CCER &= ~TIM_CCER_CC3E;
7704 tmpccmr2 = TIMx->CCMR2;
7705
7706 /* Select the Input */
7707 tmpccmr2 &= ~TIM_CCMR2_CC3S;
7708 tmpccmr2 |= TIM_ICSelection;
7709
7710 /* Set the filter */
7711 tmpccmr2 &= ~TIM_CCMR2_IC3F;
7712 tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7713
7714 /* Select the Polarity and set the CC3E Bit */
7715 tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
7716 tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
7717
7718 /* Write to TIMx CCMR2 and CCER registers */
7719 TIMx->CCMR2 = tmpccmr2;
7720 TIMx->CCER = tmpccer;
7721 }
7722
7723 /**
7724 * @brief Configure the TI4 as Input.
7725 * @param TIMx to select the TIM peripheral
7726 * @param TIM_ICPolarity The Input Polarity.
7727 * This parameter can be one of the following values:
7728 * @arg TIM_ICPOLARITY_RISING
7729 * @arg TIM_ICPOLARITY_FALLING
7730 * @arg TIM_ICPOLARITY_BOTHEDGE
7731 * @param TIM_ICSelection specifies the input to be used.
7732 * This parameter can be one of the following values:
7733 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7734 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7735 * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7736 * @param TIM_ICFilter Specifies the Input Capture Filter.
7737 * This parameter must be a value between 0x00 and 0x0F.
7738 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7739 * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7740 * protected against un-initialized filter and polarity values.
7741 * @retval None
7742 */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7743 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7744 uint32_t TIM_ICFilter)
7745 {
7746 uint32_t tmpccmr2;
7747 uint32_t tmpccer;
7748
7749 /* Disable the Channel 4: Reset the CC4E Bit */
7750 tmpccer = TIMx->CCER;
7751 TIMx->CCER &= ~TIM_CCER_CC4E;
7752 tmpccmr2 = TIMx->CCMR2;
7753
7754 /* Select the Input */
7755 tmpccmr2 &= ~TIM_CCMR2_CC4S;
7756 tmpccmr2 |= (TIM_ICSelection << 8U);
7757
7758 /* Set the filter */
7759 tmpccmr2 &= ~TIM_CCMR2_IC4F;
7760 tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7761
7762 /* Select the Polarity and set the CC4E Bit */
7763 tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
7764 tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
7765
7766 /* Write to TIMx CCMR2 and CCER registers */
7767 TIMx->CCMR2 = tmpccmr2;
7768 TIMx->CCER = tmpccer ;
7769 }
7770
7771 /**
7772 * @brief Selects the Input Trigger source
7773 * @param TIMx to select the TIM peripheral
7774 * @param InputTriggerSource The Input Trigger source.
7775 * This parameter can be one of the following values:
7776 * @arg TIM_TS_ITR0: Internal Trigger 0
7777 * @arg TIM_TS_ITR1: Internal Trigger 1
7778 * @arg TIM_TS_ITR2: Internal Trigger 2
7779 * @arg TIM_TS_ITR3: Internal Trigger 3
7780 * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7781 * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7782 * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7783 * @arg TIM_TS_ETRF: External Trigger input
7784 * @retval None
7785 */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7786 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7787 {
7788 uint32_t tmpsmcr;
7789
7790 /* Get the TIMx SMCR register value */
7791 tmpsmcr = TIMx->SMCR;
7792 /* Reset the TS Bits */
7793 tmpsmcr &= ~TIM_SMCR_TS;
7794 /* Set the Input Trigger source and the slave mode*/
7795 tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7796 /* Write to TIMx SMCR */
7797 TIMx->SMCR = tmpsmcr;
7798 }
7799 /**
7800 * @brief Configures the TIMx External Trigger (ETR).
7801 * @param TIMx to select the TIM peripheral
7802 * @param TIM_ExtTRGPrescaler The external Trigger Prescaler.
7803 * This parameter can be one of the following values:
7804 * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7805 * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7806 * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7807 * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7808 * @param TIM_ExtTRGPolarity The external Trigger Polarity.
7809 * This parameter can be one of the following values:
7810 * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7811 * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7812 * @param ExtTRGFilter External Trigger Filter.
7813 * This parameter must be a value between 0x00 and 0x0F
7814 * @retval None
7815 */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7816 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7817 uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7818 {
7819 uint32_t tmpsmcr;
7820
7821 tmpsmcr = TIMx->SMCR;
7822
7823 /* Reset the ETR Bits */
7824 tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7825
7826 /* Set the Prescaler, the Filter value and the Polarity */
7827 tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7828
7829 /* Write to TIMx SMCR */
7830 TIMx->SMCR = tmpsmcr;
7831 }
7832
7833 /**
7834 * @brief Enables or disables the TIM Capture Compare Channel x.
7835 * @param TIMx to select the TIM peripheral
7836 * @param Channel specifies the TIM Channel
7837 * This parameter can be one of the following values:
7838 * @arg TIM_CHANNEL_1: TIM Channel 1
7839 * @arg TIM_CHANNEL_2: TIM Channel 2
7840 * @arg TIM_CHANNEL_3: TIM Channel 3
7841 * @arg TIM_CHANNEL_4: TIM Channel 4
7842 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
7843 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
7844 * @param ChannelState specifies the TIM Channel CCxE bit new state.
7845 * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7846 * @retval None
7847 */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7848 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7849 {
7850 uint32_t tmp;
7851
7852 /* Check the parameters */
7853 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7854 assert_param(IS_TIM_CHANNELS(Channel));
7855
7856 tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7857
7858 /* Reset the CCxE Bit */
7859 TIMx->CCER &= ~tmp;
7860
7861 /* Set or reset the CCxE Bit */
7862 TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7863 }
7864
7865 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7866 /**
7867 * @brief Reset interrupt callbacks to the legacy weak callbacks.
7868 * @param htim pointer to a TIM_HandleTypeDef structure that contains
7869 * the configuration information for TIM module.
7870 * @retval None
7871 */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7872 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7873 {
7874 /* Reset the TIM callback to the legacy weak callbacks */
7875 htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
7876 htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
7877 htim->TriggerCallback = HAL_TIM_TriggerCallback;
7878 htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
7879 htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
7880 htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
7881 htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
7882 htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
7883 htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7884 htim->ErrorCallback = HAL_TIM_ErrorCallback;
7885 htim->CommutationCallback = HAL_TIMEx_CommutCallback;
7886 htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
7887 htim->BreakCallback = HAL_TIMEx_BreakCallback;
7888 htim->Break2Callback = HAL_TIMEx_Break2Callback;
7889 }
7890 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7891
7892 /**
7893 * @}
7894 */
7895
7896 #endif /* HAL_TIM_MODULE_ENABLED */
7897 /**
7898 * @}
7899 */
7900
7901 /**
7902 * @}
7903 */
7904