1 /*
2 * Copyright (c) 2017 - 2023, Nordic Semiconductor ASA
3 * All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice, this
11 * list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived from this
19 * software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #ifndef NRFX_COMMON_H__
35 #define NRFX_COMMON_H__
36
37 #include <stdint.h>
38 #include <stddef.h>
39 #include <stdbool.h>
40 #include <string.h>
41 #include <limits.h>
42
43 #include <nrf.h>
44 #include "nrfx_utils.h"
45 #include <nrf_peripherals.h>
46 #include <nrf_mem.h>
47 #include "nrfx_ext.h"
48
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
52
53 #if defined(__CORTEX_M) || defined(__NRFX_DOXYGEN__)
54 #define ISA_ARM 1
55 #elif defined(__VPR_REV)
56 #define ISA_RISCV 1
57 #else
58 #define ISA_UNKNOWN 1
59 #endif
60
61 #if defined(ISA_RISCV)
62 #define __STATIC_INLINE __attribute__((always_inline)) static inline
63 #endif
64
65 #ifndef NRFX_STATIC_INLINE
66 #ifdef NRFX_DECLARE_ONLY
67 #define NRFX_STATIC_INLINE
68 #else
69 #define NRFX_STATIC_INLINE __STATIC_INLINE
70 #endif
71 #endif // NRFX_STATIC_INLINE
72
73 #define NRFY_STATIC_INLINE __STATIC_INLINE
74
75 #ifndef NRF_STATIC_INLINE
76 #ifdef NRF_DECLARE_ONLY
77 #define NRF_STATIC_INLINE
78 #else
79 #define NRF_STATIC_INLINE __STATIC_INLINE
80 #endif
81 #endif // NRF_STATIC_INLINE
82
83 /**
84 * @defgroup nrfx_common Common module
85 * @{
86 * @ingroup nrfx
87 * @brief Common module.
88 */
89
90 /**
91 * @brief Macro for checking if the specified identifier is defined and it has
92 * a non-zero value.
93 *
94 * Normally, preprocessors treat all undefined identifiers as having the value
95 * zero. However, some tools, like static code analyzers, can issue a warning
96 * when such identifier is evaluated. This macro gives the possibility to suppress
97 * such warnings only in places where this macro is used for evaluation, not in
98 * the whole analyzed code.
99 */
100 #define NRFX_CHECK(module_enabled) NRFX_IS_ENABLED(module_enabled)
101
102 /**
103 * @brief Macro for checking if the configured API version is greater than or equal
104 * to the specified API version.
105 *
106 * @note API version to be used is configured using following symbols:
107 * - @ref NRFX_CONFIG_API_VER_MAJOR
108 * - @ref NRFX_CONFIG_API_VER_MINOR
109 * - @ref NRFX_CONFIG_API_VER_MICRO
110 *
111 * @param[in] major Major API version.
112 * @param[in] minor Minor API version.
113 * @param[in] micro Micro API version.
114 *
115 * @retval true Configured API version is greater than or equal to the specified API version.
116 * @retval false Configured API version is smaller than the specified API version.
117 */
118 #define NRFX_API_VER_AT_LEAST(major, minor, micro) \
119 ((NRFX_CONFIG_API_VER_MAJOR >= (major)) && \
120 (NRFX_CONFIG_API_VER_MINOR >= (minor)) && \
121 (NRFX_CONFIG_API_VER_MICRO >= (micro)))
122
123 /**
124 * @brief Macro for creating unsigned integer with bit position @p x set.
125 *
126 * @param[in] x Bit position to be set.
127 *
128 * @return Unsigned integer with requested bit position set.
129 */
130 #define NRFX_BIT(x) (1UL << (x))
131
132 /**
133 * @brief Macro for returning bit mask or 0 if @p x is 0.
134 *
135 * @param[in] x Bit mask size. Bit mask has bits 0 through x-1 (inclusive) set.
136 *
137 * @return Bit mask.
138 */
139 #define NRFX_BIT_MASK(x) (((x) == 32) ? UINT32_MAX : ((1UL << (x)) - 1))
140
141 /**
142 * @brief Macro for returning size in bits for given size in bytes.
143 *
144 * @param[in] x Size in bytes.
145 *
146 * @return Size in bits.
147 */
148 #define NRFX_BIT_SIZE(x) ((x) << 3)
149
150 /**
151 * @brief Macro for concatenating two tokens in macro expansion.
152 *
153 * @note This macro is expanded in two steps so that tokens given as macros
154 * themselves are fully expanded before they are merged.
155 *
156 * @param[in] p1 First token.
157 * @param[in] p2 Second token.
158 *
159 * @return The two tokens merged into one, unless they cannot together form
160 * a valid token (in such case, the preprocessor issues a warning and
161 * does not perform the concatenation).
162 *
163 * @sa NRFX_CONCAT_3
164 */
165 #define NRFX_CONCAT_2(p1, p2) NRFX_CONCAT_2_(p1, p2)
166
167 /** @brief Internal macro used by @ref NRFX_CONCAT_2 to perform the expansion in two steps. */
168 #define NRFX_CONCAT_2_(p1, p2) p1 ## p2
169
170 /**
171 * @brief Macro for concatenating three tokens in macro expansion.
172 *
173 * @note This macro is expanded in two steps so that tokens given as macros
174 * themselves are fully expanded before they are merged.
175 *
176 * @param[in] p1 First token.
177 * @param[in] p2 Second token.
178 * @param[in] p3 Third token.
179 *
180 * @return The three tokens merged into one, unless they cannot together form
181 * a valid token (in such case, the preprocessor issues a warning and
182 * does not perform the concatenation).
183 *
184 * @sa NRFX_CONCAT_2
185 */
186 #define NRFX_CONCAT_3(p1, p2, p3) NRFX_CONCAT_3_(p1, p2, p3)
187
188 /** @brief Internal macro used by @ref NRFX_CONCAT_3 to perform the expansion in two steps. */
189 #define NRFX_CONCAT_3_(p1, p2, p3) p1 ## p2 ## p3
190
191 /**
192 * @brief Macro for computing the absolute value of an integer number.
193 *
194 * @param[in] a Input value.
195 *
196 * @return Absolute value.
197 */
198 #define NRFX_ABS(a) ((a) < (0) ? -(a) : (a))
199
200 /**
201 * @brief Macro for checking whether any of the instance of the specified peripheral supports a given feature.
202 *
203 * Macro checks flags set in \<device\>_peripherals.h file.
204 *
205 * Macro supports check on instances with following names:
206 * - \<periph_name\>0 - \<periph_name\>255 - e.g. SPIM0, SPIM255
207 * - \<periph_name\>00 - \<periph_name\>099 - e.g. SPIM00, SPIM099
208 * - \<periph_name\>000 - \<periph_name\>009 - e.g. SPIM000, SPIM009
209 *
210 * @param[in] periph_name Peripheral name, e.g. SPIM.
211 * @param[in] feature_name Feature flag name suffix following an instance name, e.g.
212 * _FEATURE_HARDWARE_CSN_PRESENT.
213 *
214 * @retval 1 At least one instance on current device supports a given feature.
215 * @retval 0 None of peripheral instances supports a given feature.
216 */
217 #define NRFX_FEATURE_PRESENT(periph_name, feature_name) \
218 NRFX_COND_CODE_0(NRFX_CONCAT(0, \
219 _NRFX_FEATURE_PRESENT(periph_name, feature_name, 256), \
220 _NRFX_FEATURE_PRESENT(NRFX_CONCAT(periph_name, 0), feature_name, 100), \
221 _NRFX_FEATURE_PRESENT(NRFX_CONCAT(periph_name, 00), feature_name, 10) \
222 ), \
223 (0), (1))
224
225 /**
226 * @brief Macro for resolving provided user macro for enabled instances of a driver.
227 *
228 * Macro checks if driver instances are enabled for all potential instaces of a
229 * peripheral. It takes peripheral name and checks whether NRFX_\<peripheral\>\<id\>_ENABLED
230 * is set to 1 and if yes then provided macro is evaluated for given instance.
231 *
232 * Macro supports check on instances with following names:
233 * - \<periph_name\>0 - \<periph_name\>255 - e.g. SPIM0, SPIM255
234 * - \<periph_name\>00 - \<periph_name\>099 - e.g. SPIM00, SPIM099
235 * - \<periph_name\>000 - \<periph_name\>009 - e.g. SPIM000, SPIM009
236 *
237 * @param[in] periph_name Peripheral name, e.g. SPIM.
238 * @param[in] macro Macro which is resolved if driver instance is enabled. Macro has following
239 * arguments: macro(periph_name, prefix, i, ...).
240 * @param[in] sep Separator added between all evaluations, in parentheses.
241 * @param[in] off_code Code injected for disabled instances, in parentheses.
242 */
243 #define NRFX_FOREACH_ENABLED(periph_name, macro, sep, off_code, ...) \
244 NRFX_LISTIFY(256, _NRFX_EVAL_IF_ENABLED, sep, \
245 off_code, periph_name, , macro, __VA_ARGS__) NRFX_DEBRACKET sep \
246 NRFX_LISTIFY(100, _NRFX_EVAL_IF_ENABLED, sep, \
247 off_code, periph_name, 0, macro, __VA_ARGS__) NRFX_DEBRACKET sep \
248 NRFX_LISTIFY(10, _NRFX_EVAL_IF_ENABLED, sep, \
249 off_code, periph_name, 00, macro, __VA_ARGS__)
250
251 /**
252 * @brief Macro for resolving provided user macro for present instances of a peripheral.
253 *
254 * Macro checks if peripheral instances are present by checking if there is a token
255 * NRF_\<periph_name\>\<id\> defined with wrapped in parenthesis value.
256 *
257 * Macro supports check on instances with following names:
258 * - \<periph_name\>0 - \<periph_name\>255 - e.g. SPIM0, SPIM255
259 * - \<periph_name\>00 - \<periph_name\>099 - e.g. SPIM00, SPIM099
260 * - \<periph_name\>000 - \<periph_name\>009 - e.g. SPIM000, SPIM009
261 * - \<periph_name\> - e.g. SPIM
262 *
263 * @param[in] periph_name Peripheral name, e.g. SPIM.
264 * @param[in] macro Macro which is resolved if peripheral instance is present.
265 * Macro has following arguments: macro(periph_name, prefix, i, ...).
266 * @param[in] sep Separator added between all evaluations, in parentheses.
267 * @param[in] off_code Code injected for disabled instances, in parentheses.
268 */
269 #define NRFX_FOREACH_PRESENT(periph_name, macro, sep, off_code, ...) \
270 NRFX_LISTIFY(256, _NRFX_EVAL_IF_PRESENT, sep, \
271 off_code, periph_name, , macro, __VA_ARGS__) NRFX_DEBRACKET sep \
272 NRFX_LISTIFY(100, _NRFX_EVAL_IF_PRESENT, sep, \
273 off_code, periph_name, 0, macro, __VA_ARGS__) NRFX_DEBRACKET sep \
274 NRFX_LISTIFY(10, _NRFX_EVAL_IF_PRESENT, sep, \
275 off_code, periph_name, 00, macro, __VA_ARGS__) NRFX_DEBRACKET sep \
276 _NRFX_EVAL_IF_PRESENT(, off_code, periph_name, , macro, __VA_ARGS__)
277
278 /**
279 * @brief Macro for resolving provided user macro on concatenated peripheral name
280 * and instance index.
281 *
282 * Execute provided macro with single argument <instance\>
283 * that is the concatenation of @p periph_name, @p prefix and @p i.
284 *
285 * @param[in] i Instance index.
286 * @param[in] periph_name Peripheral name, e.g. SPIM.
287 * @param[in] prefix Prefix added before instance index, e.g. some device has
288 * instances named like SPIM00. First 0 is passed here as prefix.
289 * @param[in] macro Macro which is executed.
290 * @param[in] ... Variable length arguments passed to the @p macro. Macro has following
291 * arguments: macro(instance, ...).
292 */
293 #define NRFX_INSTANCE_CONCAT(periph_name, prefix, i, macro, ...) \
294 macro(NRFX_CONCAT(periph_name, prefix, i), __VA_ARGS__)
295
296 /**
297 * @brief Macro for creating a content for enum which is listing enabled driver instances.
298 *
299 * It creates comma separated list of entries like NRFX_\<instance_name\>_INST_IDX,
300 * e.g. (NRFX_SPIM0_INST_IDX) for all enabled instances (NRFX_\<instance_name\>_ENABLED
301 * is set to 1). It should be called within enum declaration. Created enum is used
302 * by the driver to index all enabled instances of the driver.
303 *
304 * @param[in] periph_name Peripheral name (e.g. SPIM).
305 */
306 #define NRFX_INSTANCE_ENUM_LIST(periph_name) \
307 NRFX_FOREACH_ENABLED(periph_name, _NRFX_INST_ENUM, (), ())
308
309 /**
310 * @brief Macro for creating an interrupt handler for all enabled driver instances.
311 *
312 * Macro creates a set of functions which calls generic @p irq_handler function with two parameters:
313 * - peripheral instance register pointer
314 * - pointer to a control block structure associated with the given instance
315 *
316 * Generic interrupt handler function with above mentioned parameters named @p irq_handler
317 * must be implemented in the driver.
318 *
319 * @note Handlers are using enum which should be generated using @ref NRFX_INSTANCE_ENUM_LIST.
320 *
321 * @param[in] periph_name Peripheral name, e.g. SPIM.
322 * @param[in] periph_name_small Peripheral name written with small letters, e.g. spim.
323 */
324 #define NRFX_INSTANCE_IRQ_HANDLERS(periph_name, periph_name_small) \
325 NRFX_FOREACH_ENABLED(periph_name, _NRFX_IRQ_HANDLER, (), (), periph_name_small)
326
327 /**
328 * @brief Macro for creating an interrupt handler for all enabled driver instances
329 * with the specified extra parameter.
330 *
331 * Macro creates set of function which calls generic @p irq_handler function with three parameters:
332 * - peripheral instance register pointer
333 * - pointer to a control block structure associated with the given instance
334 * - provided @p ext_macro called with peripheral name suffix (e.g. 01 for TIMER01)
335 *
336 * Generic interrupt handler function with above mentioned parameters named @p irq_handler
337 * must be implemented in the driver.
338 *
339 * @note Handlers are using enum which should be generated using @ref NRFX_INSTANCE_ENUM_LIST.
340 *
341 * @param[in] periph_name Peripheral name, e.g. SPIM.
342 * @param[in] periph_name_small Peripheral name written with small letters, e.g. rtc.
343 * @param[in] ext_macro External macro to be executed for each instance.
344 */
345 #define NRFX_INSTANCE_IRQ_HANDLERS_EXT(periph_name, periph_name_small, ext_macro) \
346 NRFX_FOREACH_ENABLED(periph_name, _NRFX_IRQ_HANDLER_EXT, (), (), periph_name_small, ext_macro)
347
348 /**
349 * @brief Macro for declaring an interrupt handler for all enabled driver instances.
350 *
351 * Macro creates set of function declarations. It is intended to be used in the driver header.
352 *
353 * @param[in] periph_name Peripheral name, e.g. SPIM.
354 * @param[in] periph_name_small Peripheral name written with small letters, e.g. spim.
355 */
356 #define NRFX_INSTANCE_IRQ_HANDLERS_DECLARE(periph_name, periph_name_small) \
357 NRFX_FOREACH_ENABLED(periph_name, _NRFX_IRQ_HANDLER_DECLARE, (), (), periph_name_small)
358
359 /**
360 * @brief Macro for generating comma-separated list of interrupt handlers for all
361 * enabled driver instances.
362 *
363 * Interrupt handlers are generated using @ref NRFX_INSTANCE_IRQ_HANDLERS.
364 * It is intended to be used to create a list which is used for passing an interrupt
365 * handler function to the PRS driver.
366 *
367 * @param[in] periph_name Peripheral name, e.g. SPIM.
368 * @param[in] periph_name_small Peripheral name written with small letters, e.g. spim.
369 */
370 #define NRFX_INSTANCE_IRQ_HANDLERS_LIST(periph_name, periph_name_small) \
371 NRFX_FOREACH_ENABLED(periph_name, _NRFX_IRQ_HANDLER_LIST, (), (), periph_name_small)
372
373 /**
374 * @brief Macro for checking if given peripheral instance is present on the target.
375 *
376 * Macro utilizes the fact that for each existing instance a define is created which points to
377 * the memory mapped register set casted to a register set structure. It is wrapped in parenthesis
378 * and existance of parethesis wrapping is used to determine if instance exists. It if does not
379 * exist then token (e.g. NRF_SPIM10) is undefined so it does not have parenthesis wrapping.
380 *
381 * Since macro returns literal 1 it can be used by other macros.
382 *
383 * @param[in] _inst Instance, .e.g SPIM10.
384 *
385 * @retval 1 If instance is present.
386 * @retval 0 If instance is not present.
387 */
388 #define NRFX_INSTANCE_PRESENT(_inst) NRFX_ARG_HAS_PARENTHESIS(NRFX_CONCAT(NRF_, _inst))
389
390 /**
391 * @brief Macro for getting the smaller value between two arguments.
392 *
393 * @param[in] a First argument.
394 * @param[in] b Second argument.
395 *
396 * @return Smaller value between two arguments.
397 */
398 #define NRFX_MIN(a, b) ((a) < (b) ? (a) : (b))
399
400 /**
401 * @brief Macro for getting the larger value between two arguments.
402 *
403 * @param[in] a First argument.
404 * @param[in] b Second argument.
405 *
406 * @return Larger value between two arguments.
407 */
408 #define NRFX_MAX(a, b) ((a) > (b) ? (a) : (b))
409
410 /**
411 * @brief Macro for checking if a given value is in a given range.
412 *
413 * @note @p val is evaluated twice.
414 *
415 * @param[in] val A value to be checked.
416 * @param[in] min The lower bound (inclusive).
417 * @param[in] max The upper bound (inclusive).
418 *
419 * @retval true The value is in the given range.
420 * @retval false The value is out of the given range.
421 */
422 #define NRFX_IN_RANGE(val, min, max) ((val) >= (min) && (val) <= (max))
423
424 /**
425 * @brief Macro for performing rounded integer division (as opposed to
426 * truncating the result).
427 *
428 * @param[in] a Numerator.
429 * @param[in] b Denominator.
430 *
431 * @return Rounded (integer) result of dividing @c a by @c b.
432 */
433 #define NRFX_ROUNDED_DIV(a, b) \
434 ((((a) < 0) ^ ((b) < 0)) ? (((a) - (b) / 2) / (b)) : (((a) + (b) / 2) / (b)))
435
436 /**
437 * @brief Macro for performing integer division, making sure the result is rounded up.
438 *
439 * @details A typical use case for this macro is to compute the number of objects
440 * with size @c b required to hold @c a number of bytes.
441 *
442 * @param[in] a Numerator.
443 * @param[in] b Denominator.
444 *
445 * @return Integer result of dividing @c a by @c b, rounded up.
446 */
447 #define NRFX_CEIL_DIV(a, b) ((((a) - 1) / (b)) + 1)
448
449 /**
450 * @brief Macro for getting the number of elements in an array.
451 *
452 * @param[in] array Name of the array.
453 *
454 * @return Array element count.
455 */
456 #define NRFX_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
457
458 /**
459 * @brief Macro for getting the offset (in bytes) from the beginning of a structure
460 * of the specified type to its specified member.
461 *
462 * @param[in] type Structure type.
463 * @param[in] member Structure member whose offset is searched for.
464 *
465 * @return Member offset in bytes.
466 */
467 #define NRFX_OFFSETOF(type, member) ((size_t) & (((type *)0)->member))
468
469 /**
470 * @brief Macro for checking whether given number is power of 2.
471 *
472 * @param[in] val Tested value.
473 *
474 * @retval true The value is power of 2.
475 * @retval false The value is not power of 2.
476 */
477 #define NRFX_IS_POWER_OF_TWO(val) (((val) != 0) && ((val) & ((val) - 1)) == 0)
478
479 /**
480 * @brief Macro for checking whether a given number is even.
481 *
482 * @param[in] val Tested value.
483 *
484 * @retval true The value is even.
485 * @retval false The value is odd.
486 */
487 #define NRFX_IS_EVEN(val) (((val) % 2) == 0)
488
489 /**
490 * @brief Macro for checking if given lengths of EasyDMA transfers do not exceed
491 * the limit of the specified peripheral.
492 *
493 * @param[in] peripheral Peripheral to check the lengths against.
494 * @param[in] length1 First length to be checked.
495 * @param[in] length2 Second length to be checked (pass 0 if not needed).
496 *
497 * @retval true The length of buffers does not exceed the limit of the specified peripheral.
498 * @retval false The length of buffers exceeds the limit of the specified peripheral.
499 */
500 #define NRFX_EASYDMA_LENGTH_VALIDATE(peripheral, length1, length2) \
501 (((length1) < (1U << NRFX_CONCAT_2(peripheral, _EASYDMA_MAXCNT_SIZE))) && \
502 ((length2) < (1U << NRFX_CONCAT_2(peripheral, _EASYDMA_MAXCNT_SIZE))))
503
504 /**
505 * @brief Macro for waiting until condition is met.
506 *
507 * @param[in] condition Condition to meet.
508 * @param[in] attempts Maximum number of condition checks. Must not be 0.
509 * @param[in] delay_us Delay between consecutive checks, in microseconds.
510 * @param[out] result Boolean variable to store the result of the wait process.
511 * Set to true if the condition is met or false otherwise.
512 */
513 #define NRFX_WAIT_FOR(condition, attempts, delay_us, result) \
514 do { \
515 result = false; \
516 uint32_t remaining_attempts = (attempts); \
517 do { \
518 if (condition) \
519 { \
520 result = true; \
521 break; \
522 } \
523 NRFX_DELAY_US(delay_us); \
524 } while (--remaining_attempts); \
525 } while(0)
526
527 /**
528 * @brief Macro for getting the ID number of the specified peripheral.
529 *
530 * For peripherals in Nordic SoCs, there is a direct relationship between their
531 * ID numbers and their base addresses. See the chapter "Peripheral interface"
532 * (section "Peripheral ID") in the Product Specification.
533 *
534 * @param[in] base_addr Peripheral base address or pointer.
535 *
536 * @return ID number associated with the specified peripheral.
537 */
538 #define NRFX_PERIPHERAL_ID_GET(base_addr) (uint16_t)(((uint32_t)(base_addr) >> 12) & 0x000001FF)
539
540 /**
541 * @brief Macro for getting the interrupt number assigned to a specific
542 * peripheral.
543 *
544 * For peripherals in Nordic SoCs, the IRQ number assigned to a peripheral is
545 * equal to its ID number. See the chapter "Peripheral interface" (sections
546 * "Peripheral ID" and "Interrupts") in the Product Specification.
547 *
548 * @param[in] base_addr Peripheral base address or pointer.
549 *
550 * @return Interrupt number associated with the specified peripheral.
551 */
552 #define NRFX_IRQ_NUMBER_GET(base_addr) NRFX_PERIPHERAL_ID_GET(base_addr)
553
554 /**
555 * @brief Macro for converting frequency in kHz to Hz.
556 *
557 * @param[in] freq Frequency value in kHz.
558 *
559 * @return Number of Hz in @p freq kHz.
560 */
561 #define NRFX_KHZ_TO_HZ(freq) ((freq) * 1000)
562
563 /**
564 * @brief Macro for converting frequency in MHz to Hz.
565 *
566 * @param[in] freq Frequency value in MHz.
567 *
568 * @return Number of Hz in @p freq MHz.
569 */
570 #define NRFX_MHZ_TO_HZ(freq) ((freq) * 1000 * 1000)
571
572 /** @brief IRQ handler type. */
573 typedef void (* nrfx_irq_handler_t)(void);
574
575 /** @brief Driver state. */
576 typedef enum
577 {
578 NRFX_DRV_STATE_UNINITIALIZED, ///< Uninitialized.
579 NRFX_DRV_STATE_INITIALIZED, ///< Initialized but powered off.
580 NRFX_DRV_STATE_POWERED_ON, ///< Initialized and powered on.
581 } nrfx_drv_state_t;
582
583 /**
584 * @brief Function for checking if an object is placed in the Data RAM region.
585 *
586 * Several peripherals (the ones using EasyDMA) require the transfer buffers
587 * to be placed in the Data RAM region. This function can be used to check if
588 * this condition is met.
589 *
590 * @param[in] p_object Pointer to an object whose location is to be checked.
591 *
592 * @retval true The pointed object is located in the Data RAM region.
593 * @retval false The pointed object is not located in the Data RAM region.
594 */
595 NRF_STATIC_INLINE bool nrfx_is_in_ram(void const * p_object);
596
597 /**
598 * @brief Function for checking if an object is aligned to a 32-bit word
599 *
600 * Several peripherals (the ones using EasyDMA) require the transfer buffers
601 * to be aligned to a 32-bit word. This function can be used to check if
602 * this condition is met.
603 *
604 * @param[in] p_object Pointer to an object whose location is to be checked.
605 *
606 * @retval true The pointed object is aligned to a 32-bit word.
607 * @retval false The pointed object is not aligned to a 32-bit word.
608 */
609 NRF_STATIC_INLINE bool nrfx_is_word_aligned(void const * p_object);
610
611 /**
612 * @brief Function for getting the interrupt number for the specified peripheral.
613 *
614 * @param[in] p_reg Peripheral base pointer.
615 *
616 * @return Interrupt number associated with the pointed peripheral.
617 */
618 NRF_STATIC_INLINE IRQn_Type nrfx_get_irq_number(void const * p_reg);
619
620 /**
621 * @brief Function for converting an INTEN register bit position to the
622 * corresponding event identifier.
623 *
624 * The event identifier is the offset between the event register address and
625 * the peripheral base address, and is equal (thus, can be directly cast) to
626 * the corresponding value of the enumerated type from HAL (nrf_*_event_t).
627 *
628 * @param[in] bit INTEN register bit position.
629 *
630 * @return Event identifier.
631 *
632 * @sa nrfx_event_to_bitpos
633 */
634 NRF_STATIC_INLINE uint32_t nrfx_bitpos_to_event(uint32_t bit);
635
636 /**
637 * @brief Function for converting an event identifier to the corresponding
638 * INTEN register bit position.
639 *
640 * The event identifier is the offset between the event register address and
641 * the peripheral base address, and is equal (thus, can be directly cast) to
642 * the corresponding value of the enumerated type from HAL (nrf_*_event_t).
643 *
644 * @param[in] event Event identifier.
645 *
646 * @return INTEN register bit position.
647 *
648 * @sa nrfx_bitpos_to_event
649 */
650 NRF_STATIC_INLINE uint32_t nrfx_event_to_bitpos(uint32_t event);
651
652 #ifndef NRF_DECLARE_ONLY
653
nrfx_is_in_ram(void const * p_object)654 NRF_STATIC_INLINE bool nrfx_is_in_ram(void const * p_object)
655 {
656 return ((((uint32_t)p_object) & 0xE0000000u) == 0x20000000u);
657 }
658
nrfx_is_word_aligned(void const * p_object)659 NRF_STATIC_INLINE bool nrfx_is_word_aligned(void const * p_object)
660 {
661 return ((((uint32_t)p_object) & 0x3u) == 0u);
662 }
663
nrfx_get_irq_number(void const * p_reg)664 NRF_STATIC_INLINE IRQn_Type nrfx_get_irq_number(void const * p_reg)
665 {
666 return (IRQn_Type)NRFX_IRQ_NUMBER_GET(p_reg);
667 }
668
nrfx_bitpos_to_event(uint32_t bit)669 NRF_STATIC_INLINE uint32_t nrfx_bitpos_to_event(uint32_t bit)
670 {
671 static const uint32_t event_reg_offset = 0x100u;
672 return event_reg_offset + (bit * sizeof(uint32_t));
673 }
674
nrfx_event_to_bitpos(uint32_t event)675 NRF_STATIC_INLINE uint32_t nrfx_event_to_bitpos(uint32_t event)
676 {
677 static const uint32_t event_reg_offset = 0x100u;
678 return (event - event_reg_offset) / sizeof(uint32_t);
679 }
680
681 #endif // NRF_DECLARE_ONLY
682
683 /** @} */
684
685 #ifdef __cplusplus
686 }
687 #endif
688
689 #endif // NRFX_COMMON_H__
690