1# [Building and using MCUboot with Espressif's chips](#building-and-using-mcuboot-with-espressifs-chips)
2
3The Espressif port is build on top of ESP-IDF HAL, therefore it is required in order to build MCUboot for Espressif SoCs.
4
5Documentation about the MCUboot bootloader design, operation and features can be found in the [design document](design.md).
6
7## [SoC support availability](#soc-support-availability)
8
9The current port is available for use in the following SoCs within the OSes:
10
11| | ESP32 | ESP32-S2 | ESP32-C3 | ESP32-S3 |
12| :-----: | :-----: | :-----: | :-----: | :-----: |
13| Zephyr | Supported | Supported | Supported | WIP |
14| NuttX | Supported | Supported | Supported | WIP |
15
16## [Installing requirements and dependencies](#installing-requirements-and-dependencies)
17
181. Install additional packages required for development with MCUboot:
19```bash
20  cd ~/mcuboot  # or to your directory where MCUboot is cloned
21```
22```bash
23  pip3 install --user -r scripts/requirements.txt
24```
25
262. Update the submodules needed by the Espressif port. This may take a while.
27```bash
28git submodule update --init --recursive --checkout boot/espressif/hal/esp-idf
29```
30
313. Next, get the Mbed TLS submodule required by MCUboot.
32```bash
33git submodule update --init --recursive ext/mbedtls
34```
35
364. Now we need to install IDF dependencies and set environment variables. This step may take some time:
37```bash
38cd boot/espressif/hal/esp-idf
39```
40```bash
41./install.sh
42```
43```bash
44. ./export.sh
45```
46```bash
47cd ../..
48```
49
50## [Building the bootloader itself](#building-the-bootloader-itself)
51
52The MCUboot Espressif port bootloader is built using the toolchain and tools provided by ESP-IDF. Additional configuration related to MCUboot features and slot partitioning may be made using the `port/<TARGET>/bootloader.conf` file or passing a custom config file using the `-DMCUBOOT_CONFIG_FILE` argument on the first step below.
53
54---
55***Note***
56
57*Replace `<TARGET>` with the target ESP32 family (like `esp32`, `esp32s2` and others).*
58
59---
60
611. Compile and generate the BIN:
62```bash
63cmake -DCMAKE_TOOLCHAIN_FILE=tools/toolchain-<TARGET>.cmake -DMCUBOOT_TARGET=<TARGET> -DMCUBOOT_FLASH_PORT=<PORT> -B build -GNinja
64```
65```bash
66ninja -C build/
67```
68
692. Flash MCUboot in your device:
70```bash
71ninja -C build/ flash
72```
73
74If `MCUBOOT_FLASH_PORT` arg was not passed to `cmake`, the default `PORT` for flashing will be `/dev/ttyUSB0`.
75
76Alternatively:
77```bash
78esptool.py -p <PORT> -b <BAUD> --before default_reset --after no_reset --chip <TARGET> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> build/mcuboot_<TARGET>.bin
79```
80---
81***Note***
82
83You may adjust the port `<PORT>` (like `/dev/ttyUSB0`) and baud rate `<BAUD>` (like `2000000`) according to the connection with your board.
84You can also skip `<PORT>` and `<BAUD>` parameters so that esptool tries to automatically detect it.
85
86*`<FLASH_SIZE>` can be found using the command below:*
87```bash
88esptool.py -p <PORT> -b <BAUD> flash_id
89```
90The output contains device information and its flash size:
91```
92Detected flash size: 4MB
93```
94
95
96*`<BOOTLOADER_FLASH_OFFSET>` value must follow one of the addresses below:*
97
98| ESP32 | ESP32-S2 | ESP32-C3 | ESP32-S3 |
99| :-----: | :-----: | :-----: | :-----: |
100| 0x1000 | 0x1000 | 0x0000 | 0x0000 |
101
102---
103
1043. Reset your device
105
106## [Signing and flashing an application](#signing-and-flashing-an-application)
107
1081. Images can be regularly signed with the `scripts/imgtool.py` script:
109```bash
110imgtool.py sign --align 4 -v 0 -H 32 --pad-header -S <SLOT_SIZE> <BIN_IN> <SIGNED_BIN>
111```
112
113---
114
115***Note***
116
117`<SLOT_SIZE>` is the size of the slot to be used.
118Default slot0 size is `0x100000`, but it can change as per application flash partitions.
119
120For Zephyr images, `--pad-header` is not needed as it already has the padding for MCUboot header.
121
122---
123
124:warning: ***ATTENTION***
125
126*This is the basic signing needed for adding MCUboot headers and trailers.
127For signing with a crypto key and guarantee the authenticity of the image being booted, see the section [MCUboot image signature verification](#mcuboot-image-signature-verification) below.*
128
129---
130
1312. Flash the signed application:
132```bash
133esptool.py -p <PORT> -b <BAUD> --before default_reset --after hard_reset --chip <TARGET>  write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <SLOT_OFFSET> <SIGNED_BIN>
134```
135
136# [Downgrade prevention](#downgrade-prevention)
137
138Downgrade prevention (avoid updating of images to an older version) can be enabled using the following configuration:
139
140```
141CONFIG_ESP_DOWNGRADE_PREVENTION=y
142```
143
144MCUboot will then verify and compare the new image version number with the current one before perform an update swap.
145
146Version number is added to the image when signing it with `imgtool` (`-v` parameter, e.g. `-v 1.0.0`).
147
148### [Downgrade prevention with security counter](#downgrade-prevention-with-security-counter)
149
150It is also possible to rely on a security counter, also added to the image when signing with `imgtool` (`-s` parameter), apart from version number. This allows image downgrade at some extent, since any update must have greater or equal security counter value. Enable using the following configuration:
151
152```
153CONFIG_ESP_DOWNGRADE_PREVENTION_SECURITY_COUNTER=y
154```
155
156E.g.: if the current image was signed using `-s 1` parameter, an eventual update image must have been signed using security counter `-s 1` or greater.
157
158# [Security Chain on Espressif port](#security-chain-on-espressif-port)
159
160[MCUboot encrypted images](encrypted_images.md) do not provide full code confidentiality when only external storage is available (see [Threat model](encrypted_images.md#threat-model)) since by MCUboot design the image in Primary Slot, from where the image is executed, is stored plaintext.
161Espressif chips have off-chip flash memory, so to ensure a security chain along with MCUboot image signature verification, the hardware-assisted Secure Boot and Flash Encryption were made available on the MCUboot Espressif port.
162
163## [MCUboot image signature verification](#mcuboot-image-signature-verification)
164
165The image that MCUboot is booting can be signed with 4 types of keys: RSA-2048, RSA-3072, EC256 and ED25519. In order to enable the feature, the **bootloader** must be compiled with the following configurations:
166
167---
168***Note***
169
170*It is strongly recommended to generate a new signing key using `imgtool` instead of use the existent samples.*
171
172---
173
174#### For EC256 algorithm use
175```
176CONFIG_ESP_SIGN_EC256=y
177
178# Use Tinycrypt lib for EC256 or ED25519 signing
179CONFIG_ESP_USE_TINYCRYPT=y
180
181CONFIG_ESP_SIGN_KEY_FILE=<YOUR_SIGNING_KEY.pem>
182```
183
184#### For ED25519 algorithm use
185```
186CONFIG_ESP_SIGN_ED25519=y
187
188# Use Tinycrypt lib for EC256 or ED25519 signing
189CONFIG_ESP_USE_TINYCRYPT=y
190
191CONFIG_ESP_SIGN_KEY_FILE=<YOUR_SIGNING_KEY.pem>
192```
193
194#### For RSA (2048 or 3072) algorithm use
195```
196CONFIG_ESP_SIGN_RSA=y
197# RSA_LEN is 2048 or 3072
198CONFIG_ESP_SIGN_RSA_LEN=<RSA_LEN>
199
200# Use Mbed TLS lib for RSA image signing
201CONFIG_ESP_USE_MBEDTLS=y
202
203CONFIG_ESP_SIGN_KEY_FILE=<YOUR_SIGNING_KEY.pem>
204```
205
206Notice that the public key will be embedded in the bootloader code, since the hardware key storage is not supported by Espressif port.
207
208### [Signing the image](#signing-the-image)
209
210Now you need to sign the **image binary**, use the `imgtool` with `-k` parameter:
211```bash
212imgtool.py sign -k <YOUR_SIGNING_KEY.pem> --pad --pad-sig --align 4 -v 0 -H 32 --pad-header -S 0x00100000 <BIN_IN> <BIN_OUT>
213```
214If signing a Zephyr image, the `--pad-header` is not needed, as it already have the padding for MCUboot header.
215
216
217## [Secure Boot](#secure-boot)
218
219The Secure Boot implementation is based on [IDF's Secure Boot V2](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v2.html), is hardware-assisted and RSA based, and has the role for ensuring that only authorized code will be executed on the device. This is done through bootloader signature checking by the ROM bootloader. \
220***Note***: ROM bootloader is the First Stage Bootloader, while the Espressif MCUboot port is the Second Stage Bootloader.
221
222### [Building bootloader with Secure Boot](#building-bootloader-with-secure-boot)
223
224In order to build the bootloader with the feature on, the following configurations must be enabled:
225```
226CONFIG_SECURE_BOOT=1
227CONFIG_SECURE_BOOT_V2_ENABLED=1
228CONFIG_SECURE_SIGNED_ON_BOOT=1
229CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME=1
230CONFIG_SECURE_BOOT_SUPPORTS_RSA=1
231```
232
233---
234:warning: ***ATTENTION***
235
236*On development phase is recommended add the following configuration in order to keep the debugging enabled and also to avoid any unrecoverable/permanent state change:*
237```
238CONFIG_SECURE_BOOT_ALLOW_JTAG=1
239CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE=1
240
241# Options for enabling eFuse emulation in Flash
242CONFIG_EFUSE_VIRTUAL=1
243CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH=1
244```
245
246---
247
248---
249:warning: ***ATTENTION***
250
251*You can disable UART Download Mode by adding the following configuration:*
252```
253CONFIG_SECURE_DISABLE_ROM_DL_MODE=1
254```
255
256*This may be suitable for **production** builds. **After disabling UART Download Mode you will not be able to flash other images through UART.***
257
258*Otherwise, you can switch the UART ROM Download Mode to the Secure Download Mode. It will limit the use of Download Mode functions to simple flash read, write and erase operations.*
259```
260CONFIG_SECURE_ENABLE_SECURE_ROM_DL_MODE=1
261```
262
263*Once the device makes its first full boot, these configurations cannot be reverted*
264
265---
266
267Once the **bootloader image** is built, the resulting binary file is required to be signed with `espsecure.py` tool.
268
269First create a signing key:
270```bash
271espsecure.py generate_signing_key --version 2 <BOOTLOADER_SIGNING_KEY.pem>
272```
273
274Then sign the bootloader image:
275```bash
276espsecure.py sign_data --version 2 --keyfile <BOOTLOADER_SIGNING_KEY.pem> -o <BOOTLOADER_BIN_OUT> <BOOTLOADER_BIN_IN>
277```
278
279---
280:warning: ***ATTENTION***
281
282*Once the bootloader is flashed and the device resets, the **first boot will enable Secure Boot** and the bootloader and key **no longer can be modified**. So **ENSURE** that both bootloader and key are correct and you did not forget anything before flashing.*
283
284---
285
286Flash the bootloader as following, with `--after no_reset` flag, so you can reset the device only when assured:
287```bash
288esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> <SIGNED_BOOTLOADER_BIN>
289```
290
291### [Secure Boot Process](#secure-boot-process)
292
293Secure boot uses a signature block appended to the bootloader image in order to verify the authenticity. The signature block contains the RSA-3072 signature of that image and the RSA-3072 public key.
294
295On its **first boot** the Secure Boot is not enabled on the device eFuses yet, neither the key nor digests. So the first boot will have the following process:
296
2971. On startup, since it is the first boot, the ROM bootloader will not verify the bootloader image (the Secure Boot bit in the eFuse is disabled) yet, so it proceeds to execute it (our MCUboot bootloader port).
2982. Bootloader calculates the SHA-256 hash digest of the public key and writes the result to eFuse.
2993. Bootloader validates the application images and prepare the booting process (MCUboot phase).
3004. Bootloader burns eFuse to enable Secure Boot V2.
3015. Bootloader proceeds to load the Primary image.
302
303After that the Secure Boot feature is permanently enabled and on every next boot the ROM bootloader will verify the MCUboot bootloader image.
304The process of an usual boot:
305
3061. On startup, the ROM bootloader checks the Secure Boot enable bit in the eFuse. If it is enabled, the boot will proceed as following.
3072. ROM bootloader verifies the bootloader's signature block integrity (magic number and CRC). Interrupt boot if it fails.
3083. ROM bootloader verifies the bootloader image, interrupt boot if any step fails.: \
3093.1. Compare the SHA-256 hash digest of the public key embedded in the bootloader’s signature block with the digest saved in the eFuses. \
3103.2. Generate the application image digest and match it with the image digest in the signature block. \
3113.3. Use the public key to verify the signature of the bootloader image, using RSA-PSS with the image digest calculated from previous step for comparison.
3124. ROM bootloader executes the bootloader image.
3135. Bootloader does the usual verification (MCUboot phase).
3146. Proceeds to boot the Primary image.
315
316## [Flash Encryption](#flash-encryption)
317
318The Espressif Flash Encryption is hardware-assisted, transparent to the MCUboot process and is an additional security measure beyond MCUboot existent features.
319The Flash Encryption implementation is also based on [IDF](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/flash-encryption.html) and is intended for encrypting off-chip flash memory contents, so it is protected against physical reading.
320
321When enabling the Flash Encryption, the user can encrypt the content either using a **device generated key** (remains unknown and unreadable) or a **host generated key** (owner is responsible for keeping the key private and safe). After the flash encryption gets enabled through eFuse burning on the device, all read and write operations are decrypted/encrypted in runtime.
322
323### [Building bootloader with Flash Encryption](#building-bootloader-with-flash-encryption)
324
325In order to build the bootloader with the feature on, the following configurations must be enabled:
326
327For **release mode**:
328```
329CONFIG_SECURE_FLASH_ENC_ENABLED=1
330CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE=1
331```
332
333For **development mode**:
334```
335CONFIG_SECURE_FLASH_ENC_ENABLED=1
336CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT=1
337```
338
339---
340:warning: ***ATTENTION***
341
342*On development phase is strongly recommended adding the following configuration in order to keep the debugging enabled and also to avoid any unrecoverable/permanent state change:*
343```
344CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC=1
345CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_DEC=1
346CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE=1
347CONFIG_SECURE_BOOT_ALLOW_JTAG=1
348
349# Options for enabling eFuse emulation in Flash
350CONFIG_EFUSE_VIRTUAL=1
351CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH=1
352```
353---
354
355---
356:warning: ***ATTENTION***
357
358*Unless the recommended flags for **DEVELOPMENT MODE** were enabled, the actions made by Flash Encryption process are **PERMANENT**.* \
359*Once the bootloader is flashed and the device resets, the **first boot will enable Flash Encryption, encrypt the flash content including bootloader and image slots, burn the eFuses that no longer can be modified** and if device generated the key **it will not be recoverable**.* \
360*When on **RELEASE MODE**, **ENSURE** that the application with an update agent is flashed before reset the device.*
361
362*In the same way as Secure Boot feature, you can disable UART Download Mode by adding the following configuration:*
363```
364CONFIG_SECURE_DISABLE_ROM_DL_MODE=1
365```
366
367*This may be suitable for **production** builds. **After disabling UART Download Mode you will not be able to flash other images through UART.***
368
369*Otherwise, you can switch the UART Download Mode to the Secure Download Mode. It will limit the use of Download Mode functions to simple flash read, write and erase operations.*
370```
371CONFIG_SECURE_ENABLE_SECURE_ROM_DL_MODE=1
372```
373
374*These configurations cannot be reverted after the device's first boot*
375
376---
377
378### [Signing the image when working with Flash Encryption](#signing-the-image-when-working-with-flash-encryption)
379
380When enabling flash encryption, it is required to signed the image using 32-byte alignment: `--align 32 --max-align 32`.
381
382Command example:
383```bash
384imgtool.py sign -k <YOUR_SIGNING_KEY.pem> --pad --pad-sig --align 32 --max-align 32 -v 0 -H 32 --pad-header -S <SLOT_SIZE> <BIN_IN> <BIN_OUT>
385```
386
387### [Device generated key](#device-generated-key)
388
389First ensure that the application image is able to perform encrypted read and write operations to the SPI Flash.
390Flash the bootloader and application normally:
391```bash
392esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> <BOOTLOADER_BIN>
393```
394```bash
395esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <PRIMARY_SLOT_FLASH_OFFSET> <APPLICATION_BIN>
396```
397
398On the **first boot**, the bootloader will:
3991. Generate Flash Encryption key and write to eFuse.
4002. Encrypt flash in-place including bootloader, image primary/secondary slot and scratch.
4013. Burn eFuse to enable Flash Encryption.
4024. Reset system to ensure Flash Encryption cache resets properly.
403
404### [Host generated key](#host-generated-key)
405
406First ensure that the application image is able to perform encrypted read and write operations to the SPI Flash. Also ensure that the **UART ROM Download Mode is not disabled** - or that the **Secure Download Mode is enabled**.
407Before flashing, generate the encryption key using `espsecure.py` tool:
408```bash
409espsecure.py generate_flash_encryption_key <FLASH_ENCRYPTION_KEY.bin>
410```
411
412Burn the key into the device's eFuse (keep a copy on the host), this action can be done **only once**:
413
414---
415:warning: ***ATTENTION***
416
417*eFuse emulation in Flash configuration options do not have any effect, so if the key burning command below is used, it will actually burn the physical eFuse.*
418
419---
420
421- ESP32
422```bash
423espefuse.py --port PORT burn_key flash_encryption <FLASH_ENCRYPTION_KEY.bin>
424```
425
426- ESP32S2, ESP32C3 and ESP32S3
427```bash
428espefuse.py --port PORT burn_key BLOCK <FLASH_ENCRYPTION_KEY.bin> <KEYPURPOSE>
429```
430
431BLOCK is a free keyblock between BLOCK_KEY0 and BLOCK_KEY5. And KEYPURPOSE is either XTS_AES_128_KEY, XTS_AES_256_KEY_1, XTS_AES_256_KEY_2 (AES XTS 256 is available only in ESP32S2).
432
433Now, similar as the Device generated key, the bootloader and application can be flashed plaintext. The **first boot** will encrypt the flash content using the host key burned in the eFuse instead of generate a new one.
434
435Flashing the bootloader and application:
436```bash
437esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <BOOTLOADER_FLASH_OFFSET> <BOOTLOADER_BIN>
438```
439```bash
440esptool.py -p <PORT> -b 2000000 --after no_reset --chip <ESP_CHIP> write_flash --flash_mode dio --flash_size <FLASH_SIZE> --flash_freq 40m <PRIMARY_SLOT_FLASH_OFFSET> <APPLICATION_BIN>
441```
442
443On the **first boot**, the bootloader will:
4441. Encrypt flash in-place including bootloader, image primary/secondary slot and scratch using the written key.
4452. Burn eFuse to enable Flash Encryption.
4463. Reset system to ensure Flash Encryption cache resets properly.
447
448Encrypting data on the host:
449- ESP32
450```bash
451espsecure.py encrypt_flash_data --keyfile <FLASH_ENCRYPTION_KEY.bin> --address <FLASH_OFFSET> --output <OUTPUT_DATA> <INPUT_DATA>
452```
453
454- ESP32-S2, ESP32-C3 and ESP32-S3
455```bash
456espsecure.py encrypt_flash_data --aes_xts --keyfile <FLASH_ENCRYPTION_KEY.bin> --address <FLASH_OFFSET> --output <OUTPUT_DATA> <INPUT_DATA>
457```
458
459---
460***Note***
461
462OTA updates are required to be sent plaintext. The reason is that, as said before, after the Flash Encryption is enabled all read/write operations are decrypted/encrypted in runtime, so as e.g. if pre-encrypted data is sent for an OTA update, it would be wrongly double-encrypted when the update agent writes to the flash.
463
464For updating with an image encrypted on the host, flash it through serial using `esptool.py` as above. **UART ROM Download Mode must not be disabled**.
465
466---
467
468## [Security Chain scheme](#security-chain-scheme)
469
470Using the 3 features, Secure Boot, Image signature verification and Flash Encryption, a Security Chain can be established so only trusted code is executed, and also the code and content residing in the off-chip flash are protected against undesirable reading.
471
472The overall final process when all features are enabled:
4731. ROM bootloader validates the MCUboot bootloader using RSA signature verification.
4742. MCUboot bootloader validates the image using the chosen algorithm EC256/RSA/ED25519. It also validates an upcoming image when updating.
4753. Flash Encryption guarantees that code and data are not exposed.
476
477### [Size Limitation](#size-limitation)
478
479When all 3 features are enable at same time, the bootloader size may exceed the fixed limit for the ROM bootloader checking on the Espressif chips **depending on which algorithm** was chosen for MCUboot image signing. The issue https://github.com/mcu-tools/mcuboot/issues/1262 was created to track this limitation.
480
481## [Multi image](#multi-image)
482
483The multi image feature (currently limited to 2 images) allows the images to be updated separately (each one has its own primary and secondary slot) by MCUboot.
484
485The Espressif port bootloader handles the boot in two different approaches:
486
487### [Host OS boots second image](#host-os-boots-second-image)
488
489Host OS from the *first image* is responsible for booting the *second image*, therefore the bootloader is aware of the second image regions and can update it, however it does not load neither boots it.
490
491Configuration example (`bootloader.conf`):
492```
493CONFIG_ESP_BOOTLOADER_SIZE=0xF000
494CONFIG_ESP_MCUBOOT_WDT_ENABLE=y
495
496# Enables multi image, if it is not defined, its assumed
497# only one updatable image
498CONFIG_ESP_IMAGE_NUMBER=2
499
500# Example of values to be used when multi image is enabled
501# Notice that the OS layer and update agent must be aware
502# of these regions
503CONFIG_ESP_APPLICATION_SIZE=0x50000
504CONFIG_ESP_IMAGE0_PRIMARY_START_ADDRESS=0x10000
505CONFIG_ESP_IMAGE0_SECONDARY_START_ADDRESS=0x60000
506CONFIG_ESP_IMAGE1_PRIMARY_START_ADDRESS=0xB0000
507CONFIG_ESP_IMAGE1_SECONDARY_START_ADDRESS=0x100000
508CONFIG_ESP_SCRATCH_OFFSET=0x150000
509CONFIG_ESP_SCRATCH_SIZE=0x40000
510```
511
512### [Multi boot](#multi-boot)
513
514In the multi boot approach the bootloader is responsible for booting two different images in two different CPUs, firstly the *second image* on the APP CPU and then the *first image* on the PRO CPU (current CPU), it is also responsible for update both images as well. Thus multi boot will be only supported by Espressif multi core chips - currently only ESP32 is implemented.
515
516---
517***Note***
518
519*The host OSes in each CPU must handle how the resources are divided/controlled between then.*
520
521---
522
523Configuration example:
524```
525CONFIG_ESP_BOOTLOADER_SIZE=0xF000
526CONFIG_ESP_MCUBOOT_WDT_ENABLE=y
527
528# Enables multi image, if it is not defined, its assumed
529# only one updatable image
530CONFIG_ESP_IMAGE_NUMBER=2
531
532# Enables multi image boot on independent processors
533# (main host OS is not responsible for booting the second image)
534# Use only with CONFIG_ESP_IMAGE_NUMBER=2
535CONFIG_ESP_MULTI_PROCESSOR_BOOT=y
536
537# Example of values to be used when multi image is enabled
538# Notice that the OS layer and update agent must be aware
539# of these regions
540CONFIG_ESP_APPLICATION_SIZE=0x50000
541CONFIG_ESP_IMAGE0_PRIMARY_START_ADDRESS=0x10000
542CONFIG_ESP_IMAGE0_SECONDARY_START_ADDRESS=0x60000
543CONFIG_ESP_IMAGE1_PRIMARY_START_ADDRESS=0xB0000
544CONFIG_ESP_IMAGE1_SECONDARY_START_ADDRESS=0x100000
545CONFIG_ESP_SCRATCH_OFFSET=0x150000
546CONFIG_ESP_SCRATCH_SIZE=0x40000
547```
548
549### [Image version dependency](#image-version-dependency)
550
551MCUboot allows version dependency check between the images when updating them. As `imgtool.py` allows a version assigment when signing an image, it is also possible to add the version dependency constraint:
552```bash
553imgtool.py sign --align 4 -v <VERSION> -d "(<IMAGE_INDEX>, <VERSION_DEPENDENCY>)" -H 32 --pad-header -S <SLOT_SIZE> <BIN_IN> <SIGNED_BIN>
554```
555
556- `<VERSION>` defines the version of the image being signed.
557- `"(<IMAGE_INDEX>, <VERSION_DEPENDENCY>)"` defines the minimum version and from which image is needed to satisfy the dependency.
558
559---
560Example:
561```bash
562imgtool.py sign --align 4 -v 1.0.0 -d "(1, 0.0.1+0)" -H 32 --pad-header -S 0x100000 image0.bin image0-signed.bin
563```
564
565Supposing that the image 0 is being signed, its version is 1.0.0 and it depends on image 1 with version at least 0.0.1+0.
566
567---
568
569## [Serial recovery mode](#serial-recovery-mode)
570
571Serial recovery mode allows management through MCUMGR (more information and how to install it: https://github.com/apache/mynewt-mcumgr-cli) for communicating and uploading a firmware to the device.
572
573Configuration example:
574```
575# Enables the MCUboot Serial Recovery, that allows the use of
576# MCUMGR to upload a firmware through the serial port
577CONFIG_ESP_MCUBOOT_SERIAL=y
578# GPIO used to boot on Serial Recovery
579CONFIG_ESP_SERIAL_BOOT_GPIO_DETECT=32
580# GPIO input type (0 for Pull-down, 1 for Pull-up)
581CONFIG_ESP_SERIAL_BOOT_GPIO_INPUT_TYPE=0
582# GPIO signal value
583CONFIG_ESP_SERIAL_BOOT_GPIO_DETECT_VAL=1
584# Delay time for identify the GPIO signal
585CONFIG_ESP_SERIAL_BOOT_DETECT_DELAY_S=5
586# UART port used for serial communication
587CONFIG_ESP_SERIAL_BOOT_UART_NUM=1
588# GPIO for Serial RX signal
589CONFIG_ESP_SERIAL_BOOT_GPIO_RX=25
590# GPIO for Serial TX signal
591CONFIG_ESP_SERIAL_BOOT_GPIO_TX=26
592```
593
594When enabled, the bootloader checks the if the GPIO `<CONFIG_ESP_SERIAL_BOOT_GPIO_DETECT>` configured has the signal value `<CONFIG_ESP_SERIAL_BOOT_GPIO_DETECT_VAL>` for approximately `<CONFIG_ESP_SERIAL_BOOT_DETECT_DELAY_S>` seconds for entering the Serial recovery mode. Example: a button configured on GPIO 32 pressed for 5 seconds.
595
596Serial mode then uses the UART port configured for communication (`<CONFIG_ESP_SERIAL_BOOT_UART_NUM>`, pins `<CONFIG_ESP_SERIAL_BOOT_GPIO_RX>`, `<CONFIG_ESP_SERIAL_BOOT_GPIO_RX>`).
597
598### [Serial Recovery through USB JTAG Serial port](#serial-recovery-through-usb-jtag-serial-port)
599
600Some chips, like ESP32-C3 and ESP32-S3 have an integrated USB JTAG Serial Controller that implements a serial port (CDC) that can also be used for handling MCUboot Serial Recovery.
601More information about the USB pins and hardware configuration:
602- ESP32-C3: https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/api-guides/usb-serial-jtag-console.html
603- ESP32-S3: https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-guides/usb-serial-jtag-console.html.
604
605Configuration example:
606```
607# Use Serial through USB JTAG Serial port for Serial Recovery
608CONFIG_ESP_MCUBOOT_SERIAL_USB_SERIAL_JTAG=y
609# Use sector erasing (recommended) instead of entire image size
610# erasing when uploading through Serial Recovery
611CONFIG_ESP_MCUBOOT_ERASE_PROGRESSIVELY=y
612# GPIO used to boot on Serial Recovery
613CONFIG_ESP_SERIAL_BOOT_GPIO_DETECT=5
614# GPIO input type (0 for Pull-down, 1 for Pull-up)
615CONFIG_ESP_SERIAL_BOOT_GPIO_INPUT_TYPE=0
616# GPIO signal value
617CONFIG_ESP_SERIAL_BOOT_GPIO_DETECT_VAL=1
618# Delay time for identify the GPIO signal
619CONFIG_ESP_SERIAL_BOOT_DETECT_DELAY_S=5
620```
621
622---
623:warning: ***ATTENTION***
624
625*When working with Flash Encryption enabled, `CONFIG_ESP_MCUBOOT_ERASE_PROGRESSIVELY` must be ***disabled***, although it is recommended for common Serial Recovery usage*
626
627---
628
629### [MCUMGR image upload example](#mcumgr-image-upload-example)
630
631After entering the Serial recovery mode on the device, MCUMGR can be used as following:
632
633Configure the connection:
634```bash
635mcumgr conn add esp type="serial" connstring="dev=<PORT>,baud=115200,mtu=256"
636```
637
638Upload the image (the process may take some time):
639```bash
640mcumgr -c esp image upload <IMAGE_BIN>
641```
642
643Reset the device:
644```bash
645mcumgr -c esp reset
646```
647
648---
649:warning: ***ATTENTION***
650
651*Serial recovery mode uploads the image to the PRIMARY_SLOT, therefore if the upload process gets interrupted the image may be corrupted and unable to boot*
652
653---
654