1 /**
2  * \file psa/crypto_se_driver.h
3  * \brief PSA external cryptoprocessor driver module
4  *
5  * This header declares types and function signatures for cryptography
6  * drivers that access key material via opaque references.
7  * This is meant for cryptoprocessors that have a separate key storage from the
8  * space in which the PSA Crypto implementation runs, typically secure
9  * elements (SEs).
10  *
11  * This file is part of the PSA Crypto Driver HAL (hardware abstraction layer),
12  * containing functions for driver developers to implement to enable hardware
13  * to be called in a standardized way by a PSA Cryptography API
14  * implementation. The functions comprising the driver HAL, which driver
15  * authors implement, are not intended to be called by application developers.
16  */
17 
18 /*
19  *  Copyright The Mbed TLS Contributors
20  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
21  */
22 #ifndef PSA_CRYPTO_SE_DRIVER_H
23 #define PSA_CRYPTO_SE_DRIVER_H
24 #include "mbedtls/private_access.h"
25 
26 #include "crypto_driver_common.h"
27 
28 #ifdef __cplusplus
29 extern "C" {
30 #endif
31 
32 /** \defgroup se_init Secure element driver initialization
33  */
34 /**@{*/
35 
36 /** \brief Driver context structure
37  *
38  * Driver functions receive a pointer to this structure.
39  * Each registered driver has one instance of this structure.
40  *
41  * Implementations must include the fields specified here and
42  * may include other fields.
43  */
44 typedef struct {
45     /** A read-only pointer to the driver's persistent data.
46      *
47      * Drivers typically use this persistent data to keep track of
48      * which slot numbers are available. This is only a guideline:
49      * drivers may use the persistent data for any purpose, keeping
50      * in mind the restrictions on when the persistent data is saved
51      * to storage: the persistent data is only saved after calling
52      * certain functions that receive a writable pointer to the
53      * persistent data.
54      *
55      * The core allocates a memory buffer for the persistent data.
56      * The pointer is guaranteed to be suitably aligned for any data type,
57      * like a pointer returned by `malloc` (but the core can use any
58      * method to allocate the buffer, not necessarily `malloc`).
59      *
60      * The size of this buffer is in the \c persistent_data_size field of
61      * this structure.
62      *
63      * Before the driver is initialized for the first time, the content of
64      * the persistent data is all-bits-zero. After a driver upgrade, if the
65      * size of the persistent data has increased, the original data is padded
66      * on the right with zeros; if the size has decreased, the original data
67      * is truncated to the new size.
68      *
69      * This pointer is to read-only data. Only a few driver functions are
70      * allowed to modify the persistent data. These functions receive a
71      * writable pointer. These functions are:
72      * - psa_drv_se_t::p_init
73      * - psa_drv_se_key_management_t::p_allocate
74      * - psa_drv_se_key_management_t::p_destroy
75      *
76      * The PSA Cryptography core saves the persistent data from one
77      * session to the next. It does this before returning from API functions
78      * that call a driver method that is allowed to modify the persistent
79      * data, specifically:
80      * - psa_crypto_init() causes a call to psa_drv_se_t::p_init, and may call
81      *   psa_drv_se_key_management_t::p_destroy to complete an action
82      *   that was interrupted by a power failure.
83      * - Key creation functions cause a call to
84      *   psa_drv_se_key_management_t::p_allocate, and may cause a call to
85      *   psa_drv_se_key_management_t::p_destroy in case an error occurs.
86      * - psa_destroy_key() causes a call to
87      *   psa_drv_se_key_management_t::p_destroy.
88      */
89     const void *const MBEDTLS_PRIVATE(persistent_data);
90 
91     /** The size of \c persistent_data in bytes.
92      *
93      * This is always equal to the value of the `persistent_data_size` field
94      * of the ::psa_drv_se_t structure when the driver is registered.
95      */
96     const size_t MBEDTLS_PRIVATE(persistent_data_size);
97 
98     /** Driver transient data.
99      *
100      * The core initializes this value to 0 and does not read or modify it
101      * afterwards. The driver may store whatever it wants in this field.
102      */
103     uintptr_t MBEDTLS_PRIVATE(transient_data);
104 } psa_drv_se_context_t;
105 
106 /** \brief A driver initialization function.
107  *
108  * \param[in,out] drv_context       The driver context structure.
109  * \param[in,out] persistent_data   A pointer to the persistent data
110  *                                  that allows writing.
111  * \param location                  The location value for which this driver
112  *                                  is registered. The driver will be invoked
113  *                                  for all keys whose lifetime is in this
114  *                                  location.
115  *
116  * \retval #PSA_SUCCESS
117  *         The driver is operational.
118  *         The core will update the persistent data in storage.
119  * \return
120  *         Any other return value prevents the driver from being used in
121  *         this session.
122  *         The core will NOT update the persistent data in storage.
123  */
124 typedef psa_status_t (*psa_drv_se_init_t)(psa_drv_se_context_t *drv_context,
125                                           void *persistent_data,
126                                           psa_key_location_t location);
127 
128 #if defined(__DOXYGEN_ONLY__) || !defined(MBEDTLS_PSA_CRYPTO_SE_C)
129 /* Mbed TLS with secure element support enabled defines this type in
130  * crypto_types.h because it is also visible to applications through an
131  * implementation-specific extension.
132  * For the PSA Cryptography specification, this type is only visible
133  * via crypto_se_driver.h. */
134 /** An internal designation of a key slot between the core part of the
135  * PSA Crypto implementation and the driver. The meaning of this value
136  * is driver-dependent. */
137 typedef uint64_t psa_key_slot_number_t;
138 #endif /* __DOXYGEN_ONLY__ || !MBEDTLS_PSA_CRYPTO_SE_C */
139 
140 /**@}*/
141 
142 /** \defgroup se_mac Secure Element Message Authentication Codes
143  * Generation and authentication of Message Authentication Codes (MACs) using
144  * a secure element can be done either as a single function call (via the
145  * `psa_drv_se_mac_generate_t` or `psa_drv_se_mac_verify_t` functions), or in
146  * parts using the following sequence:
147  * - `psa_drv_se_mac_setup_t`
148  * - `psa_drv_se_mac_update_t`
149  * - `psa_drv_se_mac_update_t`
150  * - ...
151  * - `psa_drv_se_mac_finish_t` or `psa_drv_se_mac_finish_verify_t`
152  *
153  * If a previously started secure element MAC operation needs to be terminated,
154  * it should be done so by the `psa_drv_se_mac_abort_t`. Failure to do so may
155  * result in allocated resources not being freed or in other undefined
156  * behavior.
157  */
158 /**@{*/
159 /** \brief A function that starts a secure element  MAC operation for a PSA
160  * Crypto Driver implementation
161  *
162  * \param[in,out] drv_context   The driver context structure.
163  * \param[in,out] op_context    A structure that will contain the
164  *                              hardware-specific MAC context
165  * \param[in] key_slot          The slot of the key to be used for the
166  *                              operation
167  * \param[in] algorithm         The algorithm to be used to underly the MAC
168  *                              operation
169  *
170  * \retval  #PSA_SUCCESS
171  *          Success.
172  */
173 typedef psa_status_t (*psa_drv_se_mac_setup_t)(psa_drv_se_context_t *drv_context,
174                                                void *op_context,
175                                                psa_key_slot_number_t key_slot,
176                                                psa_algorithm_t algorithm);
177 
178 /** \brief A function that continues a previously started secure element MAC
179  * operation
180  *
181  * \param[in,out] op_context    A hardware-specific structure for the
182  *                              previously-established MAC operation to be
183  *                              updated
184  * \param[in] p_input           A buffer containing the message to be appended
185  *                              to the MAC operation
186  * \param[in] input_length      The size in bytes of the input message buffer
187  */
188 typedef psa_status_t (*psa_drv_se_mac_update_t)(void *op_context,
189                                                 const uint8_t *p_input,
190                                                 size_t input_length);
191 
192 /** \brief a function that completes a previously started secure element MAC
193  * operation by returning the resulting MAC.
194  *
195  * \param[in,out] op_context    A hardware-specific structure for the
196  *                              previously started MAC operation to be
197  *                              finished
198  * \param[out] p_mac            A buffer where the generated MAC will be
199  *                              placed
200  * \param[in] mac_size          The size in bytes of the buffer that has been
201  *                              allocated for the `output` buffer
202  * \param[out] p_mac_length     After completion, will contain the number of
203  *                              bytes placed in the `p_mac` buffer
204  *
205  * \retval  #PSA_SUCCESS
206  *          Success.
207  */
208 typedef psa_status_t (*psa_drv_se_mac_finish_t)(void *op_context,
209                                                 uint8_t *p_mac,
210                                                 size_t mac_size,
211                                                 size_t *p_mac_length);
212 
213 /** \brief A function that completes a previously started secure element MAC
214  * operation by comparing the resulting MAC against a provided value
215  *
216  * \param[in,out] op_context    A hardware-specific structure for the previously
217  *                              started MAC operation to be finished
218  * \param[in] p_mac             The MAC value against which the resulting MAC
219  *                              will be compared against
220  * \param[in] mac_length        The size in bytes of the value stored in `p_mac`
221  *
222  * \retval #PSA_SUCCESS
223  *         The operation completed successfully and the MACs matched each
224  *         other
225  * \retval #PSA_ERROR_INVALID_SIGNATURE
226  *         The operation completed successfully, but the calculated MAC did
227  *         not match the provided MAC
228  */
229 typedef psa_status_t (*psa_drv_se_mac_finish_verify_t)(void *op_context,
230                                                        const uint8_t *p_mac,
231                                                        size_t mac_length);
232 
233 /** \brief A function that aborts a previous started secure element MAC
234  * operation
235  *
236  * \param[in,out] op_context    A hardware-specific structure for the previously
237  *                              started MAC operation to be aborted
238  */
239 typedef psa_status_t (*psa_drv_se_mac_abort_t)(void *op_context);
240 
241 /** \brief A function that performs a secure element MAC operation in one
242  * command and returns the calculated MAC
243  *
244  * \param[in,out] drv_context   The driver context structure.
245  * \param[in] p_input           A buffer containing the message to be MACed
246  * \param[in] input_length      The size in bytes of `p_input`
247  * \param[in] key_slot          The slot of the key to be used
248  * \param[in] alg               The algorithm to be used to underlie the MAC
249  *                              operation
250  * \param[out] p_mac            A buffer where the generated MAC will be
251  *                              placed
252  * \param[in] mac_size          The size in bytes of the `p_mac` buffer
253  * \param[out] p_mac_length     After completion, will contain the number of
254  *                              bytes placed in the `output` buffer
255  *
256  * \retval #PSA_SUCCESS
257  *         Success.
258  */
259 typedef psa_status_t (*psa_drv_se_mac_generate_t)(psa_drv_se_context_t *drv_context,
260                                                   const uint8_t *p_input,
261                                                   size_t input_length,
262                                                   psa_key_slot_number_t key_slot,
263                                                   psa_algorithm_t alg,
264                                                   uint8_t *p_mac,
265                                                   size_t mac_size,
266                                                   size_t *p_mac_length);
267 
268 /** \brief A function that performs a secure element MAC operation in one
269  * command and compares the resulting MAC against a provided value
270  *
271  * \param[in,out] drv_context       The driver context structure.
272  * \param[in] p_input       A buffer containing the message to be MACed
273  * \param[in] input_length  The size in bytes of `input`
274  * \param[in] key_slot      The slot of the key to be used
275  * \param[in] alg           The algorithm to be used to underlie the MAC
276  *                          operation
277  * \param[in] p_mac         The MAC value against which the resulting MAC will
278  *                          be compared against
279  * \param[in] mac_length   The size in bytes of `mac`
280  *
281  * \retval #PSA_SUCCESS
282  *         The operation completed successfully and the MACs matched each
283  *         other
284  * \retval #PSA_ERROR_INVALID_SIGNATURE
285  *         The operation completed successfully, but the calculated MAC did
286  *         not match the provided MAC
287  */
288 typedef psa_status_t (*psa_drv_se_mac_verify_t)(psa_drv_se_context_t *drv_context,
289                                                 const uint8_t *p_input,
290                                                 size_t input_length,
291                                                 psa_key_slot_number_t key_slot,
292                                                 psa_algorithm_t alg,
293                                                 const uint8_t *p_mac,
294                                                 size_t mac_length);
295 
296 /** \brief A struct containing all of the function pointers needed to
297  * perform secure element MAC operations
298  *
299  * PSA Crypto API implementations should populate the table as appropriate
300  * upon startup.
301  *
302  * If one of the functions is not implemented (such as
303  * `psa_drv_se_mac_generate_t`), it should be set to NULL.
304  *
305  * Driver implementers should ensure that they implement all of the functions
306  * that make sense for their hardware, and that they provide a full solution
307  * (for example, if they support `p_setup`, they should also support
308  * `p_update` and at least one of `p_finish` or `p_finish_verify`).
309  *
310  */
311 typedef struct {
312     /**The size in bytes of the hardware-specific secure element MAC context
313      * structure
314      */
315     size_t                    MBEDTLS_PRIVATE(context_size);
316     /** Function that performs a MAC setup operation
317      */
318     psa_drv_se_mac_setup_t          MBEDTLS_PRIVATE(p_setup);
319     /** Function that performs a MAC update operation
320      */
321     psa_drv_se_mac_update_t         MBEDTLS_PRIVATE(p_update);
322     /** Function that completes a MAC operation
323      */
324     psa_drv_se_mac_finish_t         MBEDTLS_PRIVATE(p_finish);
325     /** Function that completes a MAC operation with a verify check
326      */
327     psa_drv_se_mac_finish_verify_t  MBEDTLS_PRIVATE(p_finish_verify);
328     /** Function that aborts a previously started MAC operation
329      */
330     psa_drv_se_mac_abort_t          MBEDTLS_PRIVATE(p_abort);
331     /** Function that performs a MAC operation in one call
332      */
333     psa_drv_se_mac_generate_t       MBEDTLS_PRIVATE(p_mac);
334     /** Function that performs a MAC and verify operation in one call
335      */
336     psa_drv_se_mac_verify_t         MBEDTLS_PRIVATE(p_mac_verify);
337 } psa_drv_se_mac_t;
338 /**@}*/
339 
340 /** \defgroup se_cipher Secure Element Symmetric Ciphers
341  *
342  * Encryption and Decryption using secure element keys in block modes other
343  * than ECB must be done in multiple parts, using the following flow:
344  * - `psa_drv_se_cipher_setup_t`
345  * - `psa_drv_se_cipher_set_iv_t` (optional depending upon block mode)
346  * - `psa_drv_se_cipher_update_t`
347  * - `psa_drv_se_cipher_update_t`
348  * - ...
349  * - `psa_drv_se_cipher_finish_t`
350  *
351  * If a previously started secure element Cipher operation needs to be
352  * terminated, it should be done so by the `psa_drv_se_cipher_abort_t`. Failure
353  * to do so may result in allocated resources not being freed or in other
354  * undefined behavior.
355  *
356  * In situations where a PSA Cryptographic API implementation is using a block
357  * mode not-supported by the underlying hardware or driver, it can construct
358  * the block mode itself, while calling the `psa_drv_se_cipher_ecb_t` function
359  * for the cipher operations.
360  */
361 /**@{*/
362 
363 /** \brief A function that provides the cipher setup function for a
364  * secure element driver
365  *
366  * \param[in,out] drv_context   The driver context structure.
367  * \param[in,out] op_context    A structure that will contain the
368  *                              hardware-specific cipher context.
369  * \param[in] key_slot          The slot of the key to be used for the
370  *                              operation
371  * \param[in] algorithm         The algorithm to be used in the cipher
372  *                              operation
373  * \param[in] direction         Indicates whether the operation is an encrypt
374  *                              or decrypt
375  *
376  * \retval #PSA_SUCCESS \emptydescription
377  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
378  */
379 typedef psa_status_t (*psa_drv_se_cipher_setup_t)(psa_drv_se_context_t *drv_context,
380                                                   void *op_context,
381                                                   psa_key_slot_number_t key_slot,
382                                                   psa_algorithm_t algorithm,
383                                                   psa_encrypt_or_decrypt_t direction);
384 
385 /** \brief A function that sets the initialization vector (if
386  * necessary) for a secure element cipher operation
387  *
388  * Rationale: The `psa_se_cipher_*` operation in the PSA Cryptographic API has
389  * two IV functions: one to set the IV, and one to generate it internally. The
390  * generate function is not necessary for the drivers to implement as the PSA
391  * Crypto implementation can do the generation using its RNG features.
392  *
393  * \param[in,out] op_context    A structure that contains the previously set up
394  *                              hardware-specific cipher context
395  * \param[in] p_iv              A buffer containing the initialization vector
396  * \param[in] iv_length         The size (in bytes) of the `p_iv` buffer
397  *
398  * \retval #PSA_SUCCESS \emptydescription
399  */
400 typedef psa_status_t (*psa_drv_se_cipher_set_iv_t)(void *op_context,
401                                                    const uint8_t *p_iv,
402                                                    size_t iv_length);
403 
404 /** \brief A function that continues a previously started secure element cipher
405  * operation
406  *
407  * \param[in,out] op_context        A hardware-specific structure for the
408  *                                  previously started cipher operation
409  * \param[in] p_input               A buffer containing the data to be
410  *                                  encrypted/decrypted
411  * \param[in] input_size            The size in bytes of the buffer pointed to
412  *                                  by `p_input`
413  * \param[out] p_output             The caller-allocated buffer where the
414  *                                  output will be placed
415  * \param[in] output_size           The allocated size in bytes of the
416  *                                  `p_output` buffer
417  * \param[out] p_output_length      After completion, will contain the number
418  *                                  of bytes placed in the `p_output` buffer
419  *
420  * \retval #PSA_SUCCESS \emptydescription
421  */
422 typedef psa_status_t (*psa_drv_se_cipher_update_t)(void *op_context,
423                                                    const uint8_t *p_input,
424                                                    size_t input_size,
425                                                    uint8_t *p_output,
426                                                    size_t output_size,
427                                                    size_t *p_output_length);
428 
429 /** \brief A function that completes a previously started secure element cipher
430  * operation
431  *
432  * \param[in,out] op_context    A hardware-specific structure for the
433  *                              previously started cipher operation
434  * \param[out] p_output         The caller-allocated buffer where the output
435  *                              will be placed
436  * \param[in] output_size       The allocated size in bytes of the `p_output`
437  *                              buffer
438  * \param[out] p_output_length  After completion, will contain the number of
439  *                              bytes placed in the `p_output` buffer
440  *
441  * \retval #PSA_SUCCESS \emptydescription
442  */
443 typedef psa_status_t (*psa_drv_se_cipher_finish_t)(void *op_context,
444                                                    uint8_t *p_output,
445                                                    size_t output_size,
446                                                    size_t *p_output_length);
447 
448 /** \brief A function that aborts a previously started secure element cipher
449  * operation
450  *
451  * \param[in,out] op_context    A hardware-specific structure for the
452  *                              previously started cipher operation
453  */
454 typedef psa_status_t (*psa_drv_se_cipher_abort_t)(void *op_context);
455 
456 /** \brief A function that performs the ECB block mode for secure element
457  * cipher operations
458  *
459  * Note: this function should only be used with implementations that do not
460  * provide a needed higher-level operation.
461  *
462  * \param[in,out] drv_context   The driver context structure.
463  * \param[in] key_slot          The slot of the key to be used for the operation
464  * \param[in] algorithm         The algorithm to be used in the cipher operation
465  * \param[in] direction         Indicates whether the operation is an encrypt or
466  *                              decrypt
467  * \param[in] p_input           A buffer containing the data to be
468  *                              encrypted/decrypted
469  * \param[in] input_size        The size in bytes of the buffer pointed to by
470  *                              `p_input`
471  * \param[out] p_output         The caller-allocated buffer where the output
472  *                              will be placed
473  * \param[in] output_size       The allocated size in bytes of the `p_output`
474  *                              buffer
475  *
476  * \retval #PSA_SUCCESS \emptydescription
477  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
478  */
479 typedef psa_status_t (*psa_drv_se_cipher_ecb_t)(psa_drv_se_context_t *drv_context,
480                                                 psa_key_slot_number_t key_slot,
481                                                 psa_algorithm_t algorithm,
482                                                 psa_encrypt_or_decrypt_t direction,
483                                                 const uint8_t *p_input,
484                                                 size_t input_size,
485                                                 uint8_t *p_output,
486                                                 size_t output_size);
487 
488 /**
489  * \brief A struct containing all of the function pointers needed to implement
490  * cipher operations using secure elements.
491  *
492  * PSA Crypto API implementations should populate instances of the table as
493  * appropriate upon startup or at build time.
494  *
495  * If one of the functions is not implemented (such as
496  * `psa_drv_se_cipher_ecb_t`), it should be set to NULL.
497  */
498 typedef struct {
499     /** The size in bytes of the hardware-specific secure element cipher
500      * context structure
501      */
502     size_t               MBEDTLS_PRIVATE(context_size);
503     /** Function that performs a cipher setup operation */
504     psa_drv_se_cipher_setup_t  MBEDTLS_PRIVATE(p_setup);
505     /** Function that sets a cipher IV (if necessary) */
506     psa_drv_se_cipher_set_iv_t MBEDTLS_PRIVATE(p_set_iv);
507     /** Function that performs a cipher update operation */
508     psa_drv_se_cipher_update_t MBEDTLS_PRIVATE(p_update);
509     /** Function that completes a cipher operation */
510     psa_drv_se_cipher_finish_t MBEDTLS_PRIVATE(p_finish);
511     /** Function that aborts a cipher operation */
512     psa_drv_se_cipher_abort_t  MBEDTLS_PRIVATE(p_abort);
513     /** Function that performs ECB mode for a cipher operation
514      * (Danger: ECB mode should not be used directly by clients of the PSA
515      * Crypto Client API)
516      */
517     psa_drv_se_cipher_ecb_t    MBEDTLS_PRIVATE(p_ecb);
518 } psa_drv_se_cipher_t;
519 
520 /**@}*/
521 
522 /** \defgroup se_asymmetric Secure Element Asymmetric Cryptography
523  *
524  * Since the amount of data that can (or should) be encrypted or signed using
525  * asymmetric keys is limited by the key size, asymmetric key operations using
526  * keys in a secure element must be done in single function calls.
527  */
528 /**@{*/
529 
530 /**
531  * \brief A function that signs a hash or short message with a private key in
532  * a secure element
533  *
534  * \param[in,out] drv_context       The driver context structure.
535  * \param[in] key_slot              Key slot of an asymmetric key pair
536  * \param[in] alg                   A signature algorithm that is compatible
537  *                                  with the type of `key`
538  * \param[in] p_hash                The hash to sign
539  * \param[in] hash_length           Size of the `p_hash` buffer in bytes
540  * \param[out] p_signature          Buffer where the signature is to be written
541  * \param[in] signature_size        Size of the `p_signature` buffer in bytes
542  * \param[out] p_signature_length   On success, the number of bytes
543  *                                  that make up the returned signature value
544  *
545  * \retval #PSA_SUCCESS \emptydescription
546  */
547 typedef psa_status_t (*psa_drv_se_asymmetric_sign_t)(psa_drv_se_context_t *drv_context,
548                                                      psa_key_slot_number_t key_slot,
549                                                      psa_algorithm_t alg,
550                                                      const uint8_t *p_hash,
551                                                      size_t hash_length,
552                                                      uint8_t *p_signature,
553                                                      size_t signature_size,
554                                                      size_t *p_signature_length);
555 
556 /**
557  * \brief A function that verifies the signature a hash or short message using
558  * an asymmetric public key in a secure element
559  *
560  * \param[in,out] drv_context   The driver context structure.
561  * \param[in] key_slot          Key slot of a public key or an asymmetric key
562  *                              pair
563  * \param[in] alg               A signature algorithm that is compatible with
564  *                              the type of `key`
565  * \param[in] p_hash            The hash whose signature is to be verified
566  * \param[in] hash_length       Size of the `p_hash` buffer in bytes
567  * \param[in] p_signature       Buffer containing the signature to verify
568  * \param[in] signature_length  Size of the `p_signature` buffer in bytes
569  *
570  * \retval #PSA_SUCCESS
571  *         The signature is valid.
572  */
573 typedef psa_status_t (*psa_drv_se_asymmetric_verify_t)(psa_drv_se_context_t *drv_context,
574                                                        psa_key_slot_number_t key_slot,
575                                                        psa_algorithm_t alg,
576                                                        const uint8_t *p_hash,
577                                                        size_t hash_length,
578                                                        const uint8_t *p_signature,
579                                                        size_t signature_length);
580 
581 /**
582  * \brief A function that encrypts a short message with an asymmetric public
583  * key in a secure element
584  *
585  * \param[in,out] drv_context   The driver context structure.
586  * \param[in] key_slot          Key slot of a public key or an asymmetric key
587  *                              pair
588  * \param[in] alg               An asymmetric encryption algorithm that is
589  *                              compatible with the type of `key`
590  * \param[in] p_input           The message to encrypt
591  * \param[in] input_length      Size of the `p_input` buffer in bytes
592  * \param[in] p_salt            A salt or label, if supported by the
593  *                              encryption algorithm
594  *                              If the algorithm does not support a
595  *                              salt, pass `NULL`.
596  *                              If the algorithm supports an optional
597  *                              salt and you do not want to pass a salt,
598  *                              pass `NULL`.
599  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
600  *                              supported.
601  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
602  *                              If `p_salt` is `NULL`, pass 0.
603  * \param[out] p_output         Buffer where the encrypted message is to
604  *                              be written
605  * \param[in] output_size       Size of the `p_output` buffer in bytes
606  * \param[out] p_output_length  On success, the number of bytes that make up
607  *                              the returned output
608  *
609  * \retval #PSA_SUCCESS \emptydescription
610  */
611 typedef psa_status_t (*psa_drv_se_asymmetric_encrypt_t)(psa_drv_se_context_t *drv_context,
612                                                         psa_key_slot_number_t key_slot,
613                                                         psa_algorithm_t alg,
614                                                         const uint8_t *p_input,
615                                                         size_t input_length,
616                                                         const uint8_t *p_salt,
617                                                         size_t salt_length,
618                                                         uint8_t *p_output,
619                                                         size_t output_size,
620                                                         size_t *p_output_length);
621 
622 /**
623  * \brief A function that decrypts a short message with an asymmetric private
624  * key in a secure element.
625  *
626  * \param[in,out] drv_context   The driver context structure.
627  * \param[in] key_slot          Key slot of an asymmetric key pair
628  * \param[in] alg               An asymmetric encryption algorithm that is
629  *                              compatible with the type of `key`
630  * \param[in] p_input           The message to decrypt
631  * \param[in] input_length      Size of the `p_input` buffer in bytes
632  * \param[in] p_salt            A salt or label, if supported by the
633  *                              encryption algorithm
634  *                              If the algorithm does not support a
635  *                              salt, pass `NULL`.
636  *                              If the algorithm supports an optional
637  *                              salt and you do not want to pass a salt,
638  *                              pass `NULL`.
639  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
640  *                              supported.
641  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
642  *                              If `p_salt` is `NULL`, pass 0.
643  * \param[out] p_output         Buffer where the decrypted message is to
644  *                              be written
645  * \param[in] output_size       Size of the `p_output` buffer in bytes
646  * \param[out] p_output_length  On success, the number of bytes
647  *                              that make up the returned output
648  *
649  * \retval #PSA_SUCCESS \emptydescription
650  */
651 typedef psa_status_t (*psa_drv_se_asymmetric_decrypt_t)(psa_drv_se_context_t *drv_context,
652                                                         psa_key_slot_number_t key_slot,
653                                                         psa_algorithm_t alg,
654                                                         const uint8_t *p_input,
655                                                         size_t input_length,
656                                                         const uint8_t *p_salt,
657                                                         size_t salt_length,
658                                                         uint8_t *p_output,
659                                                         size_t output_size,
660                                                         size_t *p_output_length);
661 
662 /**
663  * \brief A struct containing all of the function pointers needed to implement
664  * asymmetric cryptographic operations using secure elements.
665  *
666  * PSA Crypto API implementations should populate instances of the table as
667  * appropriate upon startup or at build time.
668  *
669  * If one of the functions is not implemented, it should be set to NULL.
670  */
671 typedef struct {
672     /** Function that performs an asymmetric sign operation */
673     psa_drv_se_asymmetric_sign_t    MBEDTLS_PRIVATE(p_sign);
674     /** Function that performs an asymmetric verify operation */
675     psa_drv_se_asymmetric_verify_t  MBEDTLS_PRIVATE(p_verify);
676     /** Function that performs an asymmetric encrypt operation */
677     psa_drv_se_asymmetric_encrypt_t MBEDTLS_PRIVATE(p_encrypt);
678     /** Function that performs an asymmetric decrypt operation */
679     psa_drv_se_asymmetric_decrypt_t MBEDTLS_PRIVATE(p_decrypt);
680 } psa_drv_se_asymmetric_t;
681 
682 /**@}*/
683 
684 /** \defgroup se_aead Secure Element Authenticated Encryption with Additional Data
685  * Authenticated Encryption with Additional Data (AEAD) operations with secure
686  * elements must be done in one function call. While this creates a burden for
687  * implementers as there must be sufficient space in memory for the entire
688  * message, it prevents decrypted data from being made available before the
689  * authentication operation is complete and the data is known to be authentic.
690  */
691 /**@{*/
692 
693 /** \brief A function that performs a secure element authenticated encryption
694  * operation
695  *
696  * \param[in,out] drv_context           The driver context structure.
697  * \param[in] key_slot                  Slot containing the key to use.
698  * \param[in] algorithm                 The AEAD algorithm to compute
699  *                                      (\c PSA_ALG_XXX value such that
700  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
701  * \param[in] p_nonce                   Nonce or IV to use
702  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
703  * \param[in] p_additional_data         Additional data that will be
704  *                                      authenticated but not encrypted
705  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
706  * \param[in] p_plaintext               Data that will be authenticated and
707  *                                      encrypted
708  * \param[in] plaintext_length          Size of `p_plaintext` in bytes
709  * \param[out] p_ciphertext             Output buffer for the authenticated and
710  *                                      encrypted data. The additional data is
711  *                                      not part of this output. For algorithms
712  *                                      where the encrypted data and the
713  *                                      authentication tag are defined as
714  *                                      separate outputs, the authentication
715  *                                      tag is appended to the encrypted data.
716  * \param[in] ciphertext_size           Size of the `p_ciphertext` buffer in
717  *                                      bytes
718  * \param[out] p_ciphertext_length      On success, the size of the output in
719  *                                      the `p_ciphertext` buffer
720  *
721  * \retval #PSA_SUCCESS
722  *         Success.
723  */
724 typedef psa_status_t (*psa_drv_se_aead_encrypt_t)(psa_drv_se_context_t *drv_context,
725                                                   psa_key_slot_number_t key_slot,
726                                                   psa_algorithm_t algorithm,
727                                                   const uint8_t *p_nonce,
728                                                   size_t nonce_length,
729                                                   const uint8_t *p_additional_data,
730                                                   size_t additional_data_length,
731                                                   const uint8_t *p_plaintext,
732                                                   size_t plaintext_length,
733                                                   uint8_t *p_ciphertext,
734                                                   size_t ciphertext_size,
735                                                   size_t *p_ciphertext_length);
736 
737 /** A function that performs a secure element authenticated decryption operation
738  *
739  * \param[in,out] drv_context           The driver context structure.
740  * \param[in] key_slot                  Slot containing the key to use
741  * \param[in] algorithm                 The AEAD algorithm to compute
742  *                                      (\c PSA_ALG_XXX value such that
743  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
744  * \param[in] p_nonce                   Nonce or IV to use
745  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
746  * \param[in] p_additional_data         Additional data that has been
747  *                                      authenticated but not encrypted
748  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
749  * \param[in] p_ciphertext              Data that has been authenticated and
750  *                                      encrypted.
751  *                                      For algorithms where the encrypted data
752  *                                      and the authentication tag are defined
753  *                                      as separate inputs, the buffer must
754  *                                      contain the encrypted data followed by
755  *                                      the authentication tag.
756  * \param[in] ciphertext_length         Size of `p_ciphertext` in bytes
757  * \param[out] p_plaintext              Output buffer for the decrypted data
758  * \param[in] plaintext_size            Size of the `p_plaintext` buffer in
759  *                                      bytes
760  * \param[out] p_plaintext_length       On success, the size of the output in
761  *                                      the `p_plaintext` buffer
762  *
763  * \retval #PSA_SUCCESS
764  *         Success.
765  */
766 typedef psa_status_t (*psa_drv_se_aead_decrypt_t)(psa_drv_se_context_t *drv_context,
767                                                   psa_key_slot_number_t key_slot,
768                                                   psa_algorithm_t algorithm,
769                                                   const uint8_t *p_nonce,
770                                                   size_t nonce_length,
771                                                   const uint8_t *p_additional_data,
772                                                   size_t additional_data_length,
773                                                   const uint8_t *p_ciphertext,
774                                                   size_t ciphertext_length,
775                                                   uint8_t *p_plaintext,
776                                                   size_t plaintext_size,
777                                                   size_t *p_plaintext_length);
778 
779 /**
780  * \brief A struct containing all of the function pointers needed to implement
781  * secure element Authenticated Encryption with Additional Data operations
782  *
783  * PSA Crypto API implementations should populate instances of the table as
784  * appropriate upon startup.
785  *
786  * If one of the functions is not implemented, it should be set to NULL.
787  */
788 typedef struct {
789     /** Function that performs the AEAD encrypt operation */
790     psa_drv_se_aead_encrypt_t MBEDTLS_PRIVATE(p_encrypt);
791     /** Function that performs the AEAD decrypt operation */
792     psa_drv_se_aead_decrypt_t MBEDTLS_PRIVATE(p_decrypt);
793 } psa_drv_se_aead_t;
794 /**@}*/
795 
796 /** \defgroup se_key_management Secure Element Key Management
797  * Currently, key management is limited to importing keys in the clear,
798  * destroying keys, and exporting keys in the clear.
799  * Whether a key may be exported is determined by the key policies in place
800  * on the key slot.
801  */
802 /**@{*/
803 
804 /** An enumeration indicating how a key is created.
805  */
806 typedef enum {
807     PSA_KEY_CREATION_IMPORT, /**< During psa_import_key() */
808     PSA_KEY_CREATION_GENERATE, /**< During psa_generate_key() */
809     PSA_KEY_CREATION_DERIVE, /**< During psa_key_derivation_output_key() */
810     PSA_KEY_CREATION_COPY, /**< During psa_copy_key() */
811 
812 #ifndef __DOXYGEN_ONLY__
813     /** A key is being registered with mbedtls_psa_register_se_key().
814      *
815      * The core only passes this value to
816      * psa_drv_se_key_management_t::p_validate_slot_number, not to
817      * psa_drv_se_key_management_t::p_allocate. The call to
818      * `p_validate_slot_number` is not followed by any other call to the
819      * driver: the key is considered successfully registered if the call to
820      * `p_validate_slot_number` succeeds, or if `p_validate_slot_number` is
821      * null.
822      *
823      * With this creation method, the driver must return #PSA_SUCCESS if
824      * the given attributes are compatible with the existing key in the slot,
825      * and #PSA_ERROR_DOES_NOT_EXIST if the driver can determine that there
826      * is no key with the specified slot number.
827      *
828      * This is an Mbed TLS extension.
829      */
830     PSA_KEY_CREATION_REGISTER,
831 #endif
832 } psa_key_creation_method_t;
833 
834 /** \brief A function that allocates a slot for a key.
835  *
836  * To create a key in a specific slot in a secure element, the core
837  * first calls this function to determine a valid slot number,
838  * then calls a function to create the key material in that slot.
839  * In nominal conditions (that is, if no error occurs),
840  * the effect of a call to a key creation function in the PSA Cryptography
841  * API with a lifetime that places the key in a secure element is the
842  * following:
843  * -# The core calls psa_drv_se_key_management_t::p_allocate
844  *    (or in some implementations
845  *    psa_drv_se_key_management_t::p_validate_slot_number). The driver
846  *    selects (or validates) a suitable slot number given the key attributes
847  *    and the state of the secure element.
848  * -# The core calls a key creation function in the driver.
849  *
850  * The key creation functions in the PSA Cryptography API are:
851  * - psa_import_key(), which causes
852  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_IMPORT
853  *   then a call to psa_drv_se_key_management_t::p_import.
854  * - psa_generate_key(), which causes
855  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_GENERATE
856  *   then a call to psa_drv_se_key_management_t::p_import.
857  * - psa_key_derivation_output_key(), which causes
858  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_DERIVE
859  *   then a call to psa_drv_se_key_derivation_t::p_derive.
860  * - psa_copy_key(), which causes
861  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_COPY
862  *   then a call to psa_drv_se_key_management_t::p_export.
863  *
864  * In case of errors, other behaviors are possible.
865  * - If the PSA Cryptography subsystem dies after the first step,
866  *   for example because the device has lost power abruptly,
867  *   the second step may never happen, or may happen after a reset
868  *   and re-initialization. Alternatively, after a reset and
869  *   re-initialization, the core may call
870  *   psa_drv_se_key_management_t::p_destroy on the slot number that
871  *   was allocated (or validated) instead of calling a key creation function.
872  * - If an error occurs, the core may call
873  *   psa_drv_se_key_management_t::p_destroy on the slot number that
874  *   was allocated (or validated) instead of calling a key creation function.
875  *
876  * Errors and system resets also have an impact on the driver's persistent
877  * data. If a reset happens before the overall key creation process is
878  * completed (before or after the second step above), it is unspecified
879  * whether the persistent data after the reset is identical to what it
880  * was before or after the call to `p_allocate` (or `p_validate_slot_number`).
881  *
882  * \param[in,out] drv_context       The driver context structure.
883  * \param[in,out] persistent_data   A pointer to the persistent data
884  *                                  that allows writing.
885  * \param[in] attributes            Attributes of the key.
886  * \param method                    The way in which the key is being created.
887  * \param[out] key_slot             Slot where the key will be stored.
888  *                                  This must be a valid slot for a key of the
889  *                                  chosen type. It must be unoccupied.
890  *
891  * \retval #PSA_SUCCESS
892  *         Success.
893  *         The core will record \c *key_slot as the key slot where the key
894  *         is stored and will update the persistent data in storage.
895  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
896  * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
897  */
898 typedef psa_status_t (*psa_drv_se_allocate_key_t)(
899     psa_drv_se_context_t *drv_context,
900     void *persistent_data,
901     const psa_key_attributes_t *attributes,
902     psa_key_creation_method_t method,
903     psa_key_slot_number_t *key_slot);
904 
905 /** \brief A function that determines whether a slot number is valid
906  * for a key.
907  *
908  * To create a key in a specific slot in a secure element, the core
909  * first calls this function to validate the choice of slot number,
910  * then calls a function to create the key material in that slot.
911  * See the documentation of #psa_drv_se_allocate_key_t for more details.
912  *
913  * As of the PSA Cryptography API specification version 1.0, there is no way
914  * for applications to trigger a call to this function. However some
915  * implementations offer the capability to create or declare a key in
916  * a specific slot via implementation-specific means, generally for the
917  * sake of initial device provisioning or onboarding. Such a mechanism may
918  * be added to a future version of the PSA Cryptography API specification.
919  *
920  * This function may update the driver's persistent data through
921  * \p persistent_data. The core will save the updated persistent data at the
922  * end of the key creation process. See the description of
923  * ::psa_drv_se_allocate_key_t for more information.
924  *
925  * \param[in,out] drv_context   The driver context structure.
926  * \param[in,out] persistent_data   A pointer to the persistent data
927  *                                  that allows writing.
928  * \param[in] attributes        Attributes of the key.
929  * \param method                The way in which the key is being created.
930  * \param[in] key_slot          Slot where the key is to be stored.
931  *
932  * \retval #PSA_SUCCESS
933  *         The given slot number is valid for a key with the given
934  *         attributes.
935  * \retval #PSA_ERROR_INVALID_ARGUMENT
936  *         The given slot number is not valid for a key with the
937  *         given attributes. This includes the case where the slot
938  *         number is not valid at all.
939  * \retval #PSA_ERROR_ALREADY_EXISTS
940  *         There is already a key with the specified slot number.
941  *         Drivers may choose to return this error from the key
942  *         creation function instead.
943  */
944 typedef psa_status_t (*psa_drv_se_validate_slot_number_t)(
945     psa_drv_se_context_t *drv_context,
946     void *persistent_data,
947     const psa_key_attributes_t *attributes,
948     psa_key_creation_method_t method,
949     psa_key_slot_number_t key_slot);
950 
951 /** \brief A function that imports a key into a secure element in binary format
952  *
953  * This function can support any output from psa_export_key(). Refer to the
954  * documentation of psa_export_key() for the format for each key type.
955  *
956  * \param[in,out] drv_context   The driver context structure.
957  * \param key_slot              Slot where the key will be stored.
958  *                              This must be a valid slot for a key of the
959  *                              chosen type. It must be unoccupied.
960  * \param[in] attributes        The key attributes, including the lifetime,
961  *                              the key type and the usage policy.
962  *                              Drivers should not access the key size stored
963  *                              in the attributes: it may not match the
964  *                              data passed in \p data.
965  *                              Drivers can call psa_get_key_lifetime(),
966  *                              psa_get_key_type(),
967  *                              psa_get_key_usage_flags() and
968  *                              psa_get_key_algorithm() to access this
969  *                              information.
970  * \param[in] data              Buffer containing the key data.
971  * \param[in] data_length       Size of the \p data buffer in bytes.
972  * \param[out] bits             On success, the key size in bits. The driver
973  *                              must determine this value after parsing the
974  *                              key according to the key type.
975  *                              This value is not used if the function fails.
976  *
977  * \retval #PSA_SUCCESS
978  *         Success.
979  */
980 typedef psa_status_t (*psa_drv_se_import_key_t)(
981     psa_drv_se_context_t *drv_context,
982     psa_key_slot_number_t key_slot,
983     const psa_key_attributes_t *attributes,
984     const uint8_t *data,
985     size_t data_length,
986     size_t *bits);
987 
988 /**
989  * \brief A function that destroys a secure element key and restore the slot to
990  * its default state
991  *
992  * This function destroys the content of the key from a secure element.
993  * Implementations shall make a best effort to ensure that any previous content
994  * of the slot is unrecoverable.
995  *
996  * This function returns the specified slot to its default state.
997  *
998  * \param[in,out] drv_context       The driver context structure.
999  * \param[in,out] persistent_data   A pointer to the persistent data
1000  *                                  that allows writing.
1001  * \param key_slot                  The key slot to erase.
1002  *
1003  * \retval #PSA_SUCCESS
1004  *         The slot's content, if any, has been erased.
1005  */
1006 typedef psa_status_t (*psa_drv_se_destroy_key_t)(
1007     psa_drv_se_context_t *drv_context,
1008     void *persistent_data,
1009     psa_key_slot_number_t key_slot);
1010 
1011 /**
1012  * \brief A function that exports a secure element key in binary format
1013  *
1014  * The output of this function can be passed to psa_import_key() to
1015  * create an equivalent object.
1016  *
1017  * If a key is created with `psa_import_key()` and then exported with
1018  * this function, it is not guaranteed that the resulting data is
1019  * identical: the implementation may choose a different representation
1020  * of the same key if the format permits it.
1021  *
1022  * This function should generate output in the same format that
1023  * `psa_export_key()` does. Refer to the
1024  * documentation of `psa_export_key()` for the format for each key type.
1025  *
1026  * \param[in,out] drv_context   The driver context structure.
1027  * \param[in] key               Slot whose content is to be exported. This must
1028  *                              be an occupied key slot.
1029  * \param[out] p_data           Buffer where the key data is to be written.
1030  * \param[in] data_size         Size of the `p_data` buffer in bytes.
1031  * \param[out] p_data_length    On success, the number of bytes
1032  *                              that make up the key data.
1033  *
1034  * \retval #PSA_SUCCESS \emptydescription
1035  * \retval #PSA_ERROR_DOES_NOT_EXIST \emptydescription
1036  * \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
1037  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
1038  * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
1039  * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
1040  * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
1041  */
1042 typedef psa_status_t (*psa_drv_se_export_key_t)(psa_drv_se_context_t *drv_context,
1043                                                 psa_key_slot_number_t key,
1044                                                 uint8_t *p_data,
1045                                                 size_t data_size,
1046                                                 size_t *p_data_length);
1047 
1048 /**
1049  * \brief A function that generates a symmetric or asymmetric key on a secure
1050  * element
1051  *
1052  * If the key type \c type recorded in \p attributes
1053  * is asymmetric (#PSA_KEY_TYPE_IS_ASYMMETRIC(\c type) = 1),
1054  * the driver may export the public key at the time of generation,
1055  * in the format documented for psa_export_public_key() by writing it
1056  * to the \p pubkey buffer.
1057  * This is optional, intended for secure elements that output the
1058  * public key at generation time and that cannot export the public key
1059  * later. Drivers that do not need this feature should leave
1060  * \p *pubkey_length set to 0 and should
1061  * implement the psa_drv_key_management_t::p_export_public function.
1062  * Some implementations do not support this feature, in which case
1063  * \p pubkey is \c NULL and \p pubkey_size is 0.
1064  *
1065  * \param[in,out] drv_context   The driver context structure.
1066  * \param key_slot              Slot where the key will be stored.
1067  *                              This must be a valid slot for a key of the
1068  *                              chosen type. It must be unoccupied.
1069  * \param[in] attributes        The key attributes, including the lifetime,
1070  *                              the key type and size, and the usage policy.
1071  *                              Drivers can call psa_get_key_lifetime(),
1072  *                              psa_get_key_type(), psa_get_key_bits(),
1073  *                              psa_get_key_usage_flags() and
1074  *                              psa_get_key_algorithm() to access this
1075  *                              information.
1076  * \param[out] pubkey           A buffer where the driver can write the
1077  *                              public key, when generating an asymmetric
1078  *                              key pair.
1079  *                              This is \c NULL when generating a symmetric
1080  *                              key or if the core does not support
1081  *                              exporting the public key at generation time.
1082  * \param pubkey_size           The size of the `pubkey` buffer in bytes.
1083  *                              This is 0 when generating a symmetric
1084  *                              key or if the core does not support
1085  *                              exporting the public key at generation time.
1086  * \param[out] pubkey_length    On entry, this is always 0.
1087  *                              On success, the number of bytes written to
1088  *                              \p pubkey. If this is 0 or unchanged on return,
1089  *                              the core will not read the \p pubkey buffer,
1090  *                              and will instead call the driver's
1091  *                              psa_drv_key_management_t::p_export_public
1092  *                              function to export the public key when needed.
1093  */
1094 typedef psa_status_t (*psa_drv_se_generate_key_t)(
1095     psa_drv_se_context_t *drv_context,
1096     psa_key_slot_number_t key_slot,
1097     const psa_key_attributes_t *attributes,
1098     uint8_t *pubkey, size_t pubkey_size, size_t *pubkey_length);
1099 
1100 /**
1101  * \brief A struct containing all of the function pointers needed to for secure
1102  * element key management
1103  *
1104  * PSA Crypto API implementations should populate instances of the table as
1105  * appropriate upon startup or at build time.
1106  *
1107  * If one of the functions is not implemented, it should be set to NULL.
1108  */
1109 typedef struct {
1110     /** Function that allocates a slot for a key. */
1111     psa_drv_se_allocate_key_t   MBEDTLS_PRIVATE(p_allocate);
1112     /** Function that checks the validity of a slot for a key. */
1113     psa_drv_se_validate_slot_number_t MBEDTLS_PRIVATE(p_validate_slot_number);
1114     /** Function that performs a key import operation */
1115     psa_drv_se_import_key_t     MBEDTLS_PRIVATE(p_import);
1116     /** Function that performs a generation */
1117     psa_drv_se_generate_key_t   MBEDTLS_PRIVATE(p_generate);
1118     /** Function that performs a key destroy operation */
1119     psa_drv_se_destroy_key_t    MBEDTLS_PRIVATE(p_destroy);
1120     /** Function that performs a key export operation */
1121     psa_drv_se_export_key_t     MBEDTLS_PRIVATE(p_export);
1122     /** Function that performs a public key export operation */
1123     psa_drv_se_export_key_t     MBEDTLS_PRIVATE(p_export_public);
1124 } psa_drv_se_key_management_t;
1125 
1126 /**@}*/
1127 
1128 /** \defgroup driver_derivation Secure Element Key Derivation and Agreement
1129  * Key derivation is the process of generating new key material using an
1130  * existing key and additional parameters, iterating through a basic
1131  * cryptographic function, such as a hash.
1132  * Key agreement is a part of cryptographic protocols that allows two parties
1133  * to agree on the same key value, but starting from different original key
1134  * material.
1135  * The flows are similar, and the PSA Crypto Driver Model uses the same functions
1136  * for both of the flows.
1137  *
1138  * There are two different final functions for the flows,
1139  * `psa_drv_se_key_derivation_derive` and `psa_drv_se_key_derivation_export`.
1140  * `psa_drv_se_key_derivation_derive` is used when the key material should be
1141  * placed in a slot on the hardware and not exposed to the caller.
1142  * `psa_drv_se_key_derivation_export` is used when the key material should be
1143  * returned to the PSA Cryptographic API implementation.
1144  *
1145  * Different key derivation algorithms require a different number of inputs.
1146  * Instead of having an API that takes as input variable length arrays, which
1147  * can be problematic to manage on embedded platforms, the inputs are passed
1148  * to the driver via a function, `psa_drv_se_key_derivation_collateral`, that
1149  * is called multiple times with different `collateral_id`s. Thus, for a key
1150  * derivation algorithm that required 3 parameter inputs, the flow would look
1151  * something like:
1152  * ~~~~~~~~~~~~~{.c}
1153  * psa_drv_se_key_derivation_setup(kdf_algorithm, source_key, dest_key_size_bytes);
1154  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_0,
1155  *                                      p_collateral_0,
1156  *                                      collateral_0_size);
1157  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_1,
1158  *                                      p_collateral_1,
1159  *                                      collateral_1_size);
1160  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_2,
1161  *                                      p_collateral_2,
1162  *                                      collateral_2_size);
1163  * psa_drv_se_key_derivation_derive();
1164  * ~~~~~~~~~~~~~
1165  *
1166  * key agreement example:
1167  * ~~~~~~~~~~~~~{.c}
1168  * psa_drv_se_key_derivation_setup(alg, source_key. dest_key_size_bytes);
1169  * psa_drv_se_key_derivation_collateral(DHE_PUBKEY, p_pubkey, pubkey_size);
1170  * psa_drv_se_key_derivation_export(p_session_key,
1171  *                                  session_key_size,
1172  *                                  &session_key_length);
1173  * ~~~~~~~~~~~~~
1174  */
1175 /**@{*/
1176 
1177 /** \brief A function that Sets up a secure element key derivation operation by
1178  * specifying the algorithm and the source key sot
1179  *
1180  * \param[in,out] drv_context   The driver context structure.
1181  * \param[in,out] op_context    A hardware-specific structure containing any
1182  *                              context information for the implementation
1183  * \param[in] kdf_alg           The algorithm to be used for the key derivation
1184  * \param[in] source_key        The key to be used as the source material for
1185  *                              the key derivation
1186  *
1187  * \retval #PSA_SUCCESS \emptydescription
1188  */
1189 typedef psa_status_t (*psa_drv_se_key_derivation_setup_t)(psa_drv_se_context_t *drv_context,
1190                                                           void *op_context,
1191                                                           psa_algorithm_t kdf_alg,
1192                                                           psa_key_slot_number_t source_key);
1193 
1194 /** \brief A function that provides collateral (parameters) needed for a secure
1195  * element key derivation or key agreement operation
1196  *
1197  * Since many key derivation algorithms require multiple parameters, it is
1198  * expected that this function may be called multiple times for the same
1199  * operation, each with a different algorithm-specific `collateral_id`
1200  *
1201  * \param[in,out] op_context    A hardware-specific structure containing any
1202  *                              context information for the implementation
1203  * \param[in] collateral_id     An ID for the collateral being provided
1204  * \param[in] p_collateral      A buffer containing the collateral data
1205  * \param[in] collateral_size   The size in bytes of the collateral
1206  *
1207  * \retval #PSA_SUCCESS \emptydescription
1208  */
1209 typedef psa_status_t (*psa_drv_se_key_derivation_collateral_t)(void *op_context,
1210                                                                uint32_t collateral_id,
1211                                                                const uint8_t *p_collateral,
1212                                                                size_t collateral_size);
1213 
1214 /** \brief A function that performs the final secure element key derivation
1215  * step and place the generated key material in a slot
1216  *
1217  * \param[in,out] op_context    A hardware-specific structure containing any
1218  *                              context information for the implementation
1219  * \param[in] dest_key          The slot where the generated key material
1220  *                              should be placed
1221  *
1222  * \retval #PSA_SUCCESS \emptydescription
1223  */
1224 typedef psa_status_t (*psa_drv_se_key_derivation_derive_t)(void *op_context,
1225                                                            psa_key_slot_number_t dest_key);
1226 
1227 /** \brief A function that performs the final step of a secure element key
1228  * agreement and place the generated key material in a buffer
1229  *
1230  * \param[out] p_output         Buffer in which to place the generated key
1231  *                              material
1232  * \param[in] output_size       The size in bytes of `p_output`
1233  * \param[out] p_output_length  Upon success, contains the number of bytes of
1234  *                              key material placed in `p_output`
1235  *
1236  * \retval #PSA_SUCCESS \emptydescription
1237  */
1238 typedef psa_status_t (*psa_drv_se_key_derivation_export_t)(void *op_context,
1239                                                            uint8_t *p_output,
1240                                                            size_t output_size,
1241                                                            size_t *p_output_length);
1242 
1243 /**
1244  * \brief A struct containing all of the function pointers needed to for secure
1245  * element key derivation and agreement
1246  *
1247  * PSA Crypto API implementations should populate instances of the table as
1248  * appropriate upon startup.
1249  *
1250  * If one of the functions is not implemented, it should be set to NULL.
1251  */
1252 typedef struct {
1253     /** The driver-specific size of the key derivation context */
1254     size_t                           MBEDTLS_PRIVATE(context_size);
1255     /** Function that performs a key derivation setup */
1256     psa_drv_se_key_derivation_setup_t      MBEDTLS_PRIVATE(p_setup);
1257     /** Function that sets key derivation collateral */
1258     psa_drv_se_key_derivation_collateral_t MBEDTLS_PRIVATE(p_collateral);
1259     /** Function that performs a final key derivation step */
1260     psa_drv_se_key_derivation_derive_t     MBEDTLS_PRIVATE(p_derive);
1261     /** Function that performs a final key derivation or agreement and
1262      * exports the key */
1263     psa_drv_se_key_derivation_export_t     MBEDTLS_PRIVATE(p_export);
1264 } psa_drv_se_key_derivation_t;
1265 
1266 /**@}*/
1267 
1268 /** \defgroup se_registration Secure element driver registration
1269  */
1270 /**@{*/
1271 
1272 /** A structure containing pointers to all the entry points of a
1273  * secure element driver.
1274  *
1275  * Future versions of this specification may add extra substructures at
1276  * the end of this structure.
1277  */
1278 typedef struct {
1279     /** The version of the driver HAL that this driver implements.
1280      * This is a protection against loading driver binaries built against
1281      * a different version of this specification.
1282      * Use #PSA_DRV_SE_HAL_VERSION.
1283      */
1284     uint32_t MBEDTLS_PRIVATE(hal_version);
1285 
1286     /** The size of the driver's persistent data in bytes.
1287      *
1288      * This can be 0 if the driver does not need persistent data.
1289      *
1290      * See the documentation of psa_drv_se_context_t::persistent_data
1291      * for more information about why and how a driver can use
1292      * persistent data.
1293      */
1294     size_t MBEDTLS_PRIVATE(persistent_data_size);
1295 
1296     /** The driver initialization function.
1297      *
1298      * This function is called once during the initialization of the
1299      * PSA Cryptography subsystem, before any other function of the
1300      * driver is called. If this function returns a failure status,
1301      * the driver will be unusable, at least until the next system reset.
1302      *
1303      * If this field is \c NULL, it is equivalent to a function that does
1304      * nothing and returns #PSA_SUCCESS.
1305      */
1306     psa_drv_se_init_t MBEDTLS_PRIVATE(p_init);
1307 
1308     const psa_drv_se_key_management_t *MBEDTLS_PRIVATE(key_management);
1309     const psa_drv_se_mac_t *MBEDTLS_PRIVATE(mac);
1310     const psa_drv_se_cipher_t *MBEDTLS_PRIVATE(cipher);
1311     const psa_drv_se_aead_t *MBEDTLS_PRIVATE(aead);
1312     const psa_drv_se_asymmetric_t *MBEDTLS_PRIVATE(asymmetric);
1313     const psa_drv_se_key_derivation_t *MBEDTLS_PRIVATE(derivation);
1314 } psa_drv_se_t;
1315 
1316 /** The current version of the secure element driver HAL.
1317  */
1318 /* 0.0.0 patchlevel 5 */
1319 #define PSA_DRV_SE_HAL_VERSION 0x00000005
1320 
1321 /** Register an external cryptoprocessor (secure element) driver.
1322  *
1323  * This function is only intended to be used by driver code, not by
1324  * application code. In implementations with separation between the
1325  * PSA cryptography module and applications, this function should
1326  * only be available to callers that run in the same memory space as
1327  * the cryptography module, and should not be exposed to applications
1328  * running in a different memory space.
1329  *
1330  * This function may be called before psa_crypto_init(). It is
1331  * implementation-defined whether this function may be called
1332  * after psa_crypto_init().
1333  *
1334  * \note Implementations store metadata about keys including the lifetime
1335  *       value, which contains the driver's location indicator. Therefore,
1336  *       from one instantiation of the PSA Cryptography
1337  *       library to the next one, if there is a key in storage with a certain
1338  *       lifetime value, you must always register the same driver (or an
1339  *       updated version that communicates with the same secure element)
1340  *       with the same location value.
1341  *
1342  * \param location      The location value through which this driver will
1343  *                      be exposed to applications.
1344  *                      This driver will be used for all keys such that
1345  *                      `location == #PSA_KEY_LIFETIME_GET_LOCATION( lifetime )`.
1346  *                      The value #PSA_KEY_LOCATION_LOCAL_STORAGE is reserved
1347  *                      and may not be used for drivers. Implementations
1348  *                      may reserve other values.
1349  * \param[in] methods   The method table of the driver. This structure must
1350  *                      remain valid for as long as the cryptography
1351  *                      module keeps running. It is typically a global
1352  *                      constant.
1353  *
1354  * \return #PSA_SUCCESS
1355  *         The driver was successfully registered. Applications can now
1356  *         use \p location to access keys through the methods passed to
1357  *         this function.
1358  * \return #PSA_ERROR_BAD_STATE
1359  *         This function was called after the initialization of the
1360  *         cryptography module, and this implementation does not support
1361  *         driver registration at this stage.
1362  * \return #PSA_ERROR_ALREADY_EXISTS
1363  *         There is already a registered driver for this value of \p location.
1364  * \return #PSA_ERROR_INVALID_ARGUMENT
1365  *         \p location is a reserved value.
1366  * \return #PSA_ERROR_NOT_SUPPORTED
1367  *         `methods->hal_version` is not supported by this implementation.
1368  * \return #PSA_ERROR_INSUFFICIENT_MEMORY
1369  * \return #PSA_ERROR_NOT_PERMITTED
1370  * \return #PSA_ERROR_STORAGE_FAILURE
1371  * \return #PSA_ERROR_DATA_CORRUPT
1372  */
1373 psa_status_t psa_register_se_driver(
1374     psa_key_location_t location,
1375     const psa_drv_se_t *methods);
1376 
1377 /**@}*/
1378 
1379 #ifdef __cplusplus
1380 }
1381 #endif
1382 
1383 #endif /* PSA_CRYPTO_SE_DRIVER_H */
1384