1 /*
2 * Copyright (c) 2018-2023, Arm Limited. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 */
7 #include <stdbool.h>
8
9 #include "config_tfm.h"
10 #include "config_crypto_check.h"
11 #include "tfm_mbedcrypto_include.h"
12
13 #include "tfm_crypto_api.h"
14 #include "tfm_crypto_key.h"
15 #include "tfm_crypto_defs.h"
16 #include "tfm_sp_log.h"
17 #include "crypto_check_config.h"
18 #include "tfm_plat_crypto_keys.h"
19
20 #include "crypto_library.h"
21
22 #if CRYPTO_NV_SEED
23 #include "tfm_plat_crypto_nv_seed.h"
24 #endif /* CRYPTO_NV_SEED */
25
26 #ifdef CRYPTO_HW_ACCELERATOR
27 #include "crypto_hw.h"
28 #endif /* CRYPTO_HW_ACCELERATOR */
29
30 #include <string.h>
31 #include "psa/framework_feature.h"
32 #include "psa/service.h"
33 #include "psa_manifest/tfm_crypto.h"
34
35 /**
36 * \brief Aligns a value x up to an alignment a.
37 */
38 #define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1))
39
40 /**
41 * \brief Maximum alignment required by any iovec parameters to the TF-M Crypto
42 * partition.
43 */
44 #define TFM_CRYPTO_IOVEC_ALIGNMENT (4u)
45
46 #if PSA_FRAMEWORK_HAS_MM_IOVEC == 1
47 static int32_t g_client_id;
48
tfm_crypto_set_caller_id(int32_t id)49 static void tfm_crypto_set_caller_id(int32_t id)
50 {
51 g_client_id = id;
52 }
53
tfm_crypto_get_caller_id(int32_t * id)54 psa_status_t tfm_crypto_get_caller_id(int32_t *id)
55 {
56 *id = g_client_id;
57 return PSA_SUCCESS;
58 }
59
tfm_crypto_init_iovecs(const psa_msg_t * msg,psa_invec in_vec[],size_t in_len,psa_outvec out_vec[],size_t out_len)60 static psa_status_t tfm_crypto_init_iovecs(const psa_msg_t *msg,
61 psa_invec in_vec[],
62 size_t in_len,
63 psa_outvec out_vec[],
64 size_t out_len)
65 {
66 uint32_t i;
67
68 /* Map from the second element as the first is read when parsing */
69 for (i = 1; i < in_len; i++) {
70 in_vec[i].len = msg->in_size[i];
71 if (in_vec[i].len != 0) {
72 in_vec[i].base = psa_map_invec(msg->handle, i);
73 } else {
74 in_vec[i].base = NULL;
75 }
76 }
77
78 for (i = 0; i < out_len; i++) {
79 out_vec[i].len = msg->out_size[i];
80 if (out_vec[i].len != 0) {
81 out_vec[i].base = psa_map_outvec(msg->handle, i);
82 } else {
83 out_vec[i].base = NULL;
84 }
85 }
86
87 return PSA_SUCCESS;
88 }
89 #else /* PSA_FRAMEWORK_HAS_MM_IOVEC == 1 */
90 /**
91 * \brief Internal scratch used for IOVec allocations
92 *
93 */
94 static struct tfm_crypto_scratch {
95 __attribute__((__aligned__(TFM_CRYPTO_IOVEC_ALIGNMENT)))
96 uint8_t buf[CRYPTO_IOVEC_BUFFER_SIZE];
97 uint32_t alloc_index;
98 int32_t owner;
99 } scratch = {.buf = {0}, .alloc_index = 0};
100
tfm_crypto_set_scratch_owner(int32_t id)101 static psa_status_t tfm_crypto_set_scratch_owner(int32_t id)
102 {
103 scratch.owner = id;
104 return PSA_SUCCESS;
105 }
106
tfm_crypto_get_scratch_owner(int32_t * id)107 static psa_status_t tfm_crypto_get_scratch_owner(int32_t *id)
108 {
109 *id = scratch.owner;
110 return PSA_SUCCESS;
111 }
112
tfm_crypto_alloc_scratch(size_t requested_size,void ** buf)113 static psa_status_t tfm_crypto_alloc_scratch(size_t requested_size, void **buf)
114 {
115 /* Ensure alloc_index remains aligned to the required iovec alignment */
116 requested_size = ALIGN(requested_size, TFM_CRYPTO_IOVEC_ALIGNMENT);
117
118 if (requested_size > (sizeof(scratch.buf) - scratch.alloc_index)) {
119 return PSA_ERROR_INSUFFICIENT_MEMORY;
120 }
121
122 /* Compute the pointer to the allocated space */
123 *buf = (void *)&scratch.buf[scratch.alloc_index];
124
125 /* Increase the allocated size */
126 scratch.alloc_index += requested_size;
127
128 return PSA_SUCCESS;
129 }
130
tfm_crypto_clear_scratch(void)131 static void tfm_crypto_clear_scratch(void)
132 {
133 scratch.owner = 0;
134 (void)memset(scratch.buf, 0, scratch.alloc_index);
135 scratch.alloc_index = 0;
136 }
137
tfm_crypto_set_caller_id(int32_t id)138 static void tfm_crypto_set_caller_id(int32_t id)
139 {
140 /* Set the owner of the data in the scratch */
141 (void)tfm_crypto_set_scratch_owner(id);
142 }
143
tfm_crypto_get_caller_id(int32_t * id)144 psa_status_t tfm_crypto_get_caller_id(int32_t *id)
145 {
146 return tfm_crypto_get_scratch_owner(id);
147 }
148
tfm_crypto_init_iovecs(const psa_msg_t * msg,psa_invec in_vec[],size_t in_len,psa_outvec out_vec[],size_t out_len)149 static psa_status_t tfm_crypto_init_iovecs(const psa_msg_t *msg,
150 psa_invec in_vec[],
151 size_t in_len,
152 psa_outvec out_vec[],
153 size_t out_len)
154 {
155 uint32_t i;
156 void *alloc_buf_ptr = NULL;
157 psa_status_t status;
158
159 /* Alloc/read from the second element as the first is read when parsing */
160 for (i = 1; i < in_len; i++) {
161 /* Allocate necessary space in the internal scratch */
162 status = tfm_crypto_alloc_scratch(msg->in_size[i], &alloc_buf_ptr);
163 if (status != PSA_SUCCESS) {
164 tfm_crypto_clear_scratch();
165 return status;
166 }
167 /* Read from the IPC framework inputs into the scratch */
168 in_vec[i].len =
169 psa_read(msg->handle, i, alloc_buf_ptr, msg->in_size[i]);
170 /* Populate the fields of the input to the secure function */
171 in_vec[i].base = alloc_buf_ptr;
172 }
173
174 for (i = 0; i < out_len; i++) {
175 /* Allocate necessary space for the output in the internal scratch */
176 status = tfm_crypto_alloc_scratch(msg->out_size[i], &alloc_buf_ptr);
177 if (status != PSA_SUCCESS) {
178 tfm_crypto_clear_scratch();
179 return status;
180 }
181 /* Populate the fields of the output to the secure function */
182 out_vec[i].base = alloc_buf_ptr;
183 out_vec[i].len = msg->out_size[i];
184 }
185
186 return PSA_SUCCESS;
187 }
188 #endif /* PSA_FRAMEWORK_HAS_MM_IOVEC == 1 */
189
tfm_crypto_call_srv(const psa_msg_t * msg)190 static psa_status_t tfm_crypto_call_srv(const psa_msg_t *msg)
191 {
192 psa_status_t status = PSA_SUCCESS;
193 size_t in_len = PSA_MAX_IOVEC, out_len = PSA_MAX_IOVEC, i;
194 psa_invec in_vec[PSA_MAX_IOVEC] = { {NULL, 0} };
195 psa_outvec out_vec[PSA_MAX_IOVEC] = { {NULL, 0} };
196 struct tfm_crypto_pack_iovec iov = {0};
197
198 /* Check the number of in_vec filled */
199 while ((in_len > 0) && (msg->in_size[in_len - 1] == 0)) {
200 in_len--;
201 }
202
203 /* Check the number of out_vec filled */
204 while ((out_len > 0) && (msg->out_size[out_len - 1] == 0)) {
205 out_len--;
206 }
207
208 /* There will always be a tfm_crypto_pack_iovec in the first iovec */
209 if (in_len < 1) {
210 return PSA_ERROR_GENERIC_ERROR;
211 }
212
213 if (psa_read(msg->handle, 0, &iov, sizeof(iov)) != sizeof(iov)) {
214 return PSA_ERROR_GENERIC_ERROR;
215 }
216
217 /* Initialise the first iovec with the IOV read when parsing */
218 in_vec[0].base = &iov;
219 in_vec[0].len = sizeof(struct tfm_crypto_pack_iovec);
220
221 status = tfm_crypto_init_iovecs(msg, in_vec, in_len, out_vec, out_len);
222 if (status != PSA_SUCCESS) {
223 return status;
224 }
225
226 tfm_crypto_set_caller_id(msg->client_id);
227
228 /* Call the dispatcher to the functions that implement the PSA Crypto API */
229 status = tfm_crypto_api_dispatcher(in_vec, in_len, out_vec, out_len);
230
231 #if PSA_FRAMEWORK_HAS_MM_IOVEC == 1
232 for (i = 0; i < out_len; i++) {
233 if (out_vec[i].base != NULL) {
234 psa_unmap_outvec(msg->handle, i, out_vec[i].len);
235 }
236 }
237 #else
238 /* Write into the IPC framework outputs from the scratch */
239 for (i = 0; i < out_len; i++) {
240 psa_write(msg->handle, i, out_vec[i].base, out_vec[i].len);
241 }
242
243 /* Clear the allocated internal scratch before returning */
244 tfm_crypto_clear_scratch();
245 #endif
246
247 return status;
248 }
249
tfm_crypto_engine_init(void)250 static psa_status_t tfm_crypto_engine_init(void)
251 {
252 psa_status_t status = PSA_ERROR_GENERIC_ERROR;
253 char *library_info = NULL;
254
255 #if CRYPTO_NV_SEED
256 LOG_INFFMT("[INF][Crypto] ");
257 LOG_INFFMT("Provisioning entropy seed... ");
258 if (tfm_plat_crypto_provision_entropy_seed() != TFM_CRYPTO_NV_SEED_SUCCESS) {
259 return PSA_ERROR_GENERIC_ERROR;
260 }
261 LOG_INFFMT("\033[0;32mcomplete.\033[0m\r\n");
262 #endif /* CRYPTO_NV_SEED */
263
264 /* Initialise the underlying Cryptographic library that provides the
265 * PSA Crypto core layer
266 */
267 library_info = tfm_crypto_library_get_info();
268 LOG_DBGFMT("[DBG][Crypto] Initialising \033[0;32m%s\033[0m as PSA Crypto backend library... ", library_info);
269 status = tfm_crypto_core_library_init();
270 if (status != PSA_SUCCESS) {
271 return status;
272 }
273 LOG_DBGFMT("\033[0;32mcomplete.\033[0m\r\n");
274
275 /* Initialise the crypto accelerator if one is enabled. If the driver API is
276 * the one defined by the PSA Unified Driver interface, the initialisation is
277 * performed directly through psa_crypto_init() while the PSA subsystem is
278 * initialised
279 */
280 #if defined(CRYPTO_HW_ACCELERATOR) && defined(LEGACY_DRIVER_API_ENABLED)
281 LOG_INFFMT("[INF][Crypto] Initialising HW accelerator... ");
282 if (crypto_hw_accelerator_init() != 0) {
283 return PSA_ERROR_HARDWARE_FAILURE;
284 }
285 LOG_INFFMT("\033[0;32mcomplete.\033[0m\r\n");
286 #endif /* CRYPTO_HW_ACCELERATOR */
287
288 /* Perform the initialisation of the PSA subsystem available through the chosen
289 * Cryptographic library. If a driver is built using the PSA Driver interface,
290 * the function below will perform also the same operations done by the HAL init
291 * crypto_hw_accelerator_init()
292 */
293 return psa_crypto_init();
294 }
295
tfm_crypto_module_init(void)296 static psa_status_t tfm_crypto_module_init(void)
297 {
298 /* Init the Alloc module */
299 return tfm_crypto_init_alloc();
300 }
301
tfm_crypto_init(void)302 psa_status_t tfm_crypto_init(void)
303 {
304 psa_status_t status;
305
306 /* Initialise other modules of the service */
307 status = tfm_crypto_module_init();
308 if (status != PSA_SUCCESS) {
309 return status;
310 }
311
312 /* Initialise the engine layer */
313 status = tfm_crypto_engine_init();
314 if (status != PSA_SUCCESS) {
315 return status;
316 }
317
318 return PSA_SUCCESS;
319 }
320
tfm_crypto_sfn(const psa_msg_t * msg)321 psa_status_t tfm_crypto_sfn(const psa_msg_t *msg)
322 {
323 /* Process the message type */
324 switch (msg->type) {
325 case PSA_IPC_CALL:
326 return tfm_crypto_call_srv(msg);
327 default:
328 return PSA_ERROR_NOT_SUPPORTED;
329 }
330
331 return PSA_ERROR_GENERIC_ERROR;
332 }
333
tfm_crypto_api_dispatcher(psa_invec in_vec[],size_t in_len,psa_outvec out_vec[],size_t out_len)334 psa_status_t tfm_crypto_api_dispatcher(psa_invec in_vec[],
335 size_t in_len,
336 psa_outvec out_vec[],
337 size_t out_len)
338 {
339 psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
340 const struct tfm_crypto_pack_iovec *iov = in_vec[0].base;
341 int32_t caller_id = 0;
342 struct tfm_crypto_key_id_s encoded_key = TFM_CRYPTO_KEY_ID_S_INIT;
343 bool is_key_required = false;
344 enum tfm_crypto_group_id group_id;
345
346 if (in_vec[0].len != sizeof(struct tfm_crypto_pack_iovec)) {
347 return PSA_ERROR_PROGRAMMER_ERROR;
348 }
349
350 group_id = TFM_CRYPTO_GET_GROUP_ID(iov->function_id);
351
352 is_key_required = !((group_id == TFM_CRYPTO_GROUP_ID_HASH) ||
353 (group_id == TFM_CRYPTO_GROUP_ID_RANDOM));
354
355 if (is_key_required) {
356 status = tfm_crypto_get_caller_id(&caller_id);
357 if (status != PSA_SUCCESS) {
358 return status;
359 }
360 /* The caller_id being set in the owner field is the partition ID
361 * of the calling partition
362 */
363 encoded_key.key_id = iov->key_id;
364 encoded_key.owner = caller_id;
365 }
366
367 /* Dispatch to each sub-module based on the Group ID */
368 switch (group_id) {
369 case TFM_CRYPTO_GROUP_ID_KEY_MANAGEMENT:
370 return tfm_crypto_key_management_interface(in_vec, out_vec,
371 &encoded_key);
372 case TFM_CRYPTO_GROUP_ID_HASH:
373 return tfm_crypto_hash_interface(in_vec, out_vec);
374 case TFM_CRYPTO_GROUP_ID_MAC:
375 return tfm_crypto_mac_interface(in_vec, out_vec, &encoded_key);
376 case TFM_CRYPTO_GROUP_ID_CIPHER:
377 return tfm_crypto_cipher_interface(in_vec, out_vec, &encoded_key);
378 case TFM_CRYPTO_GROUP_ID_AEAD:
379 return tfm_crypto_aead_interface(in_vec, out_vec, &encoded_key);
380 case TFM_CRYPTO_GROUP_ID_ASYM_SIGN:
381 return tfm_crypto_asymmetric_sign_interface(in_vec, out_vec,
382 &encoded_key);
383 case TFM_CRYPTO_GROUP_ID_ASYM_ENCRYPT:
384 return tfm_crypto_asymmetric_encrypt_interface(in_vec, out_vec,
385 &encoded_key);
386 case TFM_CRYPTO_GROUP_ID_KEY_DERIVATION:
387 return tfm_crypto_key_derivation_interface(in_vec, out_vec,
388 &encoded_key);
389 case TFM_CRYPTO_GROUP_ID_RANDOM:
390 return tfm_crypto_random_interface(in_vec, out_vec);
391 default:
392 LOG_ERRFMT("[ERR][Crypto] Unsupported request!\r\n");
393 return PSA_ERROR_NOT_SUPPORTED;
394 }
395
396 return PSA_ERROR_NOT_SUPPORTED;
397 }
398