1 /**************************************************************************//**
2  * @file     cmsis_gcc.h
3  * @brief    CMSIS compiler GCC header file
4  * @version  V5.3.0
5  * @date     26. March 2020
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2009-2020 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 #ifndef __CMSIS_GCC_H
26 #define __CMSIS_GCC_H
27 
28 /* ignore some GCC warnings */
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wsign-conversion"
31 #pragma GCC diagnostic ignored "-Wconversion"
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33 
34 /* Fallback for __has_builtin */
35 #ifndef __has_builtin
36   #define __has_builtin(x) (0)
37 #endif
38 
39 /* CMSIS compiler specific defines */
40 #ifndef   __ASM
41   #define __ASM                                  __asm
42 #endif
43 #ifndef   __INLINE
44   #define __INLINE                               inline
45 #endif
46 #ifndef   __STATIC_INLINE
47   #define __STATIC_INLINE                        static inline
48 #endif
49 #ifndef   __STATIC_FORCEINLINE
50   #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static inline
51 #endif
52 #ifndef   __NO_RETURN
53   #define __NO_RETURN                            __attribute__((__noreturn__))
54 #endif
55 #ifndef   __USED
56   #define __USED                                 __attribute__((used))
57 #endif
58 #ifndef   __WEAK
59   #define __WEAK                                 __attribute__((weak))
60 #endif
61 #ifndef   __PACKED
62   #define __PACKED                               __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef   __PACKED_STRUCT
65   #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef   __PACKED_UNION
68   #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
69 #endif
70 #ifndef   __UNALIGNED_UINT32        /* deprecated */
71   #pragma GCC diagnostic push
72   #pragma GCC diagnostic ignored "-Wpacked"
73   #pragma GCC diagnostic ignored "-Wattributes"
74   struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75   #pragma GCC diagnostic pop
76   #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
77 #endif
78 #ifndef   __UNALIGNED_UINT16_WRITE
79   #pragma GCC diagnostic push
80   #pragma GCC diagnostic ignored "-Wpacked"
81   #pragma GCC diagnostic ignored "-Wattributes"
82   __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83   #pragma GCC diagnostic pop
84   #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85 #endif
86 #ifndef   __UNALIGNED_UINT16_READ
87   #pragma GCC diagnostic push
88   #pragma GCC diagnostic ignored "-Wpacked"
89   #pragma GCC diagnostic ignored "-Wattributes"
90   __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91   #pragma GCC diagnostic pop
92   #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93 #endif
94 #ifndef   __UNALIGNED_UINT32_WRITE
95   #pragma GCC diagnostic push
96   #pragma GCC diagnostic ignored "-Wpacked"
97   #pragma GCC diagnostic ignored "-Wattributes"
98   __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99   #pragma GCC diagnostic pop
100   #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101 #endif
102 #ifndef   __UNALIGNED_UINT32_READ
103   #pragma GCC diagnostic push
104   #pragma GCC diagnostic ignored "-Wpacked"
105   #pragma GCC diagnostic ignored "-Wattributes"
106   __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107   #pragma GCC diagnostic pop
108   #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109 #endif
110 #ifndef   __ALIGNED
111   #define __ALIGNED(x)                           __attribute__((aligned(x)))
112 #endif
113 #ifndef   __RESTRICT
114   #define __RESTRICT                             __restrict
115 #endif
116 #ifndef   __COMPILER_BARRIER
117   #define __COMPILER_BARRIER()                   __ASM volatile("":::"memory")
118 #endif
119 
120 /* #########################  Startup and Lowlevel Init  ######################## */
121 
122 #ifndef __PROGRAM_START
123 
124 /**
125   \brief   Initializes data and bss sections
126   \details This default implementations initialized all data and additional bss
127            sections relying on .copy.table and .zero.table specified properly
128            in the used linker script.
129 
130  */
__cmsis_start(void)131 __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
132 {
133   extern void _start(void) __NO_RETURN;
134 
135   typedef struct {
136     uint32_t const* src;
137     uint32_t* dest;
138     uint32_t  wlen;
139   } __copy_table_t;
140 
141   typedef struct {
142     uint32_t* dest;
143     uint32_t  wlen;
144   } __zero_table_t;
145 
146   extern const __copy_table_t __copy_table_start__;
147   extern const __copy_table_t __copy_table_end__;
148   extern const __zero_table_t __zero_table_start__;
149   extern const __zero_table_t __zero_table_end__;
150 
151   for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
152     for(uint32_t i=0u; i<pTable->wlen; ++i) {
153       pTable->dest[i] = pTable->src[i];
154     }
155   }
156 
157   for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
158     for(uint32_t i=0u; i<pTable->wlen; ++i) {
159       pTable->dest[i] = 0u;
160     }
161   }
162 
163   _start();
164 }
165 
166 #define __PROGRAM_START           __cmsis_start
167 #endif
168 
169 #ifndef __INITIAL_SP
170 #define __INITIAL_SP              __StackTop
171 #endif
172 
173 #ifndef __STACK_LIMIT
174 #define __STACK_LIMIT             __StackLimit
175 #endif
176 
177 #ifndef __VECTOR_TABLE
178 #define __VECTOR_TABLE            __Vectors
179 #endif
180 
181 #ifndef __VECTOR_TABLE_ATTRIBUTE
182 #define __VECTOR_TABLE_ATTRIBUTE  __attribute__((used, section(".vectors")))
183 #endif
184 
185 /* ###########################  Core Function Access  ########################### */
186 /** \ingroup  CMSIS_Core_FunctionInterface
187     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
188   @{
189  */
190 
191 /**
192   \brief   Enable IRQ Interrupts
193   \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
194            Can only be executed in Privileged modes.
195  */
__enable_irq(void)196 __STATIC_FORCEINLINE void __enable_irq(void)
197 {
198   __ASM volatile ("cpsie i" : : : "memory");
199 }
200 
201 
202 /**
203   \brief   Disable IRQ Interrupts
204   \details Disables IRQ interrupts by setting the I-bit in the CPSR.
205            Can only be executed in Privileged modes.
206  */
__disable_irq(void)207 __STATIC_FORCEINLINE void __disable_irq(void)
208 {
209   __ASM volatile ("cpsid i" : : : "memory");
210 }
211 
212 
213 /**
214   \brief   Get Control Register
215   \details Returns the content of the Control Register.
216   \return               Control Register value
217  */
__get_CONTROL(void)218 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
219 {
220   uint32_t result;
221 
222   __ASM volatile ("MRS %0, control" : "=r" (result) );
223   return(result);
224 }
225 
226 
227 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
228 /**
229   \brief   Get Control Register (non-secure)
230   \details Returns the content of the non-secure Control Register when in secure mode.
231   \return               non-secure Control Register value
232  */
__TZ_get_CONTROL_NS(void)233 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
234 {
235   uint32_t result;
236 
237   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
238   return(result);
239 }
240 #endif
241 
242 
243 /**
244   \brief   Set Control Register
245   \details Writes the given value to the Control Register.
246   \param [in]    control  Control Register value to set
247  */
__set_CONTROL(uint32_t control)248 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
249 {
250   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
251 }
252 
253 
254 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
255 /**
256   \brief   Set Control Register (non-secure)
257   \details Writes the given value to the non-secure Control Register when in secure state.
258   \param [in]    control  Control Register value to set
259  */
__TZ_set_CONTROL_NS(uint32_t control)260 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
261 {
262   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
263 }
264 #endif
265 
266 
267 /**
268   \brief   Get IPSR Register
269   \details Returns the content of the IPSR Register.
270   \return               IPSR Register value
271  */
__get_IPSR(void)272 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
273 {
274   uint32_t result;
275 
276   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
277   return(result);
278 }
279 
280 
281 /**
282   \brief   Get APSR Register
283   \details Returns the content of the APSR Register.
284   \return               APSR Register value
285  */
__get_APSR(void)286 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
287 {
288   uint32_t result;
289 
290   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
291   return(result);
292 }
293 
294 
295 /**
296   \brief   Get xPSR Register
297   \details Returns the content of the xPSR Register.
298   \return               xPSR Register value
299  */
__get_xPSR(void)300 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
301 {
302   uint32_t result;
303 
304   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
305   return(result);
306 }
307 
308 
309 /**
310   \brief   Get Process Stack Pointer
311   \details Returns the current value of the Process Stack Pointer (PSP).
312   \return               PSP Register value
313  */
__get_PSP(void)314 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
315 {
316   uint32_t result;
317 
318   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
319   return(result);
320 }
321 
322 
323 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
324 /**
325   \brief   Get Process Stack Pointer (non-secure)
326   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
327   \return               PSP Register value
328  */
__TZ_get_PSP_NS(void)329 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
330 {
331   uint32_t result;
332 
333   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
334   return(result);
335 }
336 #endif
337 
338 
339 /**
340   \brief   Set Process Stack Pointer
341   \details Assigns the given value to the Process Stack Pointer (PSP).
342   \param [in]    topOfProcStack  Process Stack Pointer value to set
343  */
__set_PSP(uint32_t topOfProcStack)344 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
345 {
346   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
347 }
348 
349 
350 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
351 /**
352   \brief   Set Process Stack Pointer (non-secure)
353   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
354   \param [in]    topOfProcStack  Process Stack Pointer value to set
355  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)356 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
357 {
358   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
359 }
360 #endif
361 
362 
363 /**
364   \brief   Get Main Stack Pointer
365   \details Returns the current value of the Main Stack Pointer (MSP).
366   \return               MSP Register value
367  */
__get_MSP(void)368 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
369 {
370   uint32_t result;
371 
372   __ASM volatile ("MRS %0, msp" : "=r" (result) );
373   return(result);
374 }
375 
376 
377 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
378 /**
379   \brief   Get Main Stack Pointer (non-secure)
380   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
381   \return               MSP Register value
382  */
__TZ_get_MSP_NS(void)383 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
384 {
385   uint32_t result;
386 
387   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
388   return(result);
389 }
390 #endif
391 
392 
393 /**
394   \brief   Set Main Stack Pointer
395   \details Assigns the given value to the Main Stack Pointer (MSP).
396   \param [in]    topOfMainStack  Main Stack Pointer value to set
397  */
__set_MSP(uint32_t topOfMainStack)398 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
399 {
400   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
401 }
402 
403 
404 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
405 /**
406   \brief   Set Main Stack Pointer (non-secure)
407   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
408   \param [in]    topOfMainStack  Main Stack Pointer value to set
409  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)410 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
411 {
412   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
413 }
414 #endif
415 
416 
417 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
418 /**
419   \brief   Get Stack Pointer (non-secure)
420   \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
421   \return               SP Register value
422  */
__TZ_get_SP_NS(void)423 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
424 {
425   uint32_t result;
426 
427   __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
428   return(result);
429 }
430 
431 
432 /**
433   \brief   Set Stack Pointer (non-secure)
434   \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
435   \param [in]    topOfStack  Stack Pointer value to set
436  */
__TZ_set_SP_NS(uint32_t topOfStack)437 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
438 {
439   __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
440 }
441 #endif
442 
443 
444 /**
445   \brief   Get Priority Mask
446   \details Returns the current state of the priority mask bit from the Priority Mask Register.
447   \return               Priority Mask value
448  */
__get_PRIMASK(void)449 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
450 {
451   uint32_t result;
452 
453   __ASM volatile ("MRS %0, primask" : "=r" (result) );
454   return(result);
455 }
456 
457 
458 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
459 /**
460   \brief   Get Priority Mask (non-secure)
461   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
462   \return               Priority Mask value
463  */
__TZ_get_PRIMASK_NS(void)464 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
465 {
466   uint32_t result;
467 
468   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
469   return(result);
470 }
471 #endif
472 
473 
474 /**
475   \brief   Set Priority Mask
476   \details Assigns the given value to the Priority Mask Register.
477   \param [in]    priMask  Priority Mask
478  */
__set_PRIMASK(uint32_t priMask)479 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
480 {
481   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
482 }
483 
484 
485 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
486 /**
487   \brief   Set Priority Mask (non-secure)
488   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
489   \param [in]    priMask  Priority Mask
490  */
__TZ_set_PRIMASK_NS(uint32_t priMask)491 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
492 {
493   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
494 }
495 #endif
496 
497 
498 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
499      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
500      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
501 /**
502   \brief   Enable FIQ
503   \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
504            Can only be executed in Privileged modes.
505  */
__enable_fault_irq(void)506 __STATIC_FORCEINLINE void __enable_fault_irq(void)
507 {
508   __ASM volatile ("cpsie f" : : : "memory");
509 }
510 
511 
512 /**
513   \brief   Disable FIQ
514   \details Disables FIQ interrupts by setting the F-bit in the CPSR.
515            Can only be executed in Privileged modes.
516  */
__disable_fault_irq(void)517 __STATIC_FORCEINLINE void __disable_fault_irq(void)
518 {
519   __ASM volatile ("cpsid f" : : : "memory");
520 }
521 
522 
523 /**
524   \brief   Get Base Priority
525   \details Returns the current value of the Base Priority register.
526   \return               Base Priority register value
527  */
__get_BASEPRI(void)528 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
529 {
530   uint32_t result;
531 
532   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
533   return(result);
534 }
535 
536 
537 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
538 /**
539   \brief   Get Base Priority (non-secure)
540   \details Returns the current value of the non-secure Base Priority register when in secure state.
541   \return               Base Priority register value
542  */
__TZ_get_BASEPRI_NS(void)543 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
544 {
545   uint32_t result;
546 
547   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
548   return(result);
549 }
550 #endif
551 
552 
553 /**
554   \brief   Set Base Priority
555   \details Assigns the given value to the Base Priority register.
556   \param [in]    basePri  Base Priority value to set
557  */
__set_BASEPRI(uint32_t basePri)558 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
559 {
560   __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
561 }
562 
563 
564 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
565 /**
566   \brief   Set Base Priority (non-secure)
567   \details Assigns the given value to the non-secure Base Priority register when in secure state.
568   \param [in]    basePri  Base Priority value to set
569  */
__TZ_set_BASEPRI_NS(uint32_t basePri)570 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
571 {
572   __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
573 }
574 #endif
575 
576 
577 /**
578   \brief   Set Base Priority with condition
579   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
580            or the new value increases the BASEPRI priority level.
581   \param [in]    basePri  Base Priority value to set
582  */
__set_BASEPRI_MAX(uint32_t basePri)583 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
584 {
585   __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
586 }
587 
588 
589 /**
590   \brief   Get Fault Mask
591   \details Returns the current value of the Fault Mask register.
592   \return               Fault Mask register value
593  */
__get_FAULTMASK(void)594 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
595 {
596   uint32_t result;
597 
598   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
599   return(result);
600 }
601 
602 
603 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
604 /**
605   \brief   Get Fault Mask (non-secure)
606   \details Returns the current value of the non-secure Fault Mask register when in secure state.
607   \return               Fault Mask register value
608  */
__TZ_get_FAULTMASK_NS(void)609 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
610 {
611   uint32_t result;
612 
613   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
614   return(result);
615 }
616 #endif
617 
618 
619 /**
620   \brief   Set Fault Mask
621   \details Assigns the given value to the Fault Mask register.
622   \param [in]    faultMask  Fault Mask value to set
623  */
__set_FAULTMASK(uint32_t faultMask)624 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
625 {
626   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
627 }
628 
629 
630 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
631 /**
632   \brief   Set Fault Mask (non-secure)
633   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
634   \param [in]    faultMask  Fault Mask value to set
635  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)636 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
637 {
638   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
639 }
640 #endif
641 
642 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
643            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
644            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
645 
646 
647 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
648      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
649 
650 /**
651   \brief   Get Process Stack Pointer Limit
652   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
653   Stack Pointer Limit register hence zero is returned always in non-secure
654   mode.
655 
656   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
657   \return               PSPLIM Register value
658  */
__get_PSPLIM(void)659 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
660 {
661 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
662     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
663     // without main extensions, the non-secure PSPLIM is RAZ/WI
664   return 0U;
665 #else
666   uint32_t result;
667   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
668   return result;
669 #endif
670 }
671 
672 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
673 /**
674   \brief   Get Process Stack Pointer Limit (non-secure)
675   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
676   Stack Pointer Limit register hence zero is returned always.
677 
678   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
679   \return               PSPLIM Register value
680  */
__TZ_get_PSPLIM_NS(void)681 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
682 {
683 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
684   // without main extensions, the non-secure PSPLIM is RAZ/WI
685   return 0U;
686 #else
687   uint32_t result;
688   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
689   return result;
690 #endif
691 }
692 #endif
693 
694 
695 /**
696   \brief   Set Process Stack Pointer Limit
697   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
698   Stack Pointer Limit register hence the write is silently ignored in non-secure
699   mode.
700 
701   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
702   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
703  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)704 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
705 {
706 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
707     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
708   // without main extensions, the non-secure PSPLIM is RAZ/WI
709   (void)ProcStackPtrLimit;
710 #else
711   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
712 #endif
713 }
714 
715 
716 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
717 /**
718   \brief   Set Process Stack Pointer (non-secure)
719   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
720   Stack Pointer Limit register hence the write is silently ignored.
721 
722   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
723   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
724  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)725 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
726 {
727 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
728   // without main extensions, the non-secure PSPLIM is RAZ/WI
729   (void)ProcStackPtrLimit;
730 #else
731   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
732 #endif
733 }
734 #endif
735 
736 
737 /**
738   \brief   Get Main Stack Pointer Limit
739   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
740   Stack Pointer Limit register hence zero is returned always in non-secure
741   mode.
742 
743   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
744   \return               MSPLIM Register value
745  */
__get_MSPLIM(void)746 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
747 {
748 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
749     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
750   // without main extensions, the non-secure MSPLIM is RAZ/WI
751   return 0U;
752 #else
753   uint32_t result;
754   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
755   return result;
756 #endif
757 }
758 
759 
760 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
761 /**
762   \brief   Get Main Stack Pointer Limit (non-secure)
763   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
764   Stack Pointer Limit register hence zero is returned always.
765 
766   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
767   \return               MSPLIM Register value
768  */
__TZ_get_MSPLIM_NS(void)769 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
770 {
771 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
772   // without main extensions, the non-secure MSPLIM is RAZ/WI
773   return 0U;
774 #else
775   uint32_t result;
776   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
777   return result;
778 #endif
779 }
780 #endif
781 
782 
783 /**
784   \brief   Set Main Stack Pointer Limit
785   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
786   Stack Pointer Limit register hence the write is silently ignored in non-secure
787   mode.
788 
789   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
790   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
791  */
__set_MSPLIM(uint32_t MainStackPtrLimit)792 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
793 {
794 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
795     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
796   // without main extensions, the non-secure MSPLIM is RAZ/WI
797   (void)MainStackPtrLimit;
798 #else
799   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
800 #endif
801 }
802 
803 
804 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
805 /**
806   \brief   Set Main Stack Pointer Limit (non-secure)
807   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
808   Stack Pointer Limit register hence the write is silently ignored.
809 
810   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
811   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
812  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)813 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
814 {
815 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
816   // without main extensions, the non-secure MSPLIM is RAZ/WI
817   (void)MainStackPtrLimit;
818 #else
819   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
820 #endif
821 }
822 #endif
823 
824 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
825            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
826 
827 
828 /**
829   \brief   Get FPSCR
830   \details Returns the current value of the Floating Point Status/Control register.
831   \return               Floating Point Status/Control register value
832  */
__get_FPSCR(void)833 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
834 {
835 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
836      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
837 #if __has_builtin(__builtin_arm_get_fpscr)
838 // Re-enable using built-in when GCC has been fixed
839 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
840   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
841   return __builtin_arm_get_fpscr();
842 #else
843   uint32_t result;
844 
845   __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
846   return(result);
847 #endif
848 #else
849   return(0U);
850 #endif
851 }
852 
853 
854 /**
855   \brief   Set FPSCR
856   \details Assigns the given value to the Floating Point Status/Control register.
857   \param [in]    fpscr  Floating Point Status/Control value to set
858  */
__set_FPSCR(uint32_t fpscr)859 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
860 {
861 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
862      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
863 #if __has_builtin(__builtin_arm_set_fpscr)
864 // Re-enable using built-in when GCC has been fixed
865 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
866   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
867   __builtin_arm_set_fpscr(fpscr);
868 #else
869   __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
870 #endif
871 #else
872   (void)fpscr;
873 #endif
874 }
875 
876 
877 /*@} end of CMSIS_Core_RegAccFunctions */
878 
879 
880 /* ##########################  Core Instruction Access  ######################### */
881 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
882   Access to dedicated instructions
883   @{
884 */
885 
886 /* Define macros for porting to both thumb1 and thumb2.
887  * For thumb1, use low register (r0-r7), specified by constraint "l"
888  * Otherwise, use general registers, specified by constraint "r" */
889 #if defined (__thumb__) && !defined (__thumb2__)
890 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
891 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
892 #define __CMSIS_GCC_USE_REG(r) "l" (r)
893 #else
894 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
895 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
896 #define __CMSIS_GCC_USE_REG(r) "r" (r)
897 #endif
898 
899 /**
900   \brief   No Operation
901   \details No Operation does nothing. This instruction can be used for code alignment purposes.
902  */
903 #define __NOP()                             __ASM volatile ("nop")
904 
905 /**
906   \brief   Wait For Interrupt
907   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
908  */
909 #define __WFI()                             __ASM volatile ("wfi":::"memory")
910 
911 
912 /**
913   \brief   Wait For Event
914   \details Wait For Event is a hint instruction that permits the processor to enter
915            a low-power state until one of a number of events occurs.
916  */
917 #define __WFE()                             __ASM volatile ("wfe":::"memory")
918 
919 
920 /**
921   \brief   Send Event
922   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
923  */
924 #define __SEV()                             __ASM volatile ("sev")
925 
926 
927 /**
928   \brief   Instruction Synchronization Barrier
929   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
930            so that all instructions following the ISB are fetched from cache or memory,
931            after the instruction has been completed.
932  */
__ISB(void)933 __STATIC_FORCEINLINE void __ISB(void)
934 {
935   __ASM volatile ("isb 0xF":::"memory");
936 }
937 
938 
939 /**
940   \brief   Data Synchronization Barrier
941   \details Acts as a special kind of Data Memory Barrier.
942            It completes when all explicit memory accesses before this instruction complete.
943  */
__DSB(void)944 __STATIC_FORCEINLINE void __DSB(void)
945 {
946   __ASM volatile ("dsb 0xF":::"memory");
947 }
948 
949 
950 /**
951   \brief   Data Memory Barrier
952   \details Ensures the apparent order of the explicit memory operations before
953            and after the instruction, without ensuring their completion.
954  */
__DMB(void)955 __STATIC_FORCEINLINE void __DMB(void)
956 {
957   __ASM volatile ("dmb 0xF":::"memory");
958 }
959 
960 
961 /**
962   \brief   Reverse byte order (32 bit)
963   \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
964   \param [in]    value  Value to reverse
965   \return               Reversed value
966  */
__REV(uint32_t value)967 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
968 {
969 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
970   return __builtin_bswap32(value);
971 #else
972   uint32_t result;
973 
974   __ASM ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
975   return result;
976 #endif
977 }
978 
979 
980 /**
981   \brief   Reverse byte order (16 bit)
982   \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
983   \param [in]    value  Value to reverse
984   \return               Reversed value
985  */
__REV16(uint32_t value)986 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
987 {
988   uint32_t result;
989 
990   __ASM ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
991   return result;
992 }
993 
994 
995 /**
996   \brief   Reverse byte order (16 bit)
997   \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
998   \param [in]    value  Value to reverse
999   \return               Reversed value
1000  */
__REVSH(int16_t value)1001 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
1002 {
1003 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1004   return (int16_t)__builtin_bswap16(value);
1005 #else
1006   int16_t result;
1007 
1008   __ASM ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1009   return result;
1010 #endif
1011 }
1012 
1013 
1014 /**
1015   \brief   Rotate Right in unsigned value (32 bit)
1016   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
1017   \param [in]    op1  Value to rotate
1018   \param [in]    op2  Number of Bits to rotate
1019   \return               Rotated value
1020  */
__ROR(uint32_t op1,uint32_t op2)1021 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
1022 {
1023   op2 %= 32U;
1024   if (op2 == 0U)
1025   {
1026     return op1;
1027   }
1028   return (op1 >> op2) | (op1 << (32U - op2));
1029 }
1030 
1031 
1032 /**
1033   \brief   Breakpoint
1034   \details Causes the processor to enter Debug state.
1035            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
1036   \param [in]    value  is ignored by the processor.
1037                  If required, a debugger can use it to store additional information about the breakpoint.
1038  */
1039 #define __BKPT(value)                       __ASM volatile ("bkpt "#value)
1040 
1041 
1042 /**
1043   \brief   Reverse bit order of value
1044   \details Reverses the bit order of the given value.
1045   \param [in]    value  Value to reverse
1046   \return               Reversed value
1047  */
__RBIT(uint32_t value)1048 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
1049 {
1050   uint32_t result;
1051 
1052 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1053      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1054      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1055    __ASM ("rbit %0, %1" : "=r" (result) : "r" (value) );
1056 #else
1057   uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
1058 
1059   result = value;                      /* r will be reversed bits of v; first get LSB of v */
1060   for (value >>= 1U; value != 0U; value >>= 1U)
1061   {
1062     result <<= 1U;
1063     result |= value & 1U;
1064     s--;
1065   }
1066   result <<= s;                        /* shift when v's highest bits are zero */
1067 #endif
1068   return result;
1069 }
1070 
1071 
1072 /**
1073   \brief   Count leading zeros
1074   \details Counts the number of leading zeros of a data value.
1075   \param [in]  value  Value to count the leading zeros
1076   \return             number of leading zeros in value
1077  */
__CLZ(uint32_t value)1078 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
1079 {
1080   /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
1081      __builtin_clz(0) is undefined behaviour, so handle this case specially.
1082      This guarantees ARM-compatible results if happening to compile on a non-ARM
1083      target, and ensures the compiler doesn't decide to activate any
1084      optimisations using the logic "value was passed to __builtin_clz, so it
1085      is non-zero".
1086      ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
1087      single CLZ instruction.
1088    */
1089   if (value == 0U)
1090   {
1091     return 32U;
1092   }
1093   return __builtin_clz(value);
1094 }
1095 
1096 
1097 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1098      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1099      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1100      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1101 /**
1102   \brief   LDR Exclusive (8 bit)
1103   \details Executes a exclusive LDR instruction for 8 bit value.
1104   \param [in]    ptr  Pointer to data
1105   \return             value of type uint8_t at (*ptr)
1106  */
__LDREXB(volatile uint8_t * addr)1107 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
1108 {
1109     uint32_t result;
1110 
1111 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1112    __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
1113 #else
1114     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1115        accepted by assembler. So has to use following less efficient pattern.
1116     */
1117    __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1118 #endif
1119    return ((uint8_t) result);    /* Add explicit type cast here */
1120 }
1121 
1122 
1123 /**
1124   \brief   LDR Exclusive (16 bit)
1125   \details Executes a exclusive LDR instruction for 16 bit values.
1126   \param [in]    ptr  Pointer to data
1127   \return        value of type uint16_t at (*ptr)
1128  */
__LDREXH(volatile uint16_t * addr)1129 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
1130 {
1131     uint32_t result;
1132 
1133 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1134    __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
1135 #else
1136     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1137        accepted by assembler. So has to use following less efficient pattern.
1138     */
1139    __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1140 #endif
1141    return ((uint16_t) result);    /* Add explicit type cast here */
1142 }
1143 
1144 
1145 /**
1146   \brief   LDR Exclusive (32 bit)
1147   \details Executes a exclusive LDR instruction for 32 bit values.
1148   \param [in]    ptr  Pointer to data
1149   \return        value of type uint32_t at (*ptr)
1150  */
__LDREXW(volatile uint32_t * addr)1151 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
1152 {
1153     uint32_t result;
1154 
1155    __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
1156    return(result);
1157 }
1158 
1159 
1160 /**
1161   \brief   STR Exclusive (8 bit)
1162   \details Executes a exclusive STR instruction for 8 bit values.
1163   \param [in]  value  Value to store
1164   \param [in]    ptr  Pointer to location
1165   \return          0  Function succeeded
1166   \return          1  Function failed
1167  */
__STREXB(uint8_t value,volatile uint8_t * addr)1168 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
1169 {
1170    uint32_t result;
1171 
1172    __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1173    return(result);
1174 }
1175 
1176 
1177 /**
1178   \brief   STR Exclusive (16 bit)
1179   \details Executes a exclusive STR instruction for 16 bit values.
1180   \param [in]  value  Value to store
1181   \param [in]    ptr  Pointer to location
1182   \return          0  Function succeeded
1183   \return          1  Function failed
1184  */
__STREXH(uint16_t value,volatile uint16_t * addr)1185 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
1186 {
1187    uint32_t result;
1188 
1189    __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1190    return(result);
1191 }
1192 
1193 
1194 /**
1195   \brief   STR Exclusive (32 bit)
1196   \details Executes a exclusive STR instruction for 32 bit values.
1197   \param [in]  value  Value to store
1198   \param [in]    ptr  Pointer to location
1199   \return          0  Function succeeded
1200   \return          1  Function failed
1201  */
__STREXW(uint32_t value,volatile uint32_t * addr)1202 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
1203 {
1204    uint32_t result;
1205 
1206    __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
1207    return(result);
1208 }
1209 
1210 
1211 /**
1212   \brief   Remove the exclusive lock
1213   \details Removes the exclusive lock which is created by LDREX.
1214  */
__CLREX(void)1215 __STATIC_FORCEINLINE void __CLREX(void)
1216 {
1217   __ASM volatile ("clrex" ::: "memory");
1218 }
1219 
1220 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1221            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1222            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1223            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1224 
1225 
1226 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1227      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1228      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1229 /**
1230   \brief   Signed Saturate
1231   \details Saturates a signed value.
1232   \param [in]  ARG1  Value to be saturated
1233   \param [in]  ARG2  Bit position to saturate to (1..32)
1234   \return             Saturated value
1235  */
1236 #define __SSAT(ARG1, ARG2) \
1237 __extension__ \
1238 ({                          \
1239   int32_t __RES, __ARG1 = (ARG1); \
1240   __ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1241   __RES; \
1242  })
1243 
1244 
1245 /**
1246   \brief   Unsigned Saturate
1247   \details Saturates an unsigned value.
1248   \param [in]  ARG1  Value to be saturated
1249   \param [in]  ARG2  Bit position to saturate to (0..31)
1250   \return             Saturated value
1251  */
1252 #define __USAT(ARG1, ARG2) \
1253  __extension__ \
1254 ({                          \
1255   uint32_t __RES, __ARG1 = (ARG1); \
1256   __ASM volatile ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1257   __RES; \
1258  })
1259 
1260 
1261 /**
1262   \brief   Rotate Right with Extend (32 bit)
1263   \details Moves each bit of a bitstring right by one bit.
1264            The carry input is shifted in at the left end of the bitstring.
1265   \param [in]    value  Value to rotate
1266   \return               Rotated value
1267  */
__RRX(uint32_t value)1268 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1269 {
1270   uint32_t result;
1271 
1272   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1273   return(result);
1274 }
1275 
1276 
1277 /**
1278   \brief   LDRT Unprivileged (8 bit)
1279   \details Executes a Unprivileged LDRT instruction for 8 bit value.
1280   \param [in]    ptr  Pointer to data
1281   \return             value of type uint8_t at (*ptr)
1282  */
__LDRBT(volatile uint8_t * ptr)1283 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1284 {
1285     uint32_t result;
1286 
1287 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1288    __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1289 #else
1290     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1291        accepted by assembler. So has to use following less efficient pattern.
1292     */
1293    __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1294 #endif
1295    return ((uint8_t) result);    /* Add explicit type cast here */
1296 }
1297 
1298 
1299 /**
1300   \brief   LDRT Unprivileged (16 bit)
1301   \details Executes a Unprivileged LDRT instruction for 16 bit values.
1302   \param [in]    ptr  Pointer to data
1303   \return        value of type uint16_t at (*ptr)
1304  */
__LDRHT(volatile uint16_t * ptr)1305 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1306 {
1307     uint32_t result;
1308 
1309 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1310    __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1311 #else
1312     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1313        accepted by assembler. So has to use following less efficient pattern.
1314     */
1315    __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1316 #endif
1317    return ((uint16_t) result);    /* Add explicit type cast here */
1318 }
1319 
1320 
1321 /**
1322   \brief   LDRT Unprivileged (32 bit)
1323   \details Executes a Unprivileged LDRT instruction for 32 bit values.
1324   \param [in]    ptr  Pointer to data
1325   \return        value of type uint32_t at (*ptr)
1326  */
__LDRT(volatile uint32_t * ptr)1327 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1328 {
1329     uint32_t result;
1330 
1331    __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1332    return(result);
1333 }
1334 
1335 
1336 /**
1337   \brief   STRT Unprivileged (8 bit)
1338   \details Executes a Unprivileged STRT instruction for 8 bit values.
1339   \param [in]  value  Value to store
1340   \param [in]    ptr  Pointer to location
1341  */
__STRBT(uint8_t value,volatile uint8_t * ptr)1342 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1343 {
1344    __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1345 }
1346 
1347 
1348 /**
1349   \brief   STRT Unprivileged (16 bit)
1350   \details Executes a Unprivileged STRT instruction for 16 bit values.
1351   \param [in]  value  Value to store
1352   \param [in]    ptr  Pointer to location
1353  */
__STRHT(uint16_t value,volatile uint16_t * ptr)1354 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1355 {
1356    __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1357 }
1358 
1359 
1360 /**
1361   \brief   STRT Unprivileged (32 bit)
1362   \details Executes a Unprivileged STRT instruction for 32 bit values.
1363   \param [in]  value  Value to store
1364   \param [in]    ptr  Pointer to location
1365  */
__STRT(uint32_t value,volatile uint32_t * ptr)1366 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1367 {
1368    __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1369 }
1370 
1371 #else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1372            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1373            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1374 
1375 /**
1376   \brief   Signed Saturate
1377   \details Saturates a signed value.
1378   \param [in]  value  Value to be saturated
1379   \param [in]    sat  Bit position to saturate to (1..32)
1380   \return             Saturated value
1381  */
__SSAT(int32_t val,uint32_t sat)1382 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1383 {
1384   if ((sat >= 1U) && (sat <= 32U))
1385   {
1386     const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1387     const int32_t min = -1 - max ;
1388     if (val > max)
1389     {
1390       return max;
1391     }
1392     else if (val < min)
1393     {
1394       return min;
1395     }
1396   }
1397   return val;
1398 }
1399 
1400 /**
1401   \brief   Unsigned Saturate
1402   \details Saturates an unsigned value.
1403   \param [in]  value  Value to be saturated
1404   \param [in]    sat  Bit position to saturate to (0..31)
1405   \return             Saturated value
1406  */
__USAT(int32_t val,uint32_t sat)1407 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1408 {
1409   if (sat <= 31U)
1410   {
1411     const uint32_t max = ((1U << sat) - 1U);
1412     if (val > (int32_t)max)
1413     {
1414       return max;
1415     }
1416     else if (val < 0)
1417     {
1418       return 0U;
1419     }
1420   }
1421   return (uint32_t)val;
1422 }
1423 
1424 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1425            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1426            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1427 
1428 
1429 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1430      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1431 /**
1432   \brief   Load-Acquire (8 bit)
1433   \details Executes a LDAB instruction for 8 bit value.
1434   \param [in]    ptr  Pointer to data
1435   \return             value of type uint8_t at (*ptr)
1436  */
__LDAB(volatile uint8_t * ptr)1437 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1438 {
1439     uint32_t result;
1440 
1441    __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1442    return ((uint8_t) result);
1443 }
1444 
1445 
1446 /**
1447   \brief   Load-Acquire (16 bit)
1448   \details Executes a LDAH instruction for 16 bit values.
1449   \param [in]    ptr  Pointer to data
1450   \return        value of type uint16_t at (*ptr)
1451  */
__LDAH(volatile uint16_t * ptr)1452 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1453 {
1454     uint32_t result;
1455 
1456    __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1457    return ((uint16_t) result);
1458 }
1459 
1460 
1461 /**
1462   \brief   Load-Acquire (32 bit)
1463   \details Executes a LDA instruction for 32 bit values.
1464   \param [in]    ptr  Pointer to data
1465   \return        value of type uint32_t at (*ptr)
1466  */
__LDA(volatile uint32_t * ptr)1467 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1468 {
1469     uint32_t result;
1470 
1471    __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1472    return(result);
1473 }
1474 
1475 
1476 /**
1477   \brief   Store-Release (8 bit)
1478   \details Executes a STLB instruction for 8 bit values.
1479   \param [in]  value  Value to store
1480   \param [in]    ptr  Pointer to location
1481  */
__STLB(uint8_t value,volatile uint8_t * ptr)1482 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1483 {
1484    __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1485 }
1486 
1487 
1488 /**
1489   \brief   Store-Release (16 bit)
1490   \details Executes a STLH instruction for 16 bit values.
1491   \param [in]  value  Value to store
1492   \param [in]    ptr  Pointer to location
1493  */
__STLH(uint16_t value,volatile uint16_t * ptr)1494 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1495 {
1496    __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1497 }
1498 
1499 
1500 /**
1501   \brief   Store-Release (32 bit)
1502   \details Executes a STL instruction for 32 bit values.
1503   \param [in]  value  Value to store
1504   \param [in]    ptr  Pointer to location
1505  */
__STL(uint32_t value,volatile uint32_t * ptr)1506 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1507 {
1508    __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1509 }
1510 
1511 
1512 /**
1513   \brief   Load-Acquire Exclusive (8 bit)
1514   \details Executes a LDAB exclusive instruction for 8 bit value.
1515   \param [in]    ptr  Pointer to data
1516   \return             value of type uint8_t at (*ptr)
1517  */
__LDAEXB(volatile uint8_t * ptr)1518 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
1519 {
1520     uint32_t result;
1521 
1522    __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1523    return ((uint8_t) result);
1524 }
1525 
1526 
1527 /**
1528   \brief   Load-Acquire Exclusive (16 bit)
1529   \details Executes a LDAH exclusive instruction for 16 bit values.
1530   \param [in]    ptr  Pointer to data
1531   \return        value of type uint16_t at (*ptr)
1532  */
__LDAEXH(volatile uint16_t * ptr)1533 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
1534 {
1535     uint32_t result;
1536 
1537    __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1538    return ((uint16_t) result);
1539 }
1540 
1541 
1542 /**
1543   \brief   Load-Acquire Exclusive (32 bit)
1544   \details Executes a LDA exclusive instruction for 32 bit values.
1545   \param [in]    ptr  Pointer to data
1546   \return        value of type uint32_t at (*ptr)
1547  */
__LDAEX(volatile uint32_t * ptr)1548 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
1549 {
1550     uint32_t result;
1551 
1552    __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1553    return(result);
1554 }
1555 
1556 
1557 /**
1558   \brief   Store-Release Exclusive (8 bit)
1559   \details Executes a STLB exclusive instruction for 8 bit values.
1560   \param [in]  value  Value to store
1561   \param [in]    ptr  Pointer to location
1562   \return          0  Function succeeded
1563   \return          1  Function failed
1564  */
__STLEXB(uint8_t value,volatile uint8_t * ptr)1565 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
1566 {
1567    uint32_t result;
1568 
1569    __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1570    return(result);
1571 }
1572 
1573 
1574 /**
1575   \brief   Store-Release Exclusive (16 bit)
1576   \details Executes a STLH exclusive instruction for 16 bit values.
1577   \param [in]  value  Value to store
1578   \param [in]    ptr  Pointer to location
1579   \return          0  Function succeeded
1580   \return          1  Function failed
1581  */
__STLEXH(uint16_t value,volatile uint16_t * ptr)1582 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
1583 {
1584    uint32_t result;
1585 
1586    __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1587    return(result);
1588 }
1589 
1590 
1591 /**
1592   \brief   Store-Release Exclusive (32 bit)
1593   \details Executes a STL exclusive instruction for 32 bit values.
1594   \param [in]  value  Value to store
1595   \param [in]    ptr  Pointer to location
1596   \return          0  Function succeeded
1597   \return          1  Function failed
1598  */
__STLEX(uint32_t value,volatile uint32_t * ptr)1599 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
1600 {
1601    uint32_t result;
1602 
1603    __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1604    return(result);
1605 }
1606 
1607 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1608            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1609 
1610 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1611 
1612 
1613 /* ###################  Compiler specific Intrinsics  ########################### */
1614 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1615   Access to dedicated SIMD instructions
1616   @{
1617 */
1618 
1619 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1620 
__SADD8(uint32_t op1,uint32_t op2)1621 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1622 {
1623   uint32_t result;
1624 
1625   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1626   return(result);
1627 }
1628 
__QADD8(uint32_t op1,uint32_t op2)1629 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1630 {
1631   uint32_t result;
1632 
1633   __ASM ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1634   return(result);
1635 }
1636 
__SHADD8(uint32_t op1,uint32_t op2)1637 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1638 {
1639   uint32_t result;
1640 
1641   __ASM ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1642   return(result);
1643 }
1644 
__UADD8(uint32_t op1,uint32_t op2)1645 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1646 {
1647   uint32_t result;
1648 
1649   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1650   return(result);
1651 }
1652 
__UQADD8(uint32_t op1,uint32_t op2)1653 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1654 {
1655   uint32_t result;
1656 
1657   __ASM ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1658   return(result);
1659 }
1660 
__UHADD8(uint32_t op1,uint32_t op2)1661 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1662 {
1663   uint32_t result;
1664 
1665   __ASM ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1666   return(result);
1667 }
1668 
1669 
__SSUB8(uint32_t op1,uint32_t op2)1670 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1671 {
1672   uint32_t result;
1673 
1674   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1675   return(result);
1676 }
1677 
__QSUB8(uint32_t op1,uint32_t op2)1678 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1679 {
1680   uint32_t result;
1681 
1682   __ASM ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1683   return(result);
1684 }
1685 
__SHSUB8(uint32_t op1,uint32_t op2)1686 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1687 {
1688   uint32_t result;
1689 
1690   __ASM ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1691   return(result);
1692 }
1693 
__USUB8(uint32_t op1,uint32_t op2)1694 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1695 {
1696   uint32_t result;
1697 
1698   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1699   return(result);
1700 }
1701 
__UQSUB8(uint32_t op1,uint32_t op2)1702 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1703 {
1704   uint32_t result;
1705 
1706   __ASM ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1707   return(result);
1708 }
1709 
__UHSUB8(uint32_t op1,uint32_t op2)1710 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1711 {
1712   uint32_t result;
1713 
1714   __ASM ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1715   return(result);
1716 }
1717 
1718 
__SADD16(uint32_t op1,uint32_t op2)1719 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1720 {
1721   uint32_t result;
1722 
1723   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1724   return(result);
1725 }
1726 
__QADD16(uint32_t op1,uint32_t op2)1727 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1728 {
1729   uint32_t result;
1730 
1731   __ASM ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1732   return(result);
1733 }
1734 
__SHADD16(uint32_t op1,uint32_t op2)1735 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1736 {
1737   uint32_t result;
1738 
1739   __ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1740   return(result);
1741 }
1742 
__UADD16(uint32_t op1,uint32_t op2)1743 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1744 {
1745   uint32_t result;
1746 
1747   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1748   return(result);
1749 }
1750 
__UQADD16(uint32_t op1,uint32_t op2)1751 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1752 {
1753   uint32_t result;
1754 
1755   __ASM ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1756   return(result);
1757 }
1758 
__UHADD16(uint32_t op1,uint32_t op2)1759 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1760 {
1761   uint32_t result;
1762 
1763   __ASM ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1764   return(result);
1765 }
1766 
__SSUB16(uint32_t op1,uint32_t op2)1767 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1768 {
1769   uint32_t result;
1770 
1771   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1772   return(result);
1773 }
1774 
__QSUB16(uint32_t op1,uint32_t op2)1775 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1776 {
1777   uint32_t result;
1778 
1779   __ASM ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1780   return(result);
1781 }
1782 
__SHSUB16(uint32_t op1,uint32_t op2)1783 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1784 {
1785   uint32_t result;
1786 
1787   __ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1788   return(result);
1789 }
1790 
__USUB16(uint32_t op1,uint32_t op2)1791 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1792 {
1793   uint32_t result;
1794 
1795   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1796   return(result);
1797 }
1798 
__UQSUB16(uint32_t op1,uint32_t op2)1799 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1800 {
1801   uint32_t result;
1802 
1803   __ASM ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1804   return(result);
1805 }
1806 
__UHSUB16(uint32_t op1,uint32_t op2)1807 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1808 {
1809   uint32_t result;
1810 
1811   __ASM ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1812   return(result);
1813 }
1814 
__SASX(uint32_t op1,uint32_t op2)1815 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1816 {
1817   uint32_t result;
1818 
1819   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1820   return(result);
1821 }
1822 
__QASX(uint32_t op1,uint32_t op2)1823 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1824 {
1825   uint32_t result;
1826 
1827   __ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1828   return(result);
1829 }
1830 
__SHASX(uint32_t op1,uint32_t op2)1831 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1832 {
1833   uint32_t result;
1834 
1835   __ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1836   return(result);
1837 }
1838 
__UASX(uint32_t op1,uint32_t op2)1839 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1840 {
1841   uint32_t result;
1842 
1843   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1844   return(result);
1845 }
1846 
__UQASX(uint32_t op1,uint32_t op2)1847 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1848 {
1849   uint32_t result;
1850 
1851   __ASM ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1852   return(result);
1853 }
1854 
__UHASX(uint32_t op1,uint32_t op2)1855 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1856 {
1857   uint32_t result;
1858 
1859   __ASM ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1860   return(result);
1861 }
1862 
__SSAX(uint32_t op1,uint32_t op2)1863 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1864 {
1865   uint32_t result;
1866 
1867   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1868   return(result);
1869 }
1870 
__QSAX(uint32_t op1,uint32_t op2)1871 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1872 {
1873   uint32_t result;
1874 
1875   __ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1876   return(result);
1877 }
1878 
__SHSAX(uint32_t op1,uint32_t op2)1879 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1880 {
1881   uint32_t result;
1882 
1883   __ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1884   return(result);
1885 }
1886 
__USAX(uint32_t op1,uint32_t op2)1887 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1888 {
1889   uint32_t result;
1890 
1891   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1892   return(result);
1893 }
1894 
__UQSAX(uint32_t op1,uint32_t op2)1895 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1896 {
1897   uint32_t result;
1898 
1899   __ASM ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1900   return(result);
1901 }
1902 
__UHSAX(uint32_t op1,uint32_t op2)1903 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1904 {
1905   uint32_t result;
1906 
1907   __ASM ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1908   return(result);
1909 }
1910 
__USAD8(uint32_t op1,uint32_t op2)1911 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1912 {
1913   uint32_t result;
1914 
1915   __ASM ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1916   return(result);
1917 }
1918 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1919 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1920 {
1921   uint32_t result;
1922 
1923   __ASM ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1924   return(result);
1925 }
1926 
1927 #define __SSAT16(ARG1, ARG2) \
1928 ({                          \
1929   int32_t __RES, __ARG1 = (ARG1); \
1930   __ASM volatile ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1931   __RES; \
1932  })
1933 
1934 #define __USAT16(ARG1, ARG2) \
1935 ({                          \
1936   uint32_t __RES, __ARG1 = (ARG1); \
1937   __ASM volatile ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1938   __RES; \
1939  })
1940 
__UXTB16(uint32_t op1)1941 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1942 {
1943   uint32_t result;
1944 
1945   __ASM ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1946   return(result);
1947 }
1948 
__UXTAB16(uint32_t op1,uint32_t op2)1949 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1950 {
1951   uint32_t result;
1952 
1953   __ASM ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1954   return(result);
1955 }
1956 
__SXTB16(uint32_t op1)1957 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1958 {
1959   uint32_t result;
1960 
1961   __ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1962   return(result);
1963 }
1964 
__SXTB16_RORn(uint32_t op1,uint32_t rotate)1965 __STATIC_FORCEINLINE uint32_t __SXTB16_RORn(uint32_t op1, uint32_t rotate)
1966 {
1967   uint32_t result;
1968 
1969   __ASM ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) );
1970 
1971   return result;
1972 }
1973 
__SXTAB16(uint32_t op1,uint32_t op2)1974 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1975 {
1976   uint32_t result;
1977 
1978   __ASM ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1979   return(result);
1980 }
1981 
__SMUAD(uint32_t op1,uint32_t op2)1982 __STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1983 {
1984   uint32_t result;
1985 
1986   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1987   return(result);
1988 }
1989 
__SMUADX(uint32_t op1,uint32_t op2)1990 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1991 {
1992   uint32_t result;
1993 
1994   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1995   return(result);
1996 }
1997 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1998 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1999 {
2000   uint32_t result;
2001 
2002   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2003   return(result);
2004 }
2005 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)2006 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
2007 {
2008   uint32_t result;
2009 
2010   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2011   return(result);
2012 }
2013 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)2014 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
2015 {
2016   union llreg_u{
2017     uint32_t w32[2];
2018     uint64_t w64;
2019   } llr;
2020   llr.w64 = acc;
2021 
2022 #ifndef __ARMEB__   /* Little endian */
2023   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2024 #else               /* Big endian */
2025   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2026 #endif
2027 
2028   return(llr.w64);
2029 }
2030 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)2031 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
2032 {
2033   union llreg_u{
2034     uint32_t w32[2];
2035     uint64_t w64;
2036   } llr;
2037   llr.w64 = acc;
2038 
2039 #ifndef __ARMEB__   /* Little endian */
2040   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2041 #else               /* Big endian */
2042   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2043 #endif
2044 
2045   return(llr.w64);
2046 }
2047 
__SMUSD(uint32_t op1,uint32_t op2)2048 __STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
2049 {
2050   uint32_t result;
2051 
2052   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2053   return(result);
2054 }
2055 
__SMUSDX(uint32_t op1,uint32_t op2)2056 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
2057 {
2058   uint32_t result;
2059 
2060   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2061   return(result);
2062 }
2063 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)2064 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
2065 {
2066   uint32_t result;
2067 
2068   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2069   return(result);
2070 }
2071 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)2072 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
2073 {
2074   uint32_t result;
2075 
2076   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2077   return(result);
2078 }
2079 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)2080 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
2081 {
2082   union llreg_u{
2083     uint32_t w32[2];
2084     uint64_t w64;
2085   } llr;
2086   llr.w64 = acc;
2087 
2088 #ifndef __ARMEB__   /* Little endian */
2089   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2090 #else               /* Big endian */
2091   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2092 #endif
2093 
2094   return(llr.w64);
2095 }
2096 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)2097 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2098 {
2099   union llreg_u{
2100     uint32_t w32[2];
2101     uint64_t w64;
2102   } llr;
2103   llr.w64 = acc;
2104 
2105 #ifndef __ARMEB__   /* Little endian */
2106   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2107 #else               /* Big endian */
2108   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2109 #endif
2110 
2111   return(llr.w64);
2112 }
2113 
__SEL(uint32_t op1,uint32_t op2)2114 __STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
2115 {
2116   uint32_t result;
2117 
2118   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2119   return(result);
2120 }
2121 
__QADD(int32_t op1,int32_t op2)2122 __STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
2123 {
2124   int32_t result;
2125 
2126   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2127   return(result);
2128 }
2129 
__QSUB(int32_t op1,int32_t op2)2130 __STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
2131 {
2132   int32_t result;
2133 
2134   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2135   return(result);
2136 }
2137 
2138 #if 0
2139 #define __PKHBT(ARG1,ARG2,ARG3) \
2140 ({                          \
2141   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2142   __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2143   __RES; \
2144  })
2145 
2146 #define __PKHTB(ARG1,ARG2,ARG3) \
2147 ({                          \
2148   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2149   if (ARG3 == 0) \
2150     __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
2151   else \
2152     __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2153   __RES; \
2154  })
2155 #endif
2156 
2157 #define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
2158                                            ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
2159 
2160 #define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
2161                                            ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
2162 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)2163 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2164 {
2165  int32_t result;
2166 
2167  __ASM ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
2168  return(result);
2169 }
2170 
2171 #endif /* (__ARM_FEATURE_DSP == 1) */
2172 /*@} end of group CMSIS_SIMD_intrinsics */
2173 
2174 
2175 #pragma GCC diagnostic pop
2176 
2177 #endif /* __CMSIS_GCC_H */
2178