1 /**************************************************************************//**
2  * @file     cmsis_armclang_ltm.h
3  * @brief    CMSIS compiler armclang (Arm Compiler 6) header file
4  * @version  V1.3.0
5  * @date     26. March 2020
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2018-2020 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26 
27 #ifndef __CMSIS_ARMCLANG_H
28 #define __CMSIS_ARMCLANG_H
29 
30 #pragma clang system_header   /* treat file as system include file */
31 
32 #ifndef __ARM_COMPAT_H
33 #include <arm_compat.h>    /* Compatibility header for Arm Compiler 5 intrinsics */
34 #endif
35 
36 /* CMSIS compiler specific defines */
37 #ifndef   __ASM
38   #define __ASM                                  __asm
39 #endif
40 #ifndef   __INLINE
41   #define __INLINE                               __inline
42 #endif
43 #ifndef   __STATIC_INLINE
44   #define __STATIC_INLINE                        static __inline
45 #endif
46 #ifndef   __STATIC_FORCEINLINE
47   #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static __inline
48 #endif
49 #ifndef   __NO_RETURN
50   #define __NO_RETURN                            __attribute__((__noreturn__))
51 #endif
52 #ifndef   __USED
53   #define __USED                                 __attribute__((used))
54 #endif
55 #ifndef   __WEAK
56   #define __WEAK                                 __attribute__((weak))
57 #endif
58 #ifndef   __PACKED
59   #define __PACKED                               __attribute__((packed, aligned(1)))
60 #endif
61 #ifndef   __PACKED_STRUCT
62   #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef   __PACKED_UNION
65   #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef   __UNALIGNED_UINT32        /* deprecated */
68   #pragma clang diagnostic push
69   #pragma clang diagnostic ignored "-Wpacked"
70 /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
71   struct __attribute__((packed)) T_UINT32 { uint32_t v; };
72   #pragma clang diagnostic pop
73   #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
74 #endif
75 #ifndef   __UNALIGNED_UINT16_WRITE
76   #pragma clang diagnostic push
77   #pragma clang diagnostic ignored "-Wpacked"
78 /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
79   __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
80   #pragma clang diagnostic pop
81   #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
82 #endif
83 #ifndef   __UNALIGNED_UINT16_READ
84   #pragma clang diagnostic push
85   #pragma clang diagnostic ignored "-Wpacked"
86 /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
87   __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
88   #pragma clang diagnostic pop
89   #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
90 #endif
91 #ifndef   __UNALIGNED_UINT32_WRITE
92   #pragma clang diagnostic push
93   #pragma clang diagnostic ignored "-Wpacked"
94 /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
95   __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
96   #pragma clang diagnostic pop
97   #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
98 #endif
99 #ifndef   __UNALIGNED_UINT32_READ
100   #pragma clang diagnostic push
101   #pragma clang diagnostic ignored "-Wpacked"
102 /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
103   __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
104   #pragma clang diagnostic pop
105   #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
106 #endif
107 #ifndef   __ALIGNED
108   #define __ALIGNED(x)                           __attribute__((aligned(x)))
109 #endif
110 #ifndef   __RESTRICT
111   #define __RESTRICT                             __restrict
112 #endif
113 #ifndef   __COMPILER_BARRIER
114   #define __COMPILER_BARRIER()                   __ASM volatile("":::"memory")
115 #endif
116 
117 /* #########################  Startup and Lowlevel Init  ######################## */
118 
119 #ifndef __PROGRAM_START
120 #define __PROGRAM_START           __main
121 #endif
122 
123 #ifndef __INITIAL_SP
124 #define __INITIAL_SP              Image$$ARM_LIB_STACK$$ZI$$Limit
125 #endif
126 
127 #ifndef __STACK_LIMIT
128 #define __STACK_LIMIT             Image$$ARM_LIB_STACK$$ZI$$Base
129 #endif
130 
131 #ifndef __VECTOR_TABLE
132 #define __VECTOR_TABLE            __Vectors
133 #endif
134 
135 #ifndef __VECTOR_TABLE_ATTRIBUTE
136 #define __VECTOR_TABLE_ATTRIBUTE  __attribute__((used, section("RESET")))
137 #endif
138 
139 
140 /* ###########################  Core Function Access  ########################### */
141 /** \ingroup  CMSIS_Core_FunctionInterface
142     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
143   @{
144  */
145 
146 /**
147   \brief   Enable IRQ Interrupts
148   \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
149            Can only be executed in Privileged modes.
150  */
151 /* intrinsic void __enable_irq();  see arm_compat.h */
152 
153 
154 /**
155   \brief   Disable IRQ Interrupts
156   \details Disables IRQ interrupts by setting the I-bit in the CPSR.
157            Can only be executed in Privileged modes.
158  */
159 /* intrinsic void __disable_irq();  see arm_compat.h */
160 
161 
162 /**
163   \brief   Get Control Register
164   \details Returns the content of the Control Register.
165   \return               Control Register value
166  */
__get_CONTROL(void)167 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
168 {
169   uint32_t result;
170 
171   __ASM volatile ("MRS %0, control" : "=r" (result) );
172   return(result);
173 }
174 
175 
176 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
177 /**
178   \brief   Get Control Register (non-secure)
179   \details Returns the content of the non-secure Control Register when in secure mode.
180   \return               non-secure Control Register value
181  */
__TZ_get_CONTROL_NS(void)182 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
183 {
184   uint32_t result;
185 
186   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
187   return(result);
188 }
189 #endif
190 
191 
192 /**
193   \brief   Set Control Register
194   \details Writes the given value to the Control Register.
195   \param [in]    control  Control Register value to set
196  */
__set_CONTROL(uint32_t control)197 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
198 {
199   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
200 }
201 
202 
203 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
204 /**
205   \brief   Set Control Register (non-secure)
206   \details Writes the given value to the non-secure Control Register when in secure state.
207   \param [in]    control  Control Register value to set
208  */
__TZ_set_CONTROL_NS(uint32_t control)209 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
210 {
211   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
212 }
213 #endif
214 
215 
216 /**
217   \brief   Get IPSR Register
218   \details Returns the content of the IPSR Register.
219   \return               IPSR Register value
220  */
__get_IPSR(void)221 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
222 {
223   uint32_t result;
224 
225   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
226   return(result);
227 }
228 
229 
230 /**
231   \brief   Get APSR Register
232   \details Returns the content of the APSR Register.
233   \return               APSR Register value
234  */
__get_APSR(void)235 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
236 {
237   uint32_t result;
238 
239   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
240   return(result);
241 }
242 
243 
244 /**
245   \brief   Get xPSR Register
246   \details Returns the content of the xPSR Register.
247   \return               xPSR Register value
248  */
__get_xPSR(void)249 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
250 {
251   uint32_t result;
252 
253   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
254   return(result);
255 }
256 
257 
258 /**
259   \brief   Get Process Stack Pointer
260   \details Returns the current value of the Process Stack Pointer (PSP).
261   \return               PSP Register value
262  */
__get_PSP(void)263 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
264 {
265   uint32_t result;
266 
267   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
268   return(result);
269 }
270 
271 
272 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
273 /**
274   \brief   Get Process Stack Pointer (non-secure)
275   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
276   \return               PSP Register value
277  */
__TZ_get_PSP_NS(void)278 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
279 {
280   uint32_t result;
281 
282   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
283   return(result);
284 }
285 #endif
286 
287 
288 /**
289   \brief   Set Process Stack Pointer
290   \details Assigns the given value to the Process Stack Pointer (PSP).
291   \param [in]    topOfProcStack  Process Stack Pointer value to set
292  */
__set_PSP(uint32_t topOfProcStack)293 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
294 {
295   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
296 }
297 
298 
299 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
300 /**
301   \brief   Set Process Stack Pointer (non-secure)
302   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
303   \param [in]    topOfProcStack  Process Stack Pointer value to set
304  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)305 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
306 {
307   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
308 }
309 #endif
310 
311 
312 /**
313   \brief   Get Main Stack Pointer
314   \details Returns the current value of the Main Stack Pointer (MSP).
315   \return               MSP Register value
316  */
__get_MSP(void)317 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
318 {
319   uint32_t result;
320 
321   __ASM volatile ("MRS %0, msp" : "=r" (result) );
322   return(result);
323 }
324 
325 
326 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
327 /**
328   \brief   Get Main Stack Pointer (non-secure)
329   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
330   \return               MSP Register value
331  */
__TZ_get_MSP_NS(void)332 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
333 {
334   uint32_t result;
335 
336   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
337   return(result);
338 }
339 #endif
340 
341 
342 /**
343   \brief   Set Main Stack Pointer
344   \details Assigns the given value to the Main Stack Pointer (MSP).
345   \param [in]    topOfMainStack  Main Stack Pointer value to set
346  */
__set_MSP(uint32_t topOfMainStack)347 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
348 {
349   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
350 }
351 
352 
353 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
354 /**
355   \brief   Set Main Stack Pointer (non-secure)
356   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
357   \param [in]    topOfMainStack  Main Stack Pointer value to set
358  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)359 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
360 {
361   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
362 }
363 #endif
364 
365 
366 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
367 /**
368   \brief   Get Stack Pointer (non-secure)
369   \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
370   \return               SP Register value
371  */
__TZ_get_SP_NS(void)372 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
373 {
374   uint32_t result;
375 
376   __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
377   return(result);
378 }
379 
380 
381 /**
382   \brief   Set Stack Pointer (non-secure)
383   \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
384   \param [in]    topOfStack  Stack Pointer value to set
385  */
__TZ_set_SP_NS(uint32_t topOfStack)386 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
387 {
388   __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
389 }
390 #endif
391 
392 
393 /**
394   \brief   Get Priority Mask
395   \details Returns the current state of the priority mask bit from the Priority Mask Register.
396   \return               Priority Mask value
397  */
__get_PRIMASK(void)398 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
399 {
400   uint32_t result;
401 
402   __ASM volatile ("MRS %0, primask" : "=r" (result) );
403   return(result);
404 }
405 
406 
407 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
408 /**
409   \brief   Get Priority Mask (non-secure)
410   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
411   \return               Priority Mask value
412  */
__TZ_get_PRIMASK_NS(void)413 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
414 {
415   uint32_t result;
416 
417   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
418   return(result);
419 }
420 #endif
421 
422 
423 /**
424   \brief   Set Priority Mask
425   \details Assigns the given value to the Priority Mask Register.
426   \param [in]    priMask  Priority Mask
427  */
__set_PRIMASK(uint32_t priMask)428 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
429 {
430   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
431 }
432 
433 
434 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
435 /**
436   \brief   Set Priority Mask (non-secure)
437   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
438   \param [in]    priMask  Priority Mask
439  */
__TZ_set_PRIMASK_NS(uint32_t priMask)440 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
441 {
442   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
443 }
444 #endif
445 
446 
447 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
448      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
449      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
450 /**
451   \brief   Enable FIQ
452   \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
453            Can only be executed in Privileged modes.
454  */
455 #define __enable_fault_irq                __enable_fiq   /* see arm_compat.h */
456 
457 
458 /**
459   \brief   Disable FIQ
460   \details Disables FIQ interrupts by setting the F-bit in the CPSR.
461            Can only be executed in Privileged modes.
462  */
463 #define __disable_fault_irq               __disable_fiq   /* see arm_compat.h */
464 
465 
466 /**
467   \brief   Get Base Priority
468   \details Returns the current value of the Base Priority register.
469   \return               Base Priority register value
470  */
__get_BASEPRI(void)471 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
472 {
473   uint32_t result;
474 
475   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
476   return(result);
477 }
478 
479 
480 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
481 /**
482   \brief   Get Base Priority (non-secure)
483   \details Returns the current value of the non-secure Base Priority register when in secure state.
484   \return               Base Priority register value
485  */
__TZ_get_BASEPRI_NS(void)486 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
487 {
488   uint32_t result;
489 
490   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
491   return(result);
492 }
493 #endif
494 
495 
496 /**
497   \brief   Set Base Priority
498   \details Assigns the given value to the Base Priority register.
499   \param [in]    basePri  Base Priority value to set
500  */
__set_BASEPRI(uint32_t basePri)501 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
502 {
503   __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
504 }
505 
506 
507 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
508 /**
509   \brief   Set Base Priority (non-secure)
510   \details Assigns the given value to the non-secure Base Priority register when in secure state.
511   \param [in]    basePri  Base Priority value to set
512  */
__TZ_set_BASEPRI_NS(uint32_t basePri)513 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
514 {
515   __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
516 }
517 #endif
518 
519 
520 /**
521   \brief   Set Base Priority with condition
522   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
523            or the new value increases the BASEPRI priority level.
524   \param [in]    basePri  Base Priority value to set
525  */
__set_BASEPRI_MAX(uint32_t basePri)526 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
527 {
528   __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
529 }
530 
531 
532 /**
533   \brief   Get Fault Mask
534   \details Returns the current value of the Fault Mask register.
535   \return               Fault Mask register value
536  */
__get_FAULTMASK(void)537 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
538 {
539   uint32_t result;
540 
541   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
542   return(result);
543 }
544 
545 
546 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
547 /**
548   \brief   Get Fault Mask (non-secure)
549   \details Returns the current value of the non-secure Fault Mask register when in secure state.
550   \return               Fault Mask register value
551  */
__TZ_get_FAULTMASK_NS(void)552 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
553 {
554   uint32_t result;
555 
556   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
557   return(result);
558 }
559 #endif
560 
561 
562 /**
563   \brief   Set Fault Mask
564   \details Assigns the given value to the Fault Mask register.
565   \param [in]    faultMask  Fault Mask value to set
566  */
__set_FAULTMASK(uint32_t faultMask)567 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
568 {
569   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
570 }
571 
572 
573 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
574 /**
575   \brief   Set Fault Mask (non-secure)
576   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
577   \param [in]    faultMask  Fault Mask value to set
578  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)579 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
580 {
581   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
582 }
583 #endif
584 
585 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
586            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
587            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
588 
589 
590 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
591      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
592 
593 /**
594   \brief   Get Process Stack Pointer Limit
595   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
596   Stack Pointer Limit register hence zero is returned always in non-secure
597   mode.
598 
599   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
600   \return               PSPLIM Register value
601  */
__get_PSPLIM(void)602 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
603 {
604 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
605     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
606     // without main extensions, the non-secure PSPLIM is RAZ/WI
607   return 0U;
608 #else
609   uint32_t result;
610   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
611   return result;
612 #endif
613 }
614 
615 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
616 /**
617   \brief   Get Process Stack Pointer Limit (non-secure)
618   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
619   Stack Pointer Limit register hence zero is returned always in non-secure
620   mode.
621 
622   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
623   \return               PSPLIM Register value
624  */
__TZ_get_PSPLIM_NS(void)625 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
626 {
627 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
628   // without main extensions, the non-secure PSPLIM is RAZ/WI
629   return 0U;
630 #else
631   uint32_t result;
632   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
633   return result;
634 #endif
635 }
636 #endif
637 
638 
639 /**
640   \brief   Set Process Stack Pointer Limit
641   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
642   Stack Pointer Limit register hence the write is silently ignored in non-secure
643   mode.
644 
645   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
646   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
647  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)648 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
649 {
650 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
651     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
652   // without main extensions, the non-secure PSPLIM is RAZ/WI
653   (void)ProcStackPtrLimit;
654 #else
655   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
656 #endif
657 }
658 
659 
660 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
661 /**
662   \brief   Set Process Stack Pointer (non-secure)
663   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
664   Stack Pointer Limit register hence the write is silently ignored in non-secure
665   mode.
666 
667   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
668   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
669  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)670 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
671 {
672 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
673   // without main extensions, the non-secure PSPLIM is RAZ/WI
674   (void)ProcStackPtrLimit;
675 #else
676   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
677 #endif
678 }
679 #endif
680 
681 
682 /**
683   \brief   Get Main Stack Pointer Limit
684   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
685   Stack Pointer Limit register hence zero is returned always.
686 
687   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
688   \return               MSPLIM Register value
689  */
__get_MSPLIM(void)690 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
691 {
692 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
693     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
694   // without main extensions, the non-secure MSPLIM is RAZ/WI
695   return 0U;
696 #else
697   uint32_t result;
698   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
699   return result;
700 #endif
701 }
702 
703 
704 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
705 /**
706   \brief   Get Main Stack Pointer Limit (non-secure)
707   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
708   Stack Pointer Limit register hence zero is returned always.
709 
710   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
711   \return               MSPLIM Register value
712  */
__TZ_get_MSPLIM_NS(void)713 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
714 {
715 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
716   // without main extensions, the non-secure MSPLIM is RAZ/WI
717   return 0U;
718 #else
719   uint32_t result;
720   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
721   return result;
722 #endif
723 }
724 #endif
725 
726 
727 /**
728   \brief   Set Main Stack Pointer Limit
729   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
730   Stack Pointer Limit register hence the write is silently ignored.
731 
732   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
733   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
734  */
__set_MSPLIM(uint32_t MainStackPtrLimit)735 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
736 {
737 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
738     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
739   // without main extensions, the non-secure MSPLIM is RAZ/WI
740   (void)MainStackPtrLimit;
741 #else
742   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
743 #endif
744 }
745 
746 
747 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
748 /**
749   \brief   Set Main Stack Pointer Limit (non-secure)
750   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
751   Stack Pointer Limit register hence the write is silently ignored.
752 
753   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
754   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
755  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)756 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
757 {
758 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
759   // without main extensions, the non-secure MSPLIM is RAZ/WI
760   (void)MainStackPtrLimit;
761 #else
762   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
763 #endif
764 }
765 #endif
766 
767 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
768            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
769 
770 /**
771   \brief   Get FPSCR
772   \details Returns the current value of the Floating Point Status/Control register.
773   \return               Floating Point Status/Control register value
774  */
775 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
776      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
777 #define __get_FPSCR      (uint32_t)__builtin_arm_get_fpscr
778 #else
779 #define __get_FPSCR()      ((uint32_t)0U)
780 #endif
781 
782 /**
783   \brief   Set FPSCR
784   \details Assigns the given value to the Floating Point Status/Control register.
785   \param [in]    fpscr  Floating Point Status/Control value to set
786  */
787 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
788      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
789 #define __set_FPSCR      __builtin_arm_set_fpscr
790 #else
791 #define __set_FPSCR(x)      ((void)(x))
792 #endif
793 
794 
795 /*@} end of CMSIS_Core_RegAccFunctions */
796 
797 
798 /* ##########################  Core Instruction Access  ######################### */
799 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
800   Access to dedicated instructions
801   @{
802 */
803 
804 /* Define macros for porting to both thumb1 and thumb2.
805  * For thumb1, use low register (r0-r7), specified by constraint "l"
806  * Otherwise, use general registers, specified by constraint "r" */
807 #if defined (__thumb__) && !defined (__thumb2__)
808 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
809 #define __CMSIS_GCC_USE_REG(r) "l" (r)
810 #else
811 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
812 #define __CMSIS_GCC_USE_REG(r) "r" (r)
813 #endif
814 
815 /**
816   \brief   No Operation
817   \details No Operation does nothing. This instruction can be used for code alignment purposes.
818  */
819 #define __NOP          __builtin_arm_nop
820 
821 /**
822   \brief   Wait For Interrupt
823   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
824  */
825 #define __WFI          __builtin_arm_wfi
826 
827 
828 /**
829   \brief   Wait For Event
830   \details Wait For Event is a hint instruction that permits the processor to enter
831            a low-power state until one of a number of events occurs.
832  */
833 #define __WFE          __builtin_arm_wfe
834 
835 
836 /**
837   \brief   Send Event
838   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
839  */
840 #define __SEV          __builtin_arm_sev
841 
842 
843 /**
844   \brief   Instruction Synchronization Barrier
845   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
846            so that all instructions following the ISB are fetched from cache or memory,
847            after the instruction has been completed.
848  */
849 #define __ISB()        __builtin_arm_isb(0xF)
850 
851 /**
852   \brief   Data Synchronization Barrier
853   \details Acts as a special kind of Data Memory Barrier.
854            It completes when all explicit memory accesses before this instruction complete.
855  */
856 #define __DSB()        __builtin_arm_dsb(0xF)
857 
858 
859 /**
860   \brief   Data Memory Barrier
861   \details Ensures the apparent order of the explicit memory operations before
862            and after the instruction, without ensuring their completion.
863  */
864 #define __DMB()        __builtin_arm_dmb(0xF)
865 
866 
867 /**
868   \brief   Reverse byte order (32 bit)
869   \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
870   \param [in]    value  Value to reverse
871   \return               Reversed value
872  */
873 #define __REV(value)   __builtin_bswap32(value)
874 
875 
876 /**
877   \brief   Reverse byte order (16 bit)
878   \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
879   \param [in]    value  Value to reverse
880   \return               Reversed value
881  */
882 #define __REV16(value) __ROR(__REV(value), 16)
883 
884 
885 /**
886   \brief   Reverse byte order (16 bit)
887   \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
888   \param [in]    value  Value to reverse
889   \return               Reversed value
890  */
891 #define __REVSH(value) (int16_t)__builtin_bswap16(value)
892 
893 
894 /**
895   \brief   Rotate Right in unsigned value (32 bit)
896   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
897   \param [in]    op1  Value to rotate
898   \param [in]    op2  Number of Bits to rotate
899   \return               Rotated value
900  */
__ROR(uint32_t op1,uint32_t op2)901 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
902 {
903   op2 %= 32U;
904   if (op2 == 0U)
905   {
906     return op1;
907   }
908   return (op1 >> op2) | (op1 << (32U - op2));
909 }
910 
911 
912 /**
913   \brief   Breakpoint
914   \details Causes the processor to enter Debug state.
915            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
916   \param [in]    value  is ignored by the processor.
917                  If required, a debugger can use it to store additional information about the breakpoint.
918  */
919 #define __BKPT(value)     __ASM volatile ("bkpt "#value)
920 
921 
922 /**
923   \brief   Reverse bit order of value
924   \details Reverses the bit order of the given value.
925   \param [in]    value  Value to reverse
926   \return               Reversed value
927  */
928 #define __RBIT            __builtin_arm_rbit
929 
930 /**
931   \brief   Count leading zeros
932   \details Counts the number of leading zeros of a data value.
933   \param [in]  value  Value to count the leading zeros
934   \return             number of leading zeros in value
935  */
__CLZ(uint32_t value)936 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
937 {
938   /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
939      __builtin_clz(0) is undefined behaviour, so handle this case specially.
940      This guarantees ARM-compatible results if happening to compile on a non-ARM
941      target, and ensures the compiler doesn't decide to activate any
942      optimisations using the logic "value was passed to __builtin_clz, so it
943      is non-zero".
944      ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
945      single CLZ instruction.
946    */
947   if (value == 0U)
948   {
949     return 32U;
950   }
951   return __builtin_clz(value);
952 }
953 
954 
955 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
956      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
957      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
958      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
959 /**
960   \brief   LDR Exclusive (8 bit)
961   \details Executes a exclusive LDR instruction for 8 bit value.
962   \param [in]    ptr  Pointer to data
963   \return             value of type uint8_t at (*ptr)
964  */
965 #define __LDREXB        (uint8_t)__builtin_arm_ldrex
966 
967 
968 /**
969   \brief   LDR Exclusive (16 bit)
970   \details Executes a exclusive LDR instruction for 16 bit values.
971   \param [in]    ptr  Pointer to data
972   \return        value of type uint16_t at (*ptr)
973  */
974 #define __LDREXH        (uint16_t)__builtin_arm_ldrex
975 
976 
977 /**
978   \brief   LDR Exclusive (32 bit)
979   \details Executes a exclusive LDR instruction for 32 bit values.
980   \param [in]    ptr  Pointer to data
981   \return        value of type uint32_t at (*ptr)
982  */
983 #define __LDREXW        (uint32_t)__builtin_arm_ldrex
984 
985 
986 /**
987   \brief   STR Exclusive (8 bit)
988   \details Executes a exclusive STR instruction for 8 bit values.
989   \param [in]  value  Value to store
990   \param [in]    ptr  Pointer to location
991   \return          0  Function succeeded
992   \return          1  Function failed
993  */
994 #define __STREXB        (uint32_t)__builtin_arm_strex
995 
996 
997 /**
998   \brief   STR Exclusive (16 bit)
999   \details Executes a exclusive STR instruction for 16 bit values.
1000   \param [in]  value  Value to store
1001   \param [in]    ptr  Pointer to location
1002   \return          0  Function succeeded
1003   \return          1  Function failed
1004  */
1005 #define __STREXH        (uint32_t)__builtin_arm_strex
1006 
1007 
1008 /**
1009   \brief   STR Exclusive (32 bit)
1010   \details Executes a exclusive STR instruction for 32 bit values.
1011   \param [in]  value  Value to store
1012   \param [in]    ptr  Pointer to location
1013   \return          0  Function succeeded
1014   \return          1  Function failed
1015  */
1016 #define __STREXW        (uint32_t)__builtin_arm_strex
1017 
1018 
1019 /**
1020   \brief   Remove the exclusive lock
1021   \details Removes the exclusive lock which is created by LDREX.
1022  */
1023 #define __CLREX             __builtin_arm_clrex
1024 
1025 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1026            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1027            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1028            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1029 
1030 
1031 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1032      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1033      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1034 
1035 /**
1036   \brief   Signed Saturate
1037   \details Saturates a signed value.
1038   \param [in]  value  Value to be saturated
1039   \param [in]    sat  Bit position to saturate to (1..32)
1040   \return             Saturated value
1041  */
1042 #define __SSAT             __builtin_arm_ssat
1043 
1044 
1045 /**
1046   \brief   Unsigned Saturate
1047   \details Saturates an unsigned value.
1048   \param [in]  value  Value to be saturated
1049   \param [in]    sat  Bit position to saturate to (0..31)
1050   \return             Saturated value
1051  */
1052 #define __USAT             __builtin_arm_usat
1053 
1054 
1055 /**
1056   \brief   Rotate Right with Extend (32 bit)
1057   \details Moves each bit of a bitstring right by one bit.
1058            The carry input is shifted in at the left end of the bitstring.
1059   \param [in]    value  Value to rotate
1060   \return               Rotated value
1061  */
__RRX(uint32_t value)1062 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1063 {
1064   uint32_t result;
1065 
1066   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1067   return(result);
1068 }
1069 
1070 
1071 /**
1072   \brief   LDRT Unprivileged (8 bit)
1073   \details Executes a Unprivileged LDRT instruction for 8 bit value.
1074   \param [in]    ptr  Pointer to data
1075   \return             value of type uint8_t at (*ptr)
1076  */
__LDRBT(volatile uint8_t * ptr)1077 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1078 {
1079   uint32_t result;
1080 
1081   __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1082   return ((uint8_t) result);    /* Add explicit type cast here */
1083 }
1084 
1085 
1086 /**
1087   \brief   LDRT Unprivileged (16 bit)
1088   \details Executes a Unprivileged LDRT instruction for 16 bit values.
1089   \param [in]    ptr  Pointer to data
1090   \return        value of type uint16_t at (*ptr)
1091  */
__LDRHT(volatile uint16_t * ptr)1092 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1093 {
1094   uint32_t result;
1095 
1096   __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1097   return ((uint16_t) result);    /* Add explicit type cast here */
1098 }
1099 
1100 
1101 /**
1102   \brief   LDRT Unprivileged (32 bit)
1103   \details Executes a Unprivileged LDRT instruction for 32 bit values.
1104   \param [in]    ptr  Pointer to data
1105   \return        value of type uint32_t at (*ptr)
1106  */
__LDRT(volatile uint32_t * ptr)1107 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1108 {
1109   uint32_t result;
1110 
1111   __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1112   return(result);
1113 }
1114 
1115 
1116 /**
1117   \brief   STRT Unprivileged (8 bit)
1118   \details Executes a Unprivileged STRT instruction for 8 bit values.
1119   \param [in]  value  Value to store
1120   \param [in]    ptr  Pointer to location
1121  */
__STRBT(uint8_t value,volatile uint8_t * ptr)1122 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1123 {
1124   __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1125 }
1126 
1127 
1128 /**
1129   \brief   STRT Unprivileged (16 bit)
1130   \details Executes a Unprivileged STRT instruction for 16 bit values.
1131   \param [in]  value  Value to store
1132   \param [in]    ptr  Pointer to location
1133  */
__STRHT(uint16_t value,volatile uint16_t * ptr)1134 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1135 {
1136   __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1137 }
1138 
1139 
1140 /**
1141   \brief   STRT Unprivileged (32 bit)
1142   \details Executes a Unprivileged STRT instruction for 32 bit values.
1143   \param [in]  value  Value to store
1144   \param [in]    ptr  Pointer to location
1145  */
__STRT(uint32_t value,volatile uint32_t * ptr)1146 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1147 {
1148   __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1149 }
1150 
1151 #else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1152            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1153            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1154 
1155 /**
1156   \brief   Signed Saturate
1157   \details Saturates a signed value.
1158   \param [in]  value  Value to be saturated
1159   \param [in]    sat  Bit position to saturate to (1..32)
1160   \return             Saturated value
1161  */
__SSAT(int32_t val,uint32_t sat)1162 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1163 {
1164   if ((sat >= 1U) && (sat <= 32U))
1165   {
1166     const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1167     const int32_t min = -1 - max ;
1168     if (val > max)
1169     {
1170       return max;
1171     }
1172     else if (val < min)
1173     {
1174       return min;
1175     }
1176   }
1177   return val;
1178 }
1179 
1180 /**
1181   \brief   Unsigned Saturate
1182   \details Saturates an unsigned value.
1183   \param [in]  value  Value to be saturated
1184   \param [in]    sat  Bit position to saturate to (0..31)
1185   \return             Saturated value
1186  */
__USAT(int32_t val,uint32_t sat)1187 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1188 {
1189   if (sat <= 31U)
1190   {
1191     const uint32_t max = ((1U << sat) - 1U);
1192     if (val > (int32_t)max)
1193     {
1194       return max;
1195     }
1196     else if (val < 0)
1197     {
1198       return 0U;
1199     }
1200   }
1201   return (uint32_t)val;
1202 }
1203 
1204 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1205            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1206            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1207 
1208 
1209 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1210      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1211 /**
1212   \brief   Load-Acquire (8 bit)
1213   \details Executes a LDAB instruction for 8 bit value.
1214   \param [in]    ptr  Pointer to data
1215   \return             value of type uint8_t at (*ptr)
1216  */
__LDAB(volatile uint8_t * ptr)1217 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1218 {
1219   uint32_t result;
1220 
1221   __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1222   return ((uint8_t) result);
1223 }
1224 
1225 
1226 /**
1227   \brief   Load-Acquire (16 bit)
1228   \details Executes a LDAH instruction for 16 bit values.
1229   \param [in]    ptr  Pointer to data
1230   \return        value of type uint16_t at (*ptr)
1231  */
__LDAH(volatile uint16_t * ptr)1232 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1233 {
1234   uint32_t result;
1235 
1236   __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1237   return ((uint16_t) result);
1238 }
1239 
1240 
1241 /**
1242   \brief   Load-Acquire (32 bit)
1243   \details Executes a LDA instruction for 32 bit values.
1244   \param [in]    ptr  Pointer to data
1245   \return        value of type uint32_t at (*ptr)
1246  */
__LDA(volatile uint32_t * ptr)1247 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1248 {
1249   uint32_t result;
1250 
1251   __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
1252   return(result);
1253 }
1254 
1255 
1256 /**
1257   \brief   Store-Release (8 bit)
1258   \details Executes a STLB instruction for 8 bit values.
1259   \param [in]  value  Value to store
1260   \param [in]    ptr  Pointer to location
1261  */
__STLB(uint8_t value,volatile uint8_t * ptr)1262 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1263 {
1264   __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1265 }
1266 
1267 
1268 /**
1269   \brief   Store-Release (16 bit)
1270   \details Executes a STLH instruction for 16 bit values.
1271   \param [in]  value  Value to store
1272   \param [in]    ptr  Pointer to location
1273  */
__STLH(uint16_t value,volatile uint16_t * ptr)1274 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1275 {
1276   __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1277 }
1278 
1279 
1280 /**
1281   \brief   Store-Release (32 bit)
1282   \details Executes a STL instruction for 32 bit values.
1283   \param [in]  value  Value to store
1284   \param [in]    ptr  Pointer to location
1285  */
__STL(uint32_t value,volatile uint32_t * ptr)1286 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1287 {
1288   __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
1289 }
1290 
1291 
1292 /**
1293   \brief   Load-Acquire Exclusive (8 bit)
1294   \details Executes a LDAB exclusive instruction for 8 bit value.
1295   \param [in]    ptr  Pointer to data
1296   \return             value of type uint8_t at (*ptr)
1297  */
1298 #define     __LDAEXB                 (uint8_t)__builtin_arm_ldaex
1299 
1300 
1301 /**
1302   \brief   Load-Acquire Exclusive (16 bit)
1303   \details Executes a LDAH exclusive instruction for 16 bit values.
1304   \param [in]    ptr  Pointer to data
1305   \return        value of type uint16_t at (*ptr)
1306  */
1307 #define     __LDAEXH                 (uint16_t)__builtin_arm_ldaex
1308 
1309 
1310 /**
1311   \brief   Load-Acquire Exclusive (32 bit)
1312   \details Executes a LDA exclusive instruction for 32 bit values.
1313   \param [in]    ptr  Pointer to data
1314   \return        value of type uint32_t at (*ptr)
1315  */
1316 #define     __LDAEX                  (uint32_t)__builtin_arm_ldaex
1317 
1318 
1319 /**
1320   \brief   Store-Release Exclusive (8 bit)
1321   \details Executes a STLB exclusive instruction for 8 bit values.
1322   \param [in]  value  Value to store
1323   \param [in]    ptr  Pointer to location
1324   \return          0  Function succeeded
1325   \return          1  Function failed
1326  */
1327 #define     __STLEXB                 (uint32_t)__builtin_arm_stlex
1328 
1329 
1330 /**
1331   \brief   Store-Release Exclusive (16 bit)
1332   \details Executes a STLH exclusive instruction for 16 bit values.
1333   \param [in]  value  Value to store
1334   \param [in]    ptr  Pointer to location
1335   \return          0  Function succeeded
1336   \return          1  Function failed
1337  */
1338 #define     __STLEXH                 (uint32_t)__builtin_arm_stlex
1339 
1340 
1341 /**
1342   \brief   Store-Release Exclusive (32 bit)
1343   \details Executes a STL exclusive instruction for 32 bit values.
1344   \param [in]  value  Value to store
1345   \param [in]    ptr  Pointer to location
1346   \return          0  Function succeeded
1347   \return          1  Function failed
1348  */
1349 #define     __STLEX                  (uint32_t)__builtin_arm_stlex
1350 
1351 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1352            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1353 
1354 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1355 
1356 
1357 /* ###################  Compiler specific Intrinsics  ########################### */
1358 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1359   Access to dedicated SIMD instructions
1360   @{
1361 */
1362 
1363 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1364 
__SADD8(uint32_t op1,uint32_t op2)1365 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1366 {
1367   uint32_t result;
1368 
1369   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1370   return(result);
1371 }
1372 
__QADD8(uint32_t op1,uint32_t op2)1373 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1374 {
1375   uint32_t result;
1376 
1377   __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1378   return(result);
1379 }
1380 
__SHADD8(uint32_t op1,uint32_t op2)1381 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1382 {
1383   uint32_t result;
1384 
1385   __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1386   return(result);
1387 }
1388 
__UADD8(uint32_t op1,uint32_t op2)1389 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1390 {
1391   uint32_t result;
1392 
1393   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1394   return(result);
1395 }
1396 
__UQADD8(uint32_t op1,uint32_t op2)1397 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1398 {
1399   uint32_t result;
1400 
1401   __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1402   return(result);
1403 }
1404 
__UHADD8(uint32_t op1,uint32_t op2)1405 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1406 {
1407   uint32_t result;
1408 
1409   __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1410   return(result);
1411 }
1412 
1413 
__SSUB8(uint32_t op1,uint32_t op2)1414 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1415 {
1416   uint32_t result;
1417 
1418   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1419   return(result);
1420 }
1421 
__QSUB8(uint32_t op1,uint32_t op2)1422 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1423 {
1424   uint32_t result;
1425 
1426   __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1427   return(result);
1428 }
1429 
__SHSUB8(uint32_t op1,uint32_t op2)1430 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1431 {
1432   uint32_t result;
1433 
1434   __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1435   return(result);
1436 }
1437 
__USUB8(uint32_t op1,uint32_t op2)1438 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1439 {
1440   uint32_t result;
1441 
1442   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1443   return(result);
1444 }
1445 
__UQSUB8(uint32_t op1,uint32_t op2)1446 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1447 {
1448   uint32_t result;
1449 
1450   __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1451   return(result);
1452 }
1453 
__UHSUB8(uint32_t op1,uint32_t op2)1454 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1455 {
1456   uint32_t result;
1457 
1458   __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1459   return(result);
1460 }
1461 
1462 
__SADD16(uint32_t op1,uint32_t op2)1463 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1464 {
1465   uint32_t result;
1466 
1467   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1468   return(result);
1469 }
1470 
__QADD16(uint32_t op1,uint32_t op2)1471 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1472 {
1473   uint32_t result;
1474 
1475   __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1476   return(result);
1477 }
1478 
__SHADD16(uint32_t op1,uint32_t op2)1479 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1480 {
1481   uint32_t result;
1482 
1483   __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1484   return(result);
1485 }
1486 
__UADD16(uint32_t op1,uint32_t op2)1487 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1488 {
1489   uint32_t result;
1490 
1491   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1492   return(result);
1493 }
1494 
__UQADD16(uint32_t op1,uint32_t op2)1495 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1496 {
1497   uint32_t result;
1498 
1499   __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1500   return(result);
1501 }
1502 
__UHADD16(uint32_t op1,uint32_t op2)1503 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1504 {
1505   uint32_t result;
1506 
1507   __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1508   return(result);
1509 }
1510 
__SSUB16(uint32_t op1,uint32_t op2)1511 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1512 {
1513   uint32_t result;
1514 
1515   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1516   return(result);
1517 }
1518 
__QSUB16(uint32_t op1,uint32_t op2)1519 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1520 {
1521   uint32_t result;
1522 
1523   __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1524   return(result);
1525 }
1526 
__SHSUB16(uint32_t op1,uint32_t op2)1527 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1528 {
1529   uint32_t result;
1530 
1531   __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1532   return(result);
1533 }
1534 
__USUB16(uint32_t op1,uint32_t op2)1535 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1536 {
1537   uint32_t result;
1538 
1539   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1540   return(result);
1541 }
1542 
__UQSUB16(uint32_t op1,uint32_t op2)1543 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1544 {
1545   uint32_t result;
1546 
1547   __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1548   return(result);
1549 }
1550 
__UHSUB16(uint32_t op1,uint32_t op2)1551 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1552 {
1553   uint32_t result;
1554 
1555   __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1556   return(result);
1557 }
1558 
__SASX(uint32_t op1,uint32_t op2)1559 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1560 {
1561   uint32_t result;
1562 
1563   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1564   return(result);
1565 }
1566 
__QASX(uint32_t op1,uint32_t op2)1567 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1568 {
1569   uint32_t result;
1570 
1571   __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1572   return(result);
1573 }
1574 
__SHASX(uint32_t op1,uint32_t op2)1575 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1576 {
1577   uint32_t result;
1578 
1579   __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1580   return(result);
1581 }
1582 
__UASX(uint32_t op1,uint32_t op2)1583 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1584 {
1585   uint32_t result;
1586 
1587   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1588   return(result);
1589 }
1590 
__UQASX(uint32_t op1,uint32_t op2)1591 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1592 {
1593   uint32_t result;
1594 
1595   __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1596   return(result);
1597 }
1598 
__UHASX(uint32_t op1,uint32_t op2)1599 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1600 {
1601   uint32_t result;
1602 
1603   __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1604   return(result);
1605 }
1606 
__SSAX(uint32_t op1,uint32_t op2)1607 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1608 {
1609   uint32_t result;
1610 
1611   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1612   return(result);
1613 }
1614 
__QSAX(uint32_t op1,uint32_t op2)1615 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1616 {
1617   uint32_t result;
1618 
1619   __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1620   return(result);
1621 }
1622 
__SHSAX(uint32_t op1,uint32_t op2)1623 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1624 {
1625   uint32_t result;
1626 
1627   __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1628   return(result);
1629 }
1630 
__USAX(uint32_t op1,uint32_t op2)1631 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1632 {
1633   uint32_t result;
1634 
1635   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1636   return(result);
1637 }
1638 
__UQSAX(uint32_t op1,uint32_t op2)1639 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1640 {
1641   uint32_t result;
1642 
1643   __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1644   return(result);
1645 }
1646 
__UHSAX(uint32_t op1,uint32_t op2)1647 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1648 {
1649   uint32_t result;
1650 
1651   __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1652   return(result);
1653 }
1654 
__USAD8(uint32_t op1,uint32_t op2)1655 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1656 {
1657   uint32_t result;
1658 
1659   __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1660   return(result);
1661 }
1662 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1663 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1664 {
1665   uint32_t result;
1666 
1667   __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1668   return(result);
1669 }
1670 
1671 #define __SSAT16(ARG1,ARG2) \
1672 ({                          \
1673   int32_t __RES, __ARG1 = (ARG1); \
1674   __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1675   __RES; \
1676  })
1677 
1678 #define __USAT16(ARG1,ARG2) \
1679 ({                          \
1680   uint32_t __RES, __ARG1 = (ARG1); \
1681   __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1682   __RES; \
1683  })
1684 
__UXTB16(uint32_t op1)1685 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1686 {
1687   uint32_t result;
1688 
1689   __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1690   return(result);
1691 }
1692 
__UXTAB16(uint32_t op1,uint32_t op2)1693 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1694 {
1695   uint32_t result;
1696 
1697   __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1698   return(result);
1699 }
1700 
__SXTB16(uint32_t op1)1701 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1702 {
1703   uint32_t result;
1704 
1705   __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1706   return(result);
1707 }
1708 
__SXTAB16(uint32_t op1,uint32_t op2)1709 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1710 {
1711   uint32_t result;
1712 
1713   __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1714   return(result);
1715 }
1716 
__SMUAD(uint32_t op1,uint32_t op2)1717 __STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1718 {
1719   uint32_t result;
1720 
1721   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1722   return(result);
1723 }
1724 
__SMUADX(uint32_t op1,uint32_t op2)1725 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1726 {
1727   uint32_t result;
1728 
1729   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1730   return(result);
1731 }
1732 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1733 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1734 {
1735   uint32_t result;
1736 
1737   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1738   return(result);
1739 }
1740 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1741 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1742 {
1743   uint32_t result;
1744 
1745   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1746   return(result);
1747 }
1748 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1749 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1750 {
1751   union llreg_u{
1752     uint32_t w32[2];
1753     uint64_t w64;
1754   } llr;
1755   llr.w64 = acc;
1756 
1757 #ifndef __ARMEB__   /* Little endian */
1758   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1759 #else               /* Big endian */
1760   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1761 #endif
1762 
1763   return(llr.w64);
1764 }
1765 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1766 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1767 {
1768   union llreg_u{
1769     uint32_t w32[2];
1770     uint64_t w64;
1771   } llr;
1772   llr.w64 = acc;
1773 
1774 #ifndef __ARMEB__   /* Little endian */
1775   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1776 #else               /* Big endian */
1777   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1778 #endif
1779 
1780   return(llr.w64);
1781 }
1782 
__SMUSD(uint32_t op1,uint32_t op2)1783 __STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1784 {
1785   uint32_t result;
1786 
1787   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1788   return(result);
1789 }
1790 
__SMUSDX(uint32_t op1,uint32_t op2)1791 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1792 {
1793   uint32_t result;
1794 
1795   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1796   return(result);
1797 }
1798 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1799 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1800 {
1801   uint32_t result;
1802 
1803   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1804   return(result);
1805 }
1806 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1807 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1808 {
1809   uint32_t result;
1810 
1811   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1812   return(result);
1813 }
1814 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)1815 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1816 {
1817   union llreg_u{
1818     uint32_t w32[2];
1819     uint64_t w64;
1820   } llr;
1821   llr.w64 = acc;
1822 
1823 #ifndef __ARMEB__   /* Little endian */
1824   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1825 #else               /* Big endian */
1826   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1827 #endif
1828 
1829   return(llr.w64);
1830 }
1831 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)1832 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1833 {
1834   union llreg_u{
1835     uint32_t w32[2];
1836     uint64_t w64;
1837   } llr;
1838   llr.w64 = acc;
1839 
1840 #ifndef __ARMEB__   /* Little endian */
1841   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1842 #else               /* Big endian */
1843   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1844 #endif
1845 
1846   return(llr.w64);
1847 }
1848 
__SEL(uint32_t op1,uint32_t op2)1849 __STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
1850 {
1851   uint32_t result;
1852 
1853   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1854   return(result);
1855 }
1856 
__QADD(int32_t op1,int32_t op2)1857 __STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
1858 {
1859   int32_t result;
1860 
1861   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1862   return(result);
1863 }
1864 
__QSUB(int32_t op1,int32_t op2)1865 __STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
1866 {
1867   int32_t result;
1868 
1869   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1870   return(result);
1871 }
1872 
1873 #define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
1874                                            ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
1875 
1876 #define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
1877                                            ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
1878 
1879 #define __SXTB16_RORn(ARG1, ARG2)        __SXTB16(__ROR(ARG1, ARG2))
1880 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)1881 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1882 {
1883   int32_t result;
1884 
1885   __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
1886   return(result);
1887 }
1888 
1889 #endif /* (__ARM_FEATURE_DSP == 1) */
1890 /*@} end of group CMSIS_SIMD_intrinsics */
1891 
1892 
1893 #endif /* __CMSIS_ARMCLANG_H */
1894