1 /* $NetBSD: cephes_subrl.c,v 1.2 2014/10/10 14:06:40 christos Exp $ */
2 
3 /*-
4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software written by Stephen L. Moshier.
8  * It is redistributed by the NetBSD Foundation by permission of the author.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <complex.h>
33 #include <math.h>
34 #include "cephes_subrl.h"
35 
36 #ifdef _HAVE_LONG_DOUBLE_MATH
37 /* calculate cosh and sinh */
38 
39 void
_cchshl(long double x,long double * c,long double * s)40 _cchshl(long double x, long double *c, long double *s)
41 {
42 	long double e, ei;
43 
44 	if (fabsl(x) <= 0.5L) {
45 		*c = coshl(x);
46 		*s = sinhl(x);
47 	} else {
48 		e = expl(x);
49 		ei = 0.5L / e;
50 		e = 0.5L * e;
51 		*s = e - ei;
52 		*c = e + ei;
53 	}
54 }
55 
56 /* Program to subtract nearest integer multiple of PI */
57 
58 /* extended precision value of PI: */
59 static const long double DP1 = 3.14159265358979323829596852490908531763125L;
60 static const long double DP2 = 1.6667485837041756656403424829301998703007e-19L;
61 #ifndef __vax__
62 static const long double DP3 = 1.8830410776607851167459095484560349402753e-39L;
63 #define MACHEPL 1.1e-38L
64 #else
65 static const long double DP3 = 0L;
66 #define MACHEPL 1.1e-19L
67 #endif
68 
69 long double
_redupil(long double x)70 _redupil(long double x)
71 {
72 	long double t;
73 	long long i;
74 
75 	t = x / M_PIL;
76 	if (t >= 0.0L)
77 		t += 0.5L;
78 	else
79 		t -= 0.5L;
80 
81 	i = t;	/* the multiple */
82 	t = i;
83 	t = ((x - t * DP1) - t * DP2) - t * DP3;
84 	return t;
85 }
86 
87 /* Taylor series expansion for cosh(2y) - cos(2x) */
88 
89 long double
_ctansl(long double complex z)90 _ctansl(long double complex z)
91 {
92 	long double f, x, x2, y, y2, rn, t;
93 	long double d;
94 
95 	x = fabsl(2.0L * creall(z));
96 	y = fabsl(2.0L * cimagl(z));
97 
98 	x = _redupil(x);
99 
100 	x = x * x;
101 	y = y * y;
102 	x2 = 1.0L;
103 	y2 = 1.0L;
104 	f = 1.0L;
105 	rn = 0.0L;
106 	d = 0.0L;
107 	do {
108 		rn += 1.0L;
109 		f *= rn;
110 		rn += 1.0L;
111 		f *= rn;
112 		x2 *= x;
113 		y2 *= y;
114 		t = y2 + x2;
115 		t /= f;
116 		d += t;
117 
118 		rn += 1.0L;
119 		f *= rn;
120 		rn += 1.0L;
121 		f *= rn;
122 		x2 *= x;
123 		y2 *= y;
124 		t = y2 - x2;
125 		t /= f;
126 		d += t;
127 	} while (fabsl(t/d) > MACHEPL);
128 	return d;
129 }
130 
131 #endif
132