1 /*
2 * Copyright (c) 2020 Abram Early
3 * Copyright (c) 2023 Andriy Gelman
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #define DT_DRV_COMPAT microchip_mcp251xfd
9
10 #include "can_mcp251xfd.h"
11
12 #include <zephyr/device.h>
13 #include <zephyr/drivers/can/transceiver.h>
14 #include <zephyr/drivers/clock_control.h>
15 #include <zephyr/kernel.h>
16 #include <zephyr/sys/byteorder.h>
17 #include <zephyr/sys/crc.h>
18
19 #include <zephyr/logging/log.h>
20 LOG_MODULE_REGISTER(can_mcp251xfd, CONFIG_CAN_LOG_LEVEL);
21
22 #define SP_IS_SET(inst) DT_INST_NODE_HAS_PROP(inst, sample_point) ||
23
24 /*
25 * Macro to exclude the sample point algorithm from compilation if not used
26 * Without the macro, the algorithm would always waste ROM
27 */
28 #define USE_SP_ALGO (DT_INST_FOREACH_STATUS_OKAY(SP_IS_SET) 0)
29
mcp251xfd_canframe_to_txobj(const struct can_frame * src,int mailbox_idx,struct mcp251xfd_txobj * dst)30 static void mcp251xfd_canframe_to_txobj(const struct can_frame *src, int mailbox_idx,
31 struct mcp251xfd_txobj *dst)
32 {
33 memset(dst, 0, sizeof(*dst));
34
35 if ((src->flags & CAN_FRAME_IDE) != 0) {
36 dst->id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, src->id >> 18);
37 dst->id |= FIELD_PREP(MCP251XFD_OBJ_ID_EID_MASK, src->id);
38
39 dst->flags |= MCP251XFD_OBJ_FLAGS_IDE;
40 } else {
41 dst->id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, src->id);
42 }
43
44 if ((src->flags & CAN_FRAME_BRS) != 0) {
45 dst->flags |= MCP251XFD_OBJ_FLAGS_BRS;
46 }
47
48 dst->flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_DLC_MASK, src->dlc);
49 #if defined(CONFIG_CAN_FD_MODE)
50 if ((src->flags & CAN_FRAME_FDF) != 0) {
51 dst->flags |= MCP251XFD_OBJ_FLAGS_FDF;
52 }
53 #endif
54 dst->flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_SEQ_MASK, mailbox_idx);
55
56 dst->id = sys_cpu_to_le32(dst->id);
57 dst->flags = sys_cpu_to_le32(dst->flags);
58
59 if ((src->flags & CAN_FRAME_RTR) != 0) {
60 dst->flags |= MCP251XFD_OBJ_FLAGS_RTR;
61 } else {
62 memcpy(dst->data, src->data, MIN(can_dlc_to_bytes(src->dlc), CAN_MAX_DLEN));
63 }
64 }
65
mcp251xfd_read_reg(const struct device * dev,uint16_t addr,int len)66 static void *mcp251xfd_read_reg(const struct device *dev, uint16_t addr, int len)
67 {
68 const struct mcp251xfd_config *dev_cfg = dev->config;
69 struct mcp251xfd_data *dev_data = dev->data;
70 struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data;
71 uint16_t spi_cmd;
72 int ret;
73
74 spi_cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_READ | addr);
75 memcpy(&spi_data->header[1], &spi_cmd, sizeof(spi_cmd));
76
77 struct spi_buf tx_buf = {.buf = &spi_data->header[1], .len = MCP251XFD_SPI_CMD_LEN + len};
78 struct spi_buf rx_buf = {.buf = &spi_data->header[1], .len = MCP251XFD_SPI_CMD_LEN + len};
79
80 const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1};
81 const struct spi_buf_set rx = {.buffers = &rx_buf, .count = 1};
82
83 ret = spi_transceive_dt(&dev_cfg->bus, &tx, &rx);
84 if (ret < 0) {
85 return NULL;
86 }
87
88 return &spi_data->buf[0];
89 }
90
mcp251xfd_read_crc(const struct device * dev,uint16_t addr,int len)91 static void *mcp251xfd_read_crc(const struct device *dev, uint16_t addr, int len)
92 {
93 const struct mcp251xfd_config *dev_cfg = dev->config;
94 struct mcp251xfd_data *dev_data = dev->data;
95 struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data;
96 int num_retries = CONFIG_CAN_MCP251XFD_READ_CRC_RETRIES + 1;
97 int ret;
98
99 while (num_retries-- > 0) {
100 uint16_t crc_in, crc, spi_cmd;
101
102 struct spi_buf tx_buf = {.buf = &spi_data->header[0],
103 .len = MCP251XFD_SPI_CMD_LEN +
104 MCP251XFD_SPI_LEN_FIELD_LEN + len +
105 MCP251XFD_SPI_CRC_LEN};
106
107 struct spi_buf rx_buf = {.buf = &spi_data->header[0],
108 .len = MCP251XFD_SPI_CMD_LEN +
109 MCP251XFD_SPI_LEN_FIELD_LEN + len +
110 MCP251XFD_SPI_CRC_LEN};
111
112 const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1};
113 const struct spi_buf_set rx = {.buffers = &rx_buf, .count = 1};
114
115 spi_cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_READ_CRC | addr);
116 memcpy(&spi_data->header[0], &spi_cmd, sizeof(spi_cmd));
117 spi_data->header[2] = len;
118
119 /*
120 * Evaluate initial crc over spi_cmd and length as these value will change after
121 * spi transaction is finished.
122 */
123 crc_in = crc16(MCP251XFD_CRC_POLY, MCP251XFD_CRC_SEED,
124 (uint8_t *)(&spi_data->header[0]),
125 MCP251XFD_SPI_CMD_LEN + MCP251XFD_SPI_LEN_FIELD_LEN);
126
127 ret = spi_transceive_dt(&dev_cfg->bus, &tx, &rx);
128 if (ret < 0) {
129 continue;
130 }
131
132 /* Continue crc calculation over the data field and the crc field */
133 crc = crc16(MCP251XFD_CRC_POLY, crc_in, &spi_data->buf[0],
134 len + MCP251XFD_SPI_CRC_LEN);
135 if (crc == 0) {
136 return &spi_data->buf[0];
137 }
138 }
139
140 return NULL;
141 }
142
mcp251xfd_get_spi_buf_ptr(const struct device * dev)143 static inline void *mcp251xfd_get_spi_buf_ptr(const struct device *dev)
144 {
145 struct mcp251xfd_data *dev_data = dev->data;
146 struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data;
147
148 return &spi_data->buf[0];
149 }
150
mcp251xfd_write(const struct device * dev,uint16_t addr,int len)151 static int mcp251xfd_write(const struct device *dev, uint16_t addr, int len)
152 {
153 const struct mcp251xfd_config *dev_cfg = dev->config;
154 struct mcp251xfd_data *dev_data = dev->data;
155 struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data;
156 uint16_t spi_cmd;
157
158 struct spi_buf tx_buf = {.buf = &spi_data->header[1], .len = MCP251XFD_SPI_CMD_LEN + len};
159 const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1};
160
161 spi_cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_WRITE | addr);
162 memcpy(&spi_data->header[1], &spi_cmd, sizeof(spi_cmd));
163
164 return spi_write_dt(&dev_cfg->bus, &tx);
165 }
166
mcp251xfd_fifo_write(const struct device * dev,int mailbox_idx,const struct can_frame * msg)167 static int mcp251xfd_fifo_write(const struct device *dev, int mailbox_idx,
168 const struct can_frame *msg)
169 {
170 uint32_t *regs;
171 struct mcp251xfd_txobj *txobj;
172 uint8_t *reg_byte;
173 uint16_t address;
174 int tx_len;
175 int ret;
176
177 /* read fifosta and ua at the same time */
178 regs = mcp251xfd_read_crc(dev, MCP251XFD_REG_TXQSTA, MCP251XFD_REG_SIZE * 2);
179 if (!regs) {
180 LOG_ERR("Failed to read 8 bytes from REG_TXQSTA");
181 return -EINVAL;
182 }
183
184 /* check if fifo is full */
185 if (!(regs[0] & MCP251XFD_REG_TXQSTA_TXQNIF)) {
186 return -ENOMEM;
187 }
188
189 address = MCP251XFD_RAM_START_ADDR + regs[1];
190
191 txobj = mcp251xfd_get_spi_buf_ptr(dev);
192 mcp251xfd_canframe_to_txobj(msg, mailbox_idx, txobj);
193
194 tx_len = MCP251XFD_OBJ_HEADER_SIZE +
195 ROUND_UP(can_dlc_to_bytes(msg->dlc), MCP251XFD_RAM_ALIGNMENT);
196
197 ret = mcp251xfd_write(dev, address, tx_len);
198 if (ret < 0) {
199 return ret;
200 }
201
202 reg_byte = mcp251xfd_get_spi_buf_ptr(dev);
203 *reg_byte = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_TXQCON_UINC |
204 MCP251XFD_REG_TXQCON_TXREQ);
205
206 return mcp251xfd_write(dev, MCP251XFD_REG_TXQCON + 1, 1);
207 }
208
mcp251xfd_rxobj_to_canframe(struct mcp251xfd_rxobj * src,struct can_frame * dst)209 static void mcp251xfd_rxobj_to_canframe(struct mcp251xfd_rxobj *src, struct can_frame *dst)
210 {
211 memset(dst, 0, sizeof(*dst));
212
213 src->id = sys_le32_to_cpu(src->id);
214 src->flags = sys_le32_to_cpu(src->flags);
215
216 if ((src->flags & MCP251XFD_OBJ_FLAGS_IDE) != 0) {
217 dst->id = FIELD_GET(MCP251XFD_OBJ_ID_EID_MASK, src->id);
218 dst->id |= FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, src->id) << 18;
219 dst->flags |= CAN_FRAME_IDE;
220 } else {
221 dst->id = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, src->id);
222 }
223
224 if ((src->flags & MCP251XFD_OBJ_FLAGS_BRS) != 0) {
225 dst->flags |= CAN_FRAME_BRS;
226 }
227
228 #if defined(CONFIG_CAN_FD_MODE)
229 if ((src->flags & MCP251XFD_OBJ_FLAGS_FDF) != 0) {
230 dst->flags |= CAN_FRAME_FDF;
231 }
232 #endif
233
234 dst->dlc = FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC_MASK, src->flags);
235
236 #if defined(CONFIG_CAN_RX_TIMESTAMP)
237 dst->timestamp = sys_le32_to_cpu(src->timestamp);
238 #endif
239
240 if ((src->flags & MCP251XFD_OBJ_FLAGS_RTR) != 0) {
241 dst->flags |= CAN_FRAME_RTR;
242 } else {
243 memcpy(dst->data, src->data, MIN(can_dlc_to_bytes(dst->dlc), CAN_MAX_DLEN));
244 }
245 }
246
mcp251xfd_get_mode_internal(const struct device * dev,uint8_t * mode)247 static int mcp251xfd_get_mode_internal(const struct device *dev, uint8_t *mode)
248 {
249 uint8_t *reg_byte;
250 uint32_t mask = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_CON_OPMOD_MASK);
251
252 reg_byte = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON_B2, 1);
253 if (!reg_byte) {
254 return -EINVAL;
255 }
256
257 *mode = FIELD_GET(mask, *reg_byte);
258
259 return 0;
260 }
261
mcp251xfd_reg_check_value_wtimeout(const struct device * dev,uint16_t addr,uint32_t value,uint32_t mask,uint32_t timeout_usec,int retries,bool allow_yield)262 static int mcp251xfd_reg_check_value_wtimeout(const struct device *dev, uint16_t addr,
263 uint32_t value, uint32_t mask,
264 uint32_t timeout_usec, int retries, bool allow_yield)
265 {
266 uint32_t *reg;
267 uint32_t delay = timeout_usec / retries;
268
269 for (;;) {
270 reg = mcp251xfd_read_crc(dev, addr, MCP251XFD_REG_SIZE);
271 if (!reg) {
272 return -EINVAL;
273 }
274
275 *reg = sys_le32_to_cpu(*reg);
276
277 if ((*reg & mask) == value) {
278 return 0;
279 }
280
281 if (--retries < 0) {
282 LOG_ERR("Timeout validing 0x%x", addr);
283 return -EIO;
284 }
285
286 if (allow_yield) {
287 k_sleep(K_USEC(delay));
288 } else {
289 k_busy_wait(delay);
290 }
291 }
292 return 0;
293 }
294
mcp251xfd_set_tdc(const struct device * dev,bool is_enabled,int tdc_offset)295 static int mcp251xfd_set_tdc(const struct device *dev, bool is_enabled, int tdc_offset)
296 {
297 uint32_t *reg;
298
299 if (is_enabled &&
300 (tdc_offset < MCP251XFD_REG_TDC_TDCO_MIN || tdc_offset > MCP251XFD_REG_TDC_TDCO_MAX)) {
301 return -EINVAL;
302 }
303
304 reg = mcp251xfd_get_spi_buf_ptr(dev);
305
306 if (is_enabled) {
307 *reg = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK, MCP251XFD_REG_TDC_TDCMOD_AUTO);
308 *reg |= FIELD_PREP(MCP251XFD_REG_TDC_TDCO_MASK, tdc_offset);
309 } else {
310 *reg = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK, MCP251XFD_REG_TDC_TDCMOD_DISABLED);
311 }
312
313 *reg = sys_cpu_to_le32(*reg);
314
315 return mcp251xfd_write(dev, MCP251XFD_REG_TDC, MCP251XFD_REG_SIZE);
316 }
317
mcp251xfd_set_mode_internal(const struct device * dev,uint8_t requested_mode)318 static int mcp251xfd_set_mode_internal(const struct device *dev, uint8_t requested_mode)
319 {
320 struct mcp251xfd_data *dev_data = dev->data;
321 uint32_t *reg;
322 uint32_t opmod, reg_con;
323 int ret = 0;
324
325 k_mutex_lock(&dev_data->mutex, K_FOREVER);
326
327 reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE);
328 if (!reg) {
329 ret = -EINVAL;
330 goto done;
331 }
332
333 reg_con = sys_le32_to_cpu(*reg);
334
335 opmod = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, reg_con);
336 if (opmod == requested_mode) {
337 goto done;
338 }
339
340 #if defined(CONFIG_CAN_FD_MODE)
341 if (dev_data->current_mcp251xfd_mode == MCP251XFD_REG_CON_MODE_CONFIG) {
342 if (requested_mode == MCP251XFD_REG_CON_MODE_CAN2_0 ||
343 requested_mode == MCP251XFD_REG_CON_MODE_EXT_LOOPBACK ||
344 requested_mode == MCP251XFD_REG_CON_MODE_INT_LOOPBACK) {
345 ret = mcp251xfd_set_tdc(dev, false, 0);
346 } else if (requested_mode == MCP251XFD_REG_CON_MODE_MIXED) {
347 ret = mcp251xfd_set_tdc(dev, true, dev_data->tdco);
348 }
349
350 if (ret < 0) {
351 goto done;
352 }
353 }
354 #endif
355
356 reg_con &= ~MCP251XFD_REG_CON_REQOP_MASK;
357 reg_con |= FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, requested_mode);
358
359 *reg = sys_cpu_to_le32(reg_con);
360
361 ret = mcp251xfd_write(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE);
362 if (ret < 0) {
363 LOG_ERR("Failed to write REG_CON register [%d]", MCP251XFD_REG_CON);
364 goto done;
365 }
366
367 ret = mcp251xfd_reg_check_value_wtimeout(
368 dev, MCP251XFD_REG_CON, FIELD_PREP(MCP251XFD_REG_CON_OPMOD_MASK, requested_mode),
369 MCP251XFD_REG_CON_OPMOD_MASK, MCP251XFD_MODE_CHANGE_TIMEOUT_USEC,
370 MCP251XFD_MODE_CHANGE_RETRIES, true);
371 done:
372 k_mutex_unlock(&dev_data->mutex);
373 return ret;
374 }
375
mcp251xfd_set_mode(const struct device * dev,can_mode_t mode)376 static int mcp251xfd_set_mode(const struct device *dev, can_mode_t mode)
377 {
378 struct mcp251xfd_data *dev_data = dev->data;
379
380 if (dev_data->started) {
381 return -EBUSY;
382 }
383
384 /* todo: Add CAN_MODE_ONE_SHOT support */
385 if ((mode & (CAN_MODE_3_SAMPLES | CAN_MODE_ONE_SHOT)) != 0) {
386 return -ENOTSUP;
387 }
388
389 if (mode == CAN_MODE_NORMAL) {
390 dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_CAN2_0;
391 }
392
393 if ((mode & CAN_MODE_FD) != 0) {
394 #if defined(CONFIG_CAN_FD_MODE)
395 dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_MIXED;
396 #else
397 return -ENOTSUP;
398 #endif
399 }
400
401 if ((mode & CAN_MODE_LISTENONLY) != 0) {
402 dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_LISTENONLY;
403 }
404
405 if ((mode & CAN_MODE_LOOPBACK) != 0) {
406 dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_EXT_LOOPBACK;
407 }
408
409 dev_data->mode = mode;
410
411 return 0;
412 }
413
mcp251xfd_set_timing(const struct device * dev,const struct can_timing * timing)414 static int mcp251xfd_set_timing(const struct device *dev, const struct can_timing *timing)
415 {
416 struct mcp251xfd_data *dev_data = dev->data;
417 uint32_t *reg;
418 int ret;
419
420 if (!timing) {
421 return -EINVAL;
422 }
423
424 if (dev_data->started) {
425 return -EBUSY;
426 }
427
428 k_mutex_lock(&dev_data->mutex, K_FOREVER);
429
430 reg = mcp251xfd_get_spi_buf_ptr(dev);
431 *reg = FIELD_PREP(MCP251XFD_REG_NBTCFG_BRP_MASK, timing->prescaler - 1);
432 *reg |= FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG1_MASK,
433 timing->prop_seg + timing->phase_seg1 - 1);
434 *reg |= FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG2_MASK, timing->phase_seg2 - 1);
435 *reg |= FIELD_PREP(MCP251XFD_REG_NBTCFG_SJW_MASK, timing->sjw - 1);
436
437 ret = mcp251xfd_write(dev, MCP251XFD_REG_NBTCFG, MCP251XFD_REG_SIZE);
438 if (ret < 0) {
439 LOG_ERR("Failed to write NBTCFG register [%d]", ret);
440 }
441
442 k_mutex_unlock(&dev_data->mutex);
443
444 return ret;
445 }
446
447
448 #if defined(CONFIG_CAN_FD_MODE)
mcp251xfd_set_timing_data(const struct device * dev,const struct can_timing * timing)449 static int mcp251xfd_set_timing_data(const struct device *dev, const struct can_timing *timing)
450 {
451 struct mcp251xfd_data *dev_data = dev->data;
452 uint32_t *reg;
453 int ret;
454
455 if (!timing) {
456 return -EINVAL;
457 }
458
459 if (dev_data->started) {
460 return -EBUSY;
461 }
462
463 k_mutex_lock(&dev_data->mutex, K_FOREVER);
464
465 reg = mcp251xfd_get_spi_buf_ptr(dev);
466
467 *reg = FIELD_PREP(MCP251XFD_REG_DBTCFG_BRP_MASK, timing->prescaler - 1);
468 *reg |= FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG1_MASK,
469 timing->prop_seg + timing->phase_seg1 - 1);
470 *reg |= FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG2_MASK, timing->phase_seg2 - 1);
471 *reg |= FIELD_PREP(MCP251XFD_REG_DBTCFG_SJW_MASK, timing->sjw - 1);
472
473 *reg = sys_cpu_to_le32(*reg);
474
475 dev_data->tdco = timing->prescaler * (timing->prop_seg + timing->phase_seg1);
476
477 ret = mcp251xfd_write(dev, MCP251XFD_REG_DBTCFG, MCP251XFD_REG_SIZE);
478 if (ret < 0) {
479 LOG_ERR("Failed to write DBTCFG register [%d]", ret);
480 }
481
482 k_mutex_unlock(&dev_data->mutex);
483
484 return ret;
485 }
486 #endif
487
mcp251xfd_send(const struct device * dev,const struct can_frame * msg,k_timeout_t timeout,can_tx_callback_t callback,void * callback_arg)488 static int mcp251xfd_send(const struct device *dev, const struct can_frame *msg,
489 k_timeout_t timeout, can_tx_callback_t callback, void *callback_arg)
490 {
491 struct mcp251xfd_data *dev_data = dev->data;
492 uint8_t mailbox_idx;
493 int ret = 0;
494
495 LOG_DBG("Sending %d bytes. Id: 0x%x, ID type: %s %s %s %s", can_dlc_to_bytes(msg->dlc),
496 msg->id, msg->flags & CAN_FRAME_IDE ? "extended" : "standard",
497 msg->flags & CAN_FRAME_RTR ? "RTR" : "",
498 msg->flags & CAN_FRAME_FDF ? "FD frame" : "",
499 msg->flags & CAN_FRAME_BRS ? "BRS" : "");
500
501 __ASSERT_NO_MSG(callback != NULL);
502
503 if (!dev_data->started) {
504 return -ENETDOWN;
505 }
506
507 if (dev_data->state == CAN_STATE_BUS_OFF) {
508 return -ENETUNREACH;
509 }
510
511 if ((msg->flags & CAN_FRAME_FDF) == 0 && msg->dlc > CAN_MAX_DLC) {
512 LOG_ERR("DLC of %d without fd flag set.", msg->dlc);
513 return -EINVAL;
514 }
515
516 if ((msg->flags & CAN_FRAME_FDF) && !(dev_data->mode & CAN_MODE_FD)) {
517 return -ENOTSUP;
518 }
519
520 if (k_sem_take(&dev_data->tx_sem, timeout) != 0) {
521 return -EAGAIN;
522 }
523
524 k_mutex_lock(&dev_data->mutex, K_FOREVER);
525 for (mailbox_idx = 0; mailbox_idx < MCP251XFD_TX_QUEUE_ITEMS; mailbox_idx++) {
526 if ((BIT(mailbox_idx) & dev_data->mailbox_usage) == 0) {
527 dev_data->mailbox_usage |= BIT(mailbox_idx);
528 break;
529 }
530 }
531
532 if (mailbox_idx >= MCP251XFD_TX_QUEUE_ITEMS) {
533 k_sem_give(&dev_data->tx_sem);
534 ret = -EIO;
535 goto done;
536 }
537
538 dev_data->mailbox[mailbox_idx].cb = callback;
539 dev_data->mailbox[mailbox_idx].cb_arg = callback_arg;
540
541 ret = mcp251xfd_fifo_write(dev, mailbox_idx, msg);
542
543 if (ret < 0) {
544 dev_data->mailbox_usage &= ~BIT(mailbox_idx);
545 dev_data->mailbox[mailbox_idx].cb = NULL;
546 k_sem_give(&dev_data->tx_sem);
547 }
548
549 done:
550 k_mutex_unlock(&dev_data->mutex);
551 return ret;
552 }
553
mcp251xfd_add_rx_filter(const struct device * dev,can_rx_callback_t rx_cb,void * cb_arg,const struct can_filter * filter)554 static int mcp251xfd_add_rx_filter(const struct device *dev, can_rx_callback_t rx_cb, void *cb_arg,
555 const struct can_filter *filter)
556 {
557 struct mcp251xfd_data *dev_data = dev->data;
558 uint32_t *reg;
559 uint8_t *reg_byte;
560 int filter_idx;
561 int ret;
562
563 __ASSERT(rx_cb != NULL, "rx_cb can not be null");
564 k_mutex_lock(&dev_data->mutex, K_FOREVER);
565
566 for (filter_idx = 0; filter_idx < CONFIG_CAN_MAX_FILTER ; filter_idx++) {
567 if ((BIT(filter_idx) & dev_data->filter_usage) == 0) {
568 break;
569 }
570 }
571
572 if (filter_idx >= CONFIG_CAN_MAX_FILTER) {
573 filter_idx = -ENOSPC;
574 goto done;
575 }
576
577 if ((filter->flags & CAN_FILTER_RTR) != 0) {
578 filter_idx = -ENOTSUP;
579 goto done;
580 }
581
582 reg = mcp251xfd_get_spi_buf_ptr(dev);
583
584 if ((filter->flags & CAN_FILTER_IDE) != 0) {
585 *reg = FIELD_PREP(MCP251XFD_REG_FLTOBJ_SID_MASK, filter->id >> 18);
586 *reg |= FIELD_PREP(MCP251XFD_REG_FLTOBJ_EID_MASK, filter->id);
587 *reg |= MCP251XFD_REG_FLTOBJ_EXIDE;
588 } else {
589 *reg = FIELD_PREP(MCP251XFD_REG_FLTOBJ_SID_MASK, filter->id);
590 }
591
592 *reg = sys_cpu_to_le32(*reg);
593 ret = mcp251xfd_write(dev, MCP251XFD_REG_FLTOBJ(filter_idx), MCP251XFD_REG_SIZE);
594 if (ret < 0) {
595 LOG_ERR("Failed to write FLTOBJ register [%d]", ret);
596 goto done;
597 }
598
599 reg = mcp251xfd_get_spi_buf_ptr(dev);
600 if ((filter->flags & CAN_FILTER_IDE) != 0) {
601 *reg = FIELD_PREP(MCP251XFD_REG_MASK_MSID_MASK, filter->mask >> 18);
602 *reg |= FIELD_PREP(MCP251XFD_REG_MASK_MEID_MASK, filter->mask);
603 } else {
604 *reg = FIELD_PREP(MCP251XFD_REG_MASK_MSID_MASK, filter->mask);
605 }
606 *reg |= MCP251XFD_REG_MASK_MIDE;
607
608 *reg = sys_cpu_to_le32(*reg);
609
610 ret = mcp251xfd_write(dev, MCP251XFD_REG_FLTMASK(filter_idx), MCP251XFD_REG_SIZE);
611 if (ret < 0) {
612 LOG_ERR("Failed to write FLTMASK register [%d]", ret);
613 goto done;
614 }
615
616 reg_byte = mcp251xfd_get_spi_buf_ptr(dev);
617 *reg_byte = MCP251XFD_REG_BYTE_FLTCON_FLTEN;
618 *reg_byte |= FIELD_PREP(MCP251XFD_REG_BYTE_FLTCON_FBP_MASK, MCP251XFD_RX_FIFO_IDX);
619
620 ret = mcp251xfd_write(dev, MCP251XFD_REG_BYTE_FLTCON(filter_idx), 1);
621 if (ret < 0) {
622 LOG_ERR("Failed to write FLTCON register [%d]", ret);
623 goto done;
624 }
625
626 dev_data->filter_usage |= BIT(filter_idx);
627 dev_data->filter[filter_idx] = *filter;
628 dev_data->rx_cb[filter_idx] = rx_cb;
629 dev_data->cb_arg[filter_idx] = cb_arg;
630
631 done:
632 k_mutex_unlock(&dev_data->mutex);
633
634 return filter_idx;
635 }
636
mcp251xfd_remove_rx_filter(const struct device * dev,int filter_idx)637 static void mcp251xfd_remove_rx_filter(const struct device *dev, int filter_idx)
638 {
639 struct mcp251xfd_data *dev_data = dev->data;
640 uint8_t *reg_byte;
641 uint32_t *reg;
642 int ret;
643
644 if (filter_idx < 0 || filter_idx >= CONFIG_CAN_MAX_FILTER) {
645 LOG_ERR("Filter ID %d out of bounds", filter_idx);
646 return;
647 }
648
649 k_mutex_lock(&dev_data->mutex, K_FOREVER);
650
651 reg_byte = mcp251xfd_get_spi_buf_ptr(dev);
652 *reg_byte = 0;
653
654 ret = mcp251xfd_write(dev, MCP251XFD_REG_BYTE_FLTCON(filter_idx), 1);
655 if (ret < 0) {
656 LOG_ERR("Failed to write FLTCON register [%d]", ret);
657 goto done;
658 }
659
660 dev_data->filter_usage &= ~BIT(filter_idx);
661
662 reg = mcp251xfd_get_spi_buf_ptr(dev);
663 reg[0] = 0;
664
665 ret = mcp251xfd_write(dev, MCP251XFD_REG_FLTCON(filter_idx), MCP251XFD_REG_SIZE);
666 if (ret < 0) {
667 LOG_ERR("Failed to write FLTCON register [%d]", ret);
668 }
669
670 done:
671 k_mutex_unlock(&dev_data->mutex);
672 }
673
mcp251xfd_set_state_change_callback(const struct device * dev,can_state_change_callback_t cb,void * user_data)674 static void mcp251xfd_set_state_change_callback(const struct device *dev,
675 can_state_change_callback_t cb, void *user_data)
676 {
677 struct mcp251xfd_data *dev_data = dev->data;
678
679 dev_data->state_change_cb = cb;
680 dev_data->state_change_cb_data = user_data;
681 }
682
mcp251xfd_get_state(const struct device * dev,enum can_state * state,struct can_bus_err_cnt * err_cnt)683 static int mcp251xfd_get_state(const struct device *dev, enum can_state *state,
684 struct can_bus_err_cnt *err_cnt)
685 {
686 struct mcp251xfd_data *dev_data = dev->data;
687 uint32_t *reg;
688 int ret = 0;
689
690 k_mutex_lock(&dev_data->mutex, K_FOREVER);
691
692 reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_TREC, MCP251XFD_REG_SIZE);
693 if (!reg) {
694 ret = -EINVAL;
695 goto done;
696 }
697
698 *reg = sys_le32_to_cpu(*reg);
699
700 if (err_cnt != NULL) {
701 err_cnt->tx_err_cnt = FIELD_GET(MCP251XFD_REG_TREC_TEC_MASK, *reg);
702 err_cnt->rx_err_cnt = FIELD_GET(MCP251XFD_REG_TREC_REC_MASK, *reg);
703 }
704
705 if (state == NULL) {
706 goto done;
707 }
708
709 if (!dev_data->started) {
710 *state = CAN_STATE_STOPPED;
711 goto done;
712 }
713
714 if ((*reg & MCP251XFD_REG_TREC_TXBO) != 0) {
715 *state = CAN_STATE_BUS_OFF;
716 } else if ((*reg & MCP251XFD_REG_TREC_TXBP) != 0) {
717 *state = CAN_STATE_ERROR_PASSIVE;
718 } else if ((*reg & MCP251XFD_REG_TREC_RXBP) != 0) {
719 *state = CAN_STATE_ERROR_PASSIVE;
720 } else if ((*reg & MCP251XFD_REG_TREC_TXWARN) != 0) {
721 *state = CAN_STATE_ERROR_WARNING;
722 } else if ((*reg & MCP251XFD_REG_TREC_RXWARN) != 0) {
723 *state = CAN_STATE_ERROR_WARNING;
724 } else {
725 *state = CAN_STATE_ERROR_ACTIVE;
726 }
727
728 done:
729 k_mutex_unlock(&dev_data->mutex);
730 return 0;
731 }
732
mcp251xfd_get_core_clock(const struct device * dev,uint32_t * rate)733 static int mcp251xfd_get_core_clock(const struct device *dev, uint32_t *rate)
734 {
735 const struct mcp251xfd_config *dev_cfg = dev->config;
736
737 *rate = dev_cfg->osc_freq;
738 return 0;
739 }
740
mcp251xfd_get_max_filters(const struct device * dev,bool ide)741 static int mcp251xfd_get_max_filters(const struct device *dev, bool ide)
742 {
743 ARG_UNUSED(ide);
744
745 return CONFIG_CAN_MAX_FILTER;
746 }
747
mcp251xfd_get_max_bitrate(const struct device * dev,uint32_t * max_bitrate)748 static int mcp251xfd_get_max_bitrate(const struct device *dev, uint32_t *max_bitrate)
749 {
750 const struct mcp251xfd_config *dev_cfg = dev->config;
751
752 *max_bitrate = dev_cfg->max_bitrate;
753
754 return 0;
755 }
756
757 #ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
mcp251xfd_recover(const struct device * dev,k_timeout_t timeout)758 static int mcp251xfd_recover(const struct device *dev, k_timeout_t timeout)
759 {
760 struct mcp251xfd_data *dev_data = dev->data;
761
762 ARG_UNUSED(timeout);
763
764 if (!dev_data->started) {
765 return -ENETDOWN;
766 }
767
768 return -ENOTSUP;
769 }
770 #endif
771
mcp251xfd_handle_fifo_read(const struct device * dev,const struct mcp251xfd_fifo * fifo,uint8_t fifo_type)772 static int mcp251xfd_handle_fifo_read(const struct device *dev, const struct mcp251xfd_fifo *fifo,
773 uint8_t fifo_type)
774 {
775 int ret = 0;
776 struct mcp251xfd_data *dev_data = dev->data;
777 uint32_t *regs, fifosta, ua;
778 uint8_t *reg_byte;
779
780 int len;
781 int fetch_total = 0;
782 int ui_inc = 0;
783 uint32_t fifo_tail_index, fifo_tail_addr;
784 uint8_t fifo_head_index;
785
786 k_mutex_lock(&dev_data->mutex, K_FOREVER);
787
788 /* read in FIFOSTA and FIFOUA at the same time */
789 regs = mcp251xfd_read_crc(dev, MCP251XFD_REG_FIFOCON_TO_STA(fifo->reg_fifocon_addr),
790 2 * MCP251XFD_REG_SIZE);
791 if (!regs) {
792 ret = -EINVAL;
793 goto done;
794 }
795 fifosta = sys_le32_to_cpu(regs[0]);
796 ua = sys_le32_to_cpu(regs[1]);
797
798 /* is there any data in the fifo? */
799 if (!(fifosta & MCP251XFD_REG_FIFOSTA_TFNRFNIF)) {
800 goto done;
801 }
802
803 fifo_tail_addr = ua;
804 fifo_tail_index = (fifo_tail_addr - fifo->ram_start_addr) / fifo->item_size;
805
806 if (fifo_type == MCP251XFD_FIFO_TYPE_RX) {
807 /*
808 * fifo_head_index points where the next message will be written.
809 * It points to one past the end of the fifo.
810 */
811 fifo_head_index = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifosta);
812 if (fifo_head_index == 0) {
813 fifo_head_index = fifo->capacity - 1;
814 } else {
815 fifo_head_index -= 1;
816 }
817
818 if (fifo_tail_index > fifo_head_index) {
819 /* fetch to the end of the memory and then wrap to the start */
820 fetch_total = fifo->capacity - 1 - fifo_tail_index + 1;
821 fetch_total += fifo_head_index + 1;
822 } else {
823 fetch_total = fifo_head_index - fifo_tail_index + 1;
824 }
825 } else if (fifo_type == MCP251XFD_FIFO_TYPE_TEF) {
826 /* FIFOCI doesn't exist for TEF queues, so fetch one message at a time */
827 fifo_head_index = fifo_tail_index;
828 fetch_total = 1;
829 } else {
830 ret = -EINVAL;
831 goto done;
832 }
833
834 while (fetch_total > 0) {
835 uint16_t memory_addr;
836 uint8_t *data;
837
838 if (fifo_tail_index > fifo_head_index) {
839 len = fifo->capacity - 1 - fifo_tail_index + 1;
840 } else {
841 len = fifo_head_index - fifo_tail_index + 1;
842 }
843
844 memory_addr = MCP251XFD_RAM_START_ADDR + fifo->ram_start_addr +
845 fifo_tail_index * fifo->item_size;
846
847 data = mcp251xfd_read_reg(dev, memory_addr, len * fifo->item_size);
848 if (!data) {
849 LOG_ERR("Error fetching batch message");
850 ret = -EINVAL;
851 goto done;
852 }
853
854 for (int i = 0; i < len; i++) {
855 fifo->msg_handler(dev, (void *)(&data[i * fifo->item_size]));
856 }
857
858 fifo_tail_index = (fifo_tail_index + len) % fifo->capacity;
859 fetch_total -= len;
860 ui_inc += len;
861 }
862
863 reg_byte = mcp251xfd_get_spi_buf_ptr(dev);
864 *reg_byte = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_FIFOCON_UINC);
865
866 for (int i = 0; i < ui_inc; i++) {
867 ret = mcp251xfd_write(dev, fifo->reg_fifocon_addr + 1, 1);
868 if (ret < 0) {
869 LOG_ERR("Failed to increment pointer");
870 goto done;
871 }
872 }
873
874 done:
875 k_mutex_unlock(&dev_data->mutex);
876 return ret;
877 }
878
mcp251xfd_reset_tx_fifos(const struct device * dev,int status)879 static void mcp251xfd_reset_tx_fifos(const struct device *dev, int status)
880 {
881 struct mcp251xfd_data *dev_data = dev->data;
882
883 LOG_INF("All FIFOs Reset");
884 k_mutex_lock(&dev_data->mutex, K_FOREVER);
885 for (int i = 0; i < MCP251XFD_TX_QUEUE_ITEMS; i++) {
886 can_tx_callback_t callback;
887
888 if (!(dev_data->mailbox_usage & BIT(i))) {
889 continue;
890 }
891
892 callback = dev_data->mailbox[i].cb;
893 if (callback) {
894 callback(dev, status, dev_data->mailbox[i].cb_arg);
895 }
896
897 dev_data->mailbox_usage &= ~BIT(i);
898 dev_data->mailbox[i].cb = NULL;
899 k_sem_give(&dev_data->tx_sem);
900 }
901 k_mutex_unlock(&dev_data->mutex);
902 }
903
904 /*
905 * CERRIF will be set each time a threshold in the TEC/REC counter is crossed by the following
906 * conditions:
907 * • TEC or REC exceeds the Error Warning state threshold
908 * • The transmitter or receiver transitions to Error Passive state
909 * • The transmitter transitions to Bus Off state
910 * • The transmitter or receiver transitions from Error Passive to Error Active state
911 * • The module transitions from Bus Off to Error Active state, after the bus off recovery
912 * sequence
913 * When the user clears CERRIF, it will remain clear until a new counter crossing occurs.
914 */
mcp251xfd_handle_cerrif(const struct device * dev)915 static int mcp251xfd_handle_cerrif(const struct device *dev)
916 {
917 enum can_state new_state;
918 struct mcp251xfd_data *dev_data = dev->data;
919 struct can_bus_err_cnt err_cnt;
920 int ret = 0;
921
922 k_mutex_lock(&dev_data->mutex, K_FOREVER);
923
924 ret = mcp251xfd_get_state(dev, &new_state, &err_cnt);
925 if (ret < 0) {
926 goto done;
927 }
928
929 if (new_state == dev_data->state) {
930 goto done;
931 }
932
933 LOG_INF("State %d -> %d (tx: %d, rx: %d)", dev_data->state, new_state, err_cnt.tx_err_cnt,
934 err_cnt.rx_err_cnt);
935
936 /* Upon entering bus-off, all the fifos are reset. */
937 dev_data->state = new_state;
938 if (new_state == CAN_STATE_BUS_OFF) {
939 mcp251xfd_reset_tx_fifos(dev, -ENETDOWN);
940 }
941
942 if (dev_data->state_change_cb) {
943 dev_data->state_change_cb(dev, new_state, err_cnt, dev_data->state_change_cb_data);
944 }
945
946 done:
947 k_mutex_unlock(&dev_data->mutex);
948 return ret;
949 }
950
mcp251xfd_handle_modif(const struct device * dev)951 static int mcp251xfd_handle_modif(const struct device *dev)
952 {
953 struct mcp251xfd_data *dev_data = dev->data;
954 uint8_t mode;
955 int ret;
956
957 k_mutex_lock(&dev_data->mutex, K_FOREVER);
958
959 ret = mcp251xfd_get_mode_internal(dev, &mode);
960 if (ret < 0) {
961 goto finish;
962 }
963
964 dev_data->current_mcp251xfd_mode = mode;
965
966 LOG_INF("Switched to mode %d", mode);
967
968 if (mode == dev_data->next_mcp251xfd_mode) {
969 ret = 0;
970 goto finish;
971 }
972
973 /* try to transition back into our target mode */
974 if (dev_data->started) {
975 LOG_INF("Switching back into mode %d", dev_data->next_mcp251xfd_mode);
976 ret = mcp251xfd_set_mode_internal(dev, dev_data->next_mcp251xfd_mode);
977 }
978
979 finish:
980 k_mutex_unlock(&dev_data->mutex);
981 return ret;
982 }
983
mcp251xfd_handle_ivmif(const struct device * dev)984 static int mcp251xfd_handle_ivmif(const struct device *dev)
985 {
986 uint32_t *reg;
987 struct mcp251xfd_data *dev_data = dev->data;
988 int ret;
989
990 k_mutex_lock(&dev_data->mutex, K_FOREVER);
991
992 reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_BDIAG1, MCP251XFD_REG_SIZE);
993 if (!reg) {
994 ret = -EINVAL;
995 goto done;
996 }
997
998 *reg = sys_le32_to_cpu(*reg);
999
1000 if ((*reg & MCP251XFD_REG_BDIAG1_TXBOERR) != 0) {
1001 LOG_INF("ivmif bus-off error");
1002 mcp251xfd_reset_tx_fifos(dev, -ENETDOWN);
1003 }
1004
1005 /* Clear the values in diag */
1006 reg = mcp251xfd_get_spi_buf_ptr(dev);
1007 reg[0] = 0;
1008 ret = mcp251xfd_write(dev, MCP251XFD_REG_BDIAG1, MCP251XFD_REG_SIZE);
1009
1010 done:
1011 k_mutex_unlock(&dev_data->mutex);
1012 return ret;
1013 }
1014
mcp251xfd_handle_interrupts(const struct device * dev)1015 static void mcp251xfd_handle_interrupts(const struct device *dev)
1016 {
1017 const struct mcp251xfd_config *dev_cfg = dev->config;
1018 struct mcp251xfd_data *dev_data = dev->data;
1019 uint16_t *reg_int_hw;
1020 uint32_t reg_int;
1021 int ret;
1022 uint8_t consecutive_calls = 0;
1023
1024 while (1) {
1025 k_mutex_lock(&dev_data->mutex, K_FOREVER);
1026 reg_int_hw = mcp251xfd_read_crc(dev, MCP251XFD_REG_INT, sizeof(*reg_int_hw));
1027
1028 if (!reg_int_hw) {
1029 k_mutex_unlock(&dev_data->mutex);
1030 continue;
1031 }
1032
1033 *reg_int_hw = sys_le16_to_cpu(*reg_int_hw);
1034
1035 reg_int = *reg_int_hw;
1036
1037 /* these interrupt flags need to be explicitly cleared */
1038 if (*reg_int_hw & MCP251XFD_REG_INT_IF_CLEARABLE_MASK) {
1039
1040 *reg_int_hw &= ~MCP251XFD_REG_INT_IF_CLEARABLE_MASK;
1041
1042 *reg_int_hw = sys_cpu_to_le16(*reg_int_hw);
1043
1044 ret = mcp251xfd_write(dev, MCP251XFD_REG_INT, sizeof(*reg_int_hw));
1045 if (ret) {
1046 LOG_ERR("Error clearing REG_INT interrupts [%d]", ret);
1047 }
1048 }
1049
1050 k_mutex_unlock(&dev_data->mutex);
1051
1052 if ((reg_int & MCP251XFD_REG_INT_RXIF) != 0) {
1053 ret = mcp251xfd_handle_fifo_read(dev, &dev_cfg->rx_fifo,
1054 MCP251XFD_FIFO_TYPE_RX);
1055 if (ret < 0) {
1056 LOG_ERR("Error handling RXIF [%d]", ret);
1057 }
1058 }
1059
1060 if ((reg_int & MCP251XFD_REG_INT_TEFIF) != 0) {
1061 ret = mcp251xfd_handle_fifo_read(dev, &dev_cfg->tef_fifo,
1062 MCP251XFD_FIFO_TYPE_TEF);
1063 if (ret < 0) {
1064 LOG_ERR("Error handling TEFIF [%d]", ret);
1065 }
1066 }
1067
1068 if ((reg_int & MCP251XFD_REG_INT_IVMIF) != 0) {
1069 ret = mcp251xfd_handle_ivmif(dev);
1070 if (ret < 0) {
1071 LOG_ERR("Error handling IVMIF [%d]", ret);
1072 }
1073 }
1074
1075 if ((reg_int & MCP251XFD_REG_INT_MODIF) != 0) {
1076 ret = mcp251xfd_handle_modif(dev);
1077 if (ret < 0) {
1078 LOG_ERR("Error handling MODIF [%d]", ret);
1079 }
1080 }
1081
1082 /*
1083 * From Linux mcp251xfd driver
1084 * On the MCP2527FD and MCP2518FD, we don't get a CERRIF IRQ on the transition
1085 * TX ERROR_WARNING -> TX ERROR_ACTIVE.
1086 */
1087 if ((reg_int & MCP251XFD_REG_INT_CERRIF) ||
1088 dev_data->state > CAN_STATE_ERROR_ACTIVE) {
1089 ret = mcp251xfd_handle_cerrif(dev);
1090 if (ret < 0) {
1091 LOG_ERR("Error handling CERRIF [%d]", ret);
1092 }
1093 }
1094
1095 /* Break from loop if INT pin is inactive */
1096 consecutive_calls++;
1097 ret = gpio_pin_get_dt(&dev_cfg->int_gpio_dt);
1098 if (ret < 0) {
1099 LOG_ERR("Couldn't read INT pin [%d]", ret);
1100 } else if (ret == 0) {
1101 /* All interrupt flags handled */
1102 break;
1103 } else if (consecutive_calls % MCP251XFD_MAX_INT_HANDLER_CALLS == 0) {
1104 /* If there are clock problems, then MODIF cannot be cleared. */
1105 /* This is detected if there are too many consecutive calls. */
1106 /* Sleep this thread if this happens. */
1107 k_sleep(K_USEC(MCP251XFD_INT_HANDLER_SLEEP_USEC));
1108 }
1109 }
1110 }
1111
mcp251xfd_int_thread(const struct device * dev)1112 static void mcp251xfd_int_thread(const struct device *dev)
1113 {
1114 const struct mcp251xfd_config *dev_cfg = dev->config;
1115 struct mcp251xfd_data *dev_data = dev->data;
1116
1117 while (1) {
1118 int ret;
1119
1120 k_sem_take(&dev_data->int_sem, K_FOREVER);
1121 mcp251xfd_handle_interrupts(dev);
1122
1123 /* Re-enable pin interrupts */
1124 ret = gpio_pin_interrupt_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INT_LEVEL_ACTIVE);
1125 if (ret < 0) {
1126 LOG_ERR("Couldn't enable pin interrupt [%d]", ret);
1127 k_oops();
1128 }
1129 }
1130 }
1131
mcp251xfd_int_gpio_callback(const struct device * dev_gpio,struct gpio_callback * cb,uint32_t pins)1132 static void mcp251xfd_int_gpio_callback(const struct device *dev_gpio, struct gpio_callback *cb,
1133 uint32_t pins)
1134 {
1135 ARG_UNUSED(dev_gpio);
1136 struct mcp251xfd_data *dev_data = CONTAINER_OF(cb, struct mcp251xfd_data, int_gpio_cb);
1137 const struct device *dev = dev_data->dev;
1138 const struct mcp251xfd_config *dev_cfg = dev->config;
1139 int ret;
1140
1141 /* Disable pin interrupts */
1142 ret = gpio_pin_interrupt_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INT_DISABLE);
1143 if (ret < 0) {
1144 LOG_ERR("Couldn't disable pin interrupt [%d]", ret);
1145 k_oops();
1146 }
1147
1148 k_sem_give(&dev_data->int_sem);
1149 }
1150
mcp251xfd_get_capabilities(const struct device * dev,can_mode_t * cap)1151 static int mcp251xfd_get_capabilities(const struct device *dev, can_mode_t *cap)
1152 {
1153 ARG_UNUSED(dev);
1154
1155 *cap = CAN_MODE_NORMAL | CAN_MODE_LISTENONLY | CAN_MODE_LOOPBACK;
1156
1157 #if defined(CONFIG_CAN_FD_MODE)
1158 *cap |= CAN_MODE_FD;
1159 #endif
1160
1161 return 0;
1162 }
1163
mcp251xfd_start(const struct device * dev)1164 static int mcp251xfd_start(const struct device *dev)
1165 {
1166 struct mcp251xfd_data *dev_data = dev->data;
1167 const struct mcp251xfd_config *dev_cfg = dev->config;
1168 int ret;
1169
1170 if (dev_data->started) {
1171 return -EALREADY;
1172 }
1173
1174 /* in case of a race between mcp251xfd_send() and mcp251xfd_stop() */
1175 mcp251xfd_reset_tx_fifos(dev, -ENETDOWN);
1176
1177 if (dev_cfg->phy != NULL) {
1178 ret = can_transceiver_enable(dev_cfg->phy);
1179 if (ret < 0) {
1180 LOG_ERR("Failed to enable CAN transceiver [%d]", ret);
1181 return ret;
1182 }
1183 }
1184
1185 k_mutex_lock(&dev_data->mutex, K_FOREVER);
1186
1187 ret = mcp251xfd_set_mode_internal(dev, dev_data->next_mcp251xfd_mode);
1188 if (ret < 0) {
1189 LOG_ERR("Failed to set the mode [%d]", ret);
1190 if (dev_cfg->phy != NULL) {
1191 /* Attempt to disable the CAN transceiver in case of error */
1192 (void)can_transceiver_disable(dev_cfg->phy);
1193 }
1194 } else {
1195 dev_data->started = true;
1196 }
1197
1198 k_mutex_unlock(&dev_data->mutex);
1199
1200 return ret;
1201 }
1202
mcp251xfd_stop(const struct device * dev)1203 static int mcp251xfd_stop(const struct device *dev)
1204 {
1205 struct mcp251xfd_data *dev_data = dev->data;
1206 const struct mcp251xfd_config *dev_cfg = dev->config;
1207 uint8_t *reg_byte;
1208 int ret;
1209
1210 if (!dev_data->started) {
1211 return -EALREADY;
1212 }
1213
1214 k_mutex_lock(&dev_data->mutex, K_FOREVER);
1215
1216 /* abort all transmissions */
1217 reg_byte = mcp251xfd_get_spi_buf_ptr(dev);
1218 *reg_byte = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_CON_ABAT);
1219
1220 ret = mcp251xfd_write(dev, MCP251XFD_REG_CON_B3, 1);
1221 if (ret < 0) {
1222 k_mutex_unlock(&dev_data->mutex);
1223 return ret;
1224 }
1225
1226 /* wait for all the messages to be aborted */
1227 while (1) {
1228 reg_byte = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON_B3, 1);
1229
1230 if (!reg_byte ||
1231 (*reg_byte & MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_CON_ABAT)) == 0) {
1232 break;
1233 }
1234 }
1235
1236 mcp251xfd_reset_tx_fifos(dev, -ENETDOWN);
1237
1238 ret = mcp251xfd_set_mode_internal(dev, MCP251XFD_REG_CON_MODE_CONFIG);
1239 if (ret < 0) {
1240 k_mutex_unlock(&dev_data->mutex);
1241 return ret;
1242 }
1243
1244 dev_data->started = false;
1245 k_mutex_unlock(&dev_data->mutex);
1246
1247 if (dev_cfg->phy != NULL) {
1248 ret = can_transceiver_disable(dev_cfg->phy);
1249 if (ret < 0) {
1250 LOG_ERR("Failed to disable CAN transceiver [%d]", ret);
1251 return ret;
1252 }
1253 }
1254
1255 return 0;
1256 }
1257
mcp251xfd_rx_fifo_handler(const struct device * dev,void * data)1258 static void mcp251xfd_rx_fifo_handler(const struct device *dev, void *data)
1259 {
1260 struct can_frame dst;
1261 struct mcp251xfd_data *dev_data = dev->data;
1262 struct mcp251xfd_rxobj *rxobj = data;
1263 uint32_t filhit;
1264
1265 mcp251xfd_rxobj_to_canframe(rxobj, &dst);
1266
1267 filhit = FIELD_GET(MCP251XFD_OBJ_FILHIT_MASK, rxobj->flags);
1268 if ((dev_data->filter_usage & BIT(filhit)) != 0) {
1269 LOG_DBG("Received msg CAN id: 0x%x", dst.id);
1270 dev_data->rx_cb[filhit](dev, &dst, dev_data->cb_arg[filhit]);
1271 }
1272 }
1273
mcp251xfd_tef_fifo_handler(const struct device * dev,void * data)1274 static void mcp251xfd_tef_fifo_handler(const struct device *dev, void *data)
1275 {
1276 struct mcp251xfd_data *dev_data = dev->data;
1277 can_tx_callback_t callback;
1278 struct mcp251xfd_tefobj *tefobj = data;
1279 uint8_t mailbox_idx;
1280
1281 mailbox_idx = FIELD_GET(MCP251XFD_OBJ_FLAGS_SEQ_MASK, tefobj->flags);
1282 if (mailbox_idx >= MCP251XFD_TX_QUEUE_ITEMS) {
1283 mcp251xfd_reset_tx_fifos(dev, -EIO);
1284 LOG_ERR("Invalid mailbox index");
1285 return;
1286 }
1287
1288 callback = dev_data->mailbox[mailbox_idx].cb;
1289 if (callback != NULL) {
1290 callback(dev, 0, dev_data->mailbox[mailbox_idx].cb_arg);
1291 }
1292
1293 dev_data->mailbox_usage &= ~BIT(mailbox_idx);
1294 dev_data->mailbox[mailbox_idx].cb = NULL;
1295 k_sem_give(&dev_data->tx_sem);
1296 }
1297
mcp251xfd_init_timing_struct(struct can_timing * timing,const struct device * dev,const struct mcp251xfd_timing_params * timing_params,bool is_nominal)1298 static int mcp251xfd_init_timing_struct(struct can_timing *timing,
1299 const struct device *dev,
1300 const struct mcp251xfd_timing_params *timing_params,
1301 bool is_nominal)
1302 {
1303 int ret;
1304
1305 if (USE_SP_ALGO && timing_params->sample_point > 0) {
1306 if (is_nominal) {
1307 ret = can_calc_timing(dev, timing, timing_params->bus_speed,
1308 timing_params->sample_point);
1309 } else {
1310 ret = can_calc_timing_data(dev, timing, timing_params->bus_speed,
1311 timing_params->sample_point);
1312 }
1313 if (ret < 0) {
1314 return ret;
1315 }
1316 LOG_DBG("Presc: %d, BS1: %d, BS2: %d", timing->prescaler, timing->phase_seg1,
1317 timing->phase_seg2);
1318 LOG_DBG("Sample-point err : %d", ret);
1319 } else {
1320 timing->sjw = timing_params->sjw;
1321 timing->prop_seg = timing_params->prop_seg;
1322 timing->phase_seg1 = timing_params->phase_seg1;
1323 timing->phase_seg2 = timing_params->phase_seg2;
1324 ret = can_calc_prescaler(dev, timing, timing_params->bus_speed);
1325 if (ret > 0) {
1326 LOG_WRN("Bitrate error: %d", ret);
1327 }
1328 }
1329
1330 return ret;
1331 }
1332
mcp251xfd_init_con_reg(const struct device * dev)1333 static inline int mcp251xfd_init_con_reg(const struct device *dev)
1334 {
1335 uint32_t *reg;
1336
1337 reg = mcp251xfd_get_spi_buf_ptr(dev);
1338 *reg = MCP251XFD_REG_CON_ISOCRCEN | MCP251XFD_REG_CON_WAKFIL | MCP251XFD_REG_CON_TXQEN |
1339 MCP251XFD_REG_CON_STEF;
1340 *reg |= FIELD_PREP(MCP251XFD_REG_CON_WFT_MASK, MCP251XFD_REG_CON_WFT_T11FILTER) |
1341 FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, MCP251XFD_REG_CON_MODE_CONFIG);
1342
1343 return mcp251xfd_write(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE);
1344 }
1345
mcp251xfd_init_osc_reg(const struct device * dev)1346 static inline int mcp251xfd_init_osc_reg(const struct device *dev)
1347 {
1348 int ret;
1349 const struct mcp251xfd_config *dev_cfg = dev->config;
1350 uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev);
1351 uint32_t reg_value = MCP251XFD_REG_OSC_OSCRDY;
1352
1353 *reg = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK, dev_cfg->clko_div);
1354 if (dev_cfg->pll_enable) {
1355 *reg |= MCP251XFD_REG_OSC_PLLEN;
1356 reg_value |= MCP251XFD_REG_OSC_PLLRDY;
1357 }
1358
1359 *reg = sys_cpu_to_le32(*reg);
1360
1361 ret = mcp251xfd_write(dev, MCP251XFD_REG_OSC, MCP251XFD_REG_SIZE);
1362 if (ret < 0) {
1363 return ret;
1364 }
1365
1366 return mcp251xfd_reg_check_value_wtimeout(dev, MCP251XFD_REG_OSC, reg_value, reg_value,
1367 MCP251XFD_PLLRDY_TIMEOUT_USEC,
1368 MCP251XFD_PLLRDY_RETRIES, false);
1369 }
1370
mcp251xfd_init_iocon_reg(const struct device * dev)1371 static inline int mcp251xfd_init_iocon_reg(const struct device *dev)
1372 {
1373 const struct mcp251xfd_config *dev_cfg = dev->config;
1374 uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev);
1375
1376 /*
1377 * MCP2518FD Errata: DS80000789
1378 * Writing Byte 2/3 of the IOCON register using single SPI write cleat LAT0 and LAT1.
1379 * This has no effect in the current version since LAT0/1 are set to zero anyway.
1380 * However, it needs to be properly handled if other values are needed. Errata suggests
1381 * to do single byte writes instead.
1382 */
1383
1384 *reg = MCP251XFD_REG_IOCON_TRIS0 | MCP251XFD_REG_IOCON_TRIS1 | MCP251XFD_REG_IOCON_PM0 |
1385 MCP251XFD_REG_IOCON_PM1;
1386
1387 if (dev_cfg->sof_on_clko) {
1388 *reg |= MCP251XFD_REG_IOCON_SOF;
1389 }
1390
1391 *reg = sys_cpu_to_le32(*reg);
1392
1393 return mcp251xfd_write(dev, MCP251XFD_REG_IOCON, MCP251XFD_REG_SIZE);
1394 }
1395
mcp251xfd_init_int_reg(const struct device * dev)1396 static inline int mcp251xfd_init_int_reg(const struct device *dev)
1397 {
1398 uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev);
1399
1400 *reg = MCP251XFD_REG_INT_RXIE | MCP251XFD_REG_INT_MODIE | MCP251XFD_REG_INT_TEFIE |
1401 MCP251XFD_REG_INT_CERRIE;
1402
1403 *reg = sys_cpu_to_le32(*reg);
1404
1405 return mcp251xfd_write(dev, MCP251XFD_REG_INT, MCP251XFD_REG_SIZE);
1406 }
1407
mcp251xfd_init_tef_fifo(const struct device * dev)1408 static inline int mcp251xfd_init_tef_fifo(const struct device *dev)
1409 {
1410 uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev);
1411
1412 *reg = MCP251XFD_REG_TEFCON_TEFNEIE | MCP251XFD_REG_TEFCON_FRESET;
1413 *reg |= FIELD_PREP(MCP251XFD_REG_TEFCON_FSIZE_MASK, MCP251XFD_TX_QUEUE_ITEMS - 1);
1414
1415 *reg = sys_cpu_to_le32(*reg);
1416
1417 return mcp251xfd_write(dev, MCP251XFD_REG_TEFCON, MCP251XFD_REG_SIZE);
1418 }
1419
mcp251xfd_init_tx_queue(const struct device * dev)1420 static inline int mcp251xfd_init_tx_queue(const struct device *dev)
1421 {
1422 uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev);
1423
1424 *reg = MCP251XFD_REG_TXQCON_TXEN | MCP251XFD_REG_TXQCON_FRESET;
1425 *reg |= FIELD_PREP(MCP251XFD_REG_TXQCON_TXAT_MASK, MCP251XFD_REG_TXQCON_TXAT_UNLIMITED);
1426 *reg |= FIELD_PREP(MCP251XFD_REG_TXQCON_FSIZE_MASK, MCP251XFD_TX_QUEUE_ITEMS - 1);
1427 *reg |= FIELD_PREP(MCP251XFD_REG_TXQCON_PLSIZE_MASK,
1428 can_bytes_to_dlc(MCP251XFD_PAYLOAD_SIZE) - 8);
1429
1430 *reg = sys_cpu_to_le32(*reg);
1431
1432 return mcp251xfd_write(dev, MCP251XFD_REG_TXQCON, MCP251XFD_REG_SIZE);
1433 }
1434
mcp251xfd_init_rx_fifo(const struct device * dev)1435 static inline int mcp251xfd_init_rx_fifo(const struct device *dev)
1436 {
1437 uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev);
1438
1439 *reg = MCP251XFD_REG_FIFOCON_TFNRFNIE | MCP251XFD_REG_FIFOCON_FRESET;
1440 *reg |= FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK, MCP251XFD_RX_FIFO_ITEMS - 1);
1441 *reg |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK,
1442 can_bytes_to_dlc(MCP251XFD_PAYLOAD_SIZE) - 8);
1443 #if defined(CONFIG_CAN_RX_TIMESTAMP)
1444 *reg |= MCP251XFD_REG_FIFOCON_RXTSEN;
1445 #endif
1446
1447 *reg = sys_cpu_to_le32(*reg);
1448
1449 return mcp251xfd_write(dev, MCP251XFD_REG_FIFOCON(MCP251XFD_RX_FIFO_IDX),
1450 MCP251XFD_REG_SIZE);
1451 }
1452
1453 #if defined(CONFIG_CAN_RX_TIMESTAMP)
mcp251xfd_init_tscon(const struct device * dev)1454 static int mcp251xfd_init_tscon(const struct device *dev)
1455 {
1456 uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev);
1457 const struct mcp251xfd_config *dev_cfg = dev->config;
1458
1459 *reg = MCP251XFD_REG_TSCON_TBCEN;
1460 *reg |= FIELD_PREP(MCP251XFD_REG_TSCON_TBCPRE_MASK,
1461 dev_cfg->timestamp_prescaler - 1);
1462
1463 *reg = sys_cpu_to_le32(*reg);
1464
1465 return mcp251xfd_write(dev, MCP251XFD_REG_TSCON, MCP251XFD_REG_SIZE);
1466 }
1467 #endif
1468
mcp251xfd_reset(const struct device * dev)1469 static int mcp251xfd_reset(const struct device *dev)
1470 {
1471 const struct mcp251xfd_config *dev_cfg = dev->config;
1472 uint16_t cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_RESET);
1473 const struct spi_buf tx_buf = {.buf = &cmd, .len = sizeof(cmd),};
1474 const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1};
1475 int ret;
1476
1477 /* device can only be reset when in configuration mode */
1478 ret = mcp251xfd_set_mode_internal(dev, MCP251XFD_REG_CON_MODE_CONFIG);
1479 if (ret < 0) {
1480 return ret;
1481 }
1482
1483 return spi_write_dt(&dev_cfg->bus, &tx);
1484 }
1485
mcp251xfd_init(const struct device * dev)1486 static int mcp251xfd_init(const struct device *dev)
1487 {
1488 const struct mcp251xfd_config *dev_cfg = dev->config;
1489 struct mcp251xfd_data *dev_data = dev->data;
1490 uint32_t *reg;
1491 uint8_t opmod;
1492 int ret;
1493 struct can_timing timing = { 0 };
1494 #if defined(CONFIG_CAN_FD_MODE)
1495 struct can_timing timing_data = { 0 };
1496 #endif
1497
1498 dev_data->dev = dev;
1499
1500 if (dev_cfg->clk_dev != NULL) {
1501 uint32_t clk_id = dev_cfg->clk_id;
1502
1503 if (!device_is_ready(dev_cfg->clk_dev)) {
1504 LOG_ERR("Clock controller not ready");
1505 return -ENODEV;
1506 }
1507
1508 ret = clock_control_on(dev_cfg->clk_dev, (clock_control_subsys_t)clk_id);
1509 if (ret < 0) {
1510 LOG_ERR("Failed to enable clock [%d]", ret);
1511 return ret;
1512 }
1513 }
1514
1515 k_sem_init(&dev_data->int_sem, 0, 1);
1516 k_sem_init(&dev_data->tx_sem, MCP251XFD_TX_QUEUE_ITEMS, MCP251XFD_TX_QUEUE_ITEMS);
1517
1518 k_mutex_init(&dev_data->mutex);
1519
1520 if (!spi_is_ready_dt(&dev_cfg->bus)) {
1521 LOG_ERR("SPI bus %s not ready", dev_cfg->bus.bus->name);
1522 return -ENODEV;
1523 }
1524
1525 if (!gpio_is_ready_dt(&dev_cfg->int_gpio_dt)) {
1526 LOG_ERR("GPIO port not ready");
1527 return -ENODEV;
1528 }
1529
1530 if (gpio_pin_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INPUT) < 0) {
1531 LOG_ERR("Unable to configure GPIO pin");
1532 return -EINVAL;
1533 }
1534
1535 gpio_init_callback(&dev_data->int_gpio_cb, mcp251xfd_int_gpio_callback,
1536 BIT(dev_cfg->int_gpio_dt.pin));
1537
1538 if (gpio_add_callback_dt(&dev_cfg->int_gpio_dt, &dev_data->int_gpio_cb) < 0) {
1539 return -EINVAL;
1540 }
1541
1542 if (gpio_pin_interrupt_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INT_LEVEL_ACTIVE) < 0) {
1543 return -EINVAL;
1544 }
1545
1546 k_thread_create(&dev_data->int_thread, dev_data->int_thread_stack,
1547 CONFIG_CAN_MCP251XFD_INT_THREAD_STACK_SIZE,
1548 (k_thread_entry_t)mcp251xfd_int_thread, (void *)dev, NULL, NULL,
1549 K_PRIO_COOP(CONFIG_CAN_MCP251XFD_INT_THREAD_PRIO), 0, K_NO_WAIT);
1550
1551 (void)k_thread_name_set(&dev_data->int_thread, "MCP251XFD interrupt thread");
1552
1553 ret = mcp251xfd_reset(dev);
1554 if (ret < 0) {
1555 LOG_ERR("Failed to reset the device [%d]", ret);
1556 goto done;
1557 }
1558
1559 ret = mcp251xfd_init_timing_struct(&timing, dev, &dev_cfg->timing_params, true);
1560 if (ret < 0) {
1561 LOG_ERR("Can't find timing for given param");
1562 goto done;
1563 }
1564
1565 #if defined(CONFIG_CAN_FD_MODE)
1566 ret = mcp251xfd_init_timing_struct(&timing_data, dev, &dev_cfg->timing_params_data, false);
1567 if (ret < 0) {
1568 LOG_ERR("Can't find timing for given param");
1569 goto done;
1570 }
1571 #endif
1572
1573 reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE);
1574 if (!reg) {
1575 ret = -EINVAL;
1576 goto done;
1577 }
1578
1579 *reg = sys_le32_to_cpu(*reg);
1580
1581 opmod = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, *reg);
1582
1583 if (opmod != MCP251XFD_REG_CON_MODE_CONFIG) {
1584 LOG_ERR("Device did not reset into configuration mode [%d]", opmod);
1585 ret = -EIO;
1586 goto done;
1587 }
1588
1589 dev_data->current_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_CONFIG;
1590
1591 ret = mcp251xfd_init_con_reg(dev);
1592 if (ret < 0) {
1593 goto done;
1594 }
1595
1596 ret = mcp251xfd_init_osc_reg(dev);
1597 if (ret < 0) {
1598 goto done;
1599 }
1600
1601 ret = mcp251xfd_init_iocon_reg(dev);
1602 if (ret < 0) {
1603 goto done;
1604 }
1605
1606 ret = mcp251xfd_init_int_reg(dev);
1607 if (ret < 0) {
1608 goto done;
1609 }
1610
1611 ret = mcp251xfd_set_tdc(dev, false, 0);
1612 if (ret < 0) {
1613 goto done;
1614 }
1615
1616 #if defined(CONFIG_CAN_RX_TIMESTAMP)
1617 ret = mcp251xfd_init_tscon(dev);
1618 if (ret < 0) {
1619 goto done;
1620 }
1621 #endif
1622
1623 ret = mcp251xfd_init_tef_fifo(dev);
1624 if (ret < 0) {
1625 goto done;
1626 }
1627
1628 ret = mcp251xfd_init_tx_queue(dev);
1629 if (ret < 0) {
1630 goto done;
1631 }
1632
1633 ret = mcp251xfd_init_rx_fifo(dev);
1634 if (ret < 0) {
1635 goto done;
1636 }
1637
1638 LOG_DBG("%d TX FIFOS: 1 element", MCP251XFD_TX_QUEUE_ITEMS);
1639 LOG_DBG("1 RX FIFO: %d elements", MCP251XFD_RX_FIFO_ITEMS);
1640 LOG_DBG("%db of %db RAM Allocated",
1641 MCP251XFD_TEF_FIFO_SIZE + MCP251XFD_TX_QUEUE_SIZE + MCP251XFD_RX_FIFO_SIZE,
1642 MCP251XFD_RAM_SIZE);
1643
1644 done:
1645 ret = can_set_timing(dev, &timing);
1646 if (ret < 0) {
1647 return ret;
1648 }
1649
1650 #if defined(CONFIG_CAN_FD_MODE)
1651 ret = can_set_timing_data(dev, &timing_data);
1652 if (ret < 0) {
1653 return ret;
1654 }
1655 #endif
1656
1657 return ret;
1658 }
1659
1660 static const struct can_driver_api mcp251xfd_api_funcs = {
1661 .get_capabilities = mcp251xfd_get_capabilities,
1662 .set_mode = mcp251xfd_set_mode,
1663 .set_timing = mcp251xfd_set_timing,
1664 #if defined(CONFIG_CAN_FD_MODE)
1665 .set_timing_data = mcp251xfd_set_timing_data,
1666 #endif
1667 .start = mcp251xfd_start,
1668 .stop = mcp251xfd_stop,
1669 .send = mcp251xfd_send,
1670 .add_rx_filter = mcp251xfd_add_rx_filter,
1671 .remove_rx_filter = mcp251xfd_remove_rx_filter,
1672 #ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
1673 .recover = mcp251xfd_recover,
1674 #endif
1675 .get_state = mcp251xfd_get_state,
1676 .set_state_change_callback = mcp251xfd_set_state_change_callback,
1677 .get_core_clock = mcp251xfd_get_core_clock,
1678 .get_max_filters = mcp251xfd_get_max_filters,
1679 .get_max_bitrate = mcp251xfd_get_max_bitrate,
1680 .timing_min = {
1681 .sjw = 1,
1682 .prop_seg = 0,
1683 .phase_seg1 = 2,
1684 .phase_seg2 = 1,
1685 .prescaler = 1,
1686 },
1687 .timing_max = {
1688 .sjw = 128,
1689 .prop_seg = 0,
1690 .phase_seg1 = 256,
1691 .phase_seg2 = 128,
1692 .prescaler = 256,
1693 },
1694 #if defined(CONFIG_CAN_FD_MODE)
1695 .timing_data_min = {
1696 .sjw = 1,
1697 .prop_seg = 0,
1698 .phase_seg1 = 1,
1699 .phase_seg2 = 1,
1700 .prescaler = 1,
1701 },
1702 .timing_data_max = {
1703 .sjw = 16,
1704 .prop_seg = 0,
1705 .phase_seg1 = 32,
1706 .phase_seg2 = 16,
1707 .prescaler = 256,
1708 },
1709 #endif
1710 };
1711
1712 #define MCP251XFD_SET_TIMING_MACRO(inst, type) \
1713 .timing_params##type = { \
1714 .sjw = DT_INST_PROP(inst, sjw##type), \
1715 .prop_seg = DT_INST_PROP_OR(inst, prop_seg##type, 0), \
1716 .phase_seg1 = DT_INST_PROP_OR(inst, phase_seg1##type, 0), \
1717 .phase_seg2 = DT_INST_PROP_OR(inst, phase_seg2##type, 0), \
1718 .bus_speed = DT_INST_PROP(inst, bus_speed##type), \
1719 .sample_point = DT_INST_PROP_OR(inst, sample_point##type, 0), \
1720 }
1721
1722 #if defined(CONFIG_CAN_FD_MODE)
1723 #define MCP251XFD_SET_TIMING(inst) \
1724 MCP251XFD_SET_TIMING_MACRO(inst,), \
1725 MCP251XFD_SET_TIMING_MACRO(inst, _data)
1726 #else
1727 #define MCP251XFD_SET_TIMING(inst) \
1728 MCP251XFD_SET_TIMING_MACRO(inst,)
1729 #endif
1730
1731 #define MCP251XFD_SET_CLOCK(inst) \
1732 COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, clocks), \
1733 (.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(inst)), \
1734 .clk_id = DT_INST_CLOCKS_CELL(inst, id)), \
1735 ())
1736
1737 #define MCP251XFD_INIT(inst) \
1738 static K_KERNEL_STACK_DEFINE(mcp251xfd_int_stack_##inst, \
1739 CONFIG_CAN_MCP251XFD_INT_THREAD_STACK_SIZE); \
1740 \
1741 static struct mcp251xfd_data mcp251xfd_data_##inst = { \
1742 .int_thread_stack = mcp251xfd_int_stack_##inst, \
1743 }; \
1744 static const struct mcp251xfd_config mcp251xfd_config_##inst = { \
1745 .bus = SPI_DT_SPEC_INST_GET(inst, SPI_WORD_SET(8), 0), \
1746 .int_gpio_dt = GPIO_DT_SPEC_INST_GET(inst, int_gpios), \
1747 \
1748 .sof_on_clko = DT_INST_PROP(inst, sof_on_clko), \
1749 .clko_div = DT_INST_ENUM_IDX(inst, clko_div), \
1750 .pll_enable = DT_INST_PROP(inst, pll_enable), \
1751 .timestamp_prescaler = DT_INST_PROP(inst, timestamp_prescaler), \
1752 \
1753 .osc_freq = DT_INST_PROP(inst, osc_freq), \
1754 MCP251XFD_SET_TIMING(inst), \
1755 .phy = DEVICE_DT_GET_OR_NULL(DT_INST_PHANDLE(inst, phys)), \
1756 .max_bitrate = DT_INST_CAN_TRANSCEIVER_MAX_BITRATE(inst, 8000000), \
1757 .rx_fifo = {.ram_start_addr = MCP251XFD_RX_FIFO_START_ADDR, \
1758 .reg_fifocon_addr = MCP251XFD_REG_FIFOCON(MCP251XFD_RX_FIFO_IDX), \
1759 .capacity = MCP251XFD_RX_FIFO_ITEMS, \
1760 .item_size = MCP251XFD_RX_FIFO_ITEM_SIZE, \
1761 .msg_handler = mcp251xfd_rx_fifo_handler}, \
1762 .tef_fifo = {.ram_start_addr = MCP251XFD_TEF_FIFO_START_ADDR, \
1763 .reg_fifocon_addr = MCP251XFD_REG_TEFCON, \
1764 .capacity = MCP251XFD_TEF_FIFO_ITEMS, \
1765 .item_size = MCP251XFD_TEF_FIFO_ITEM_SIZE, \
1766 .msg_handler = mcp251xfd_tef_fifo_handler}, \
1767 MCP251XFD_SET_CLOCK(inst) \
1768 }; \
1769 \
1770 CAN_DEVICE_DT_INST_DEFINE(inst, &mcp251xfd_init, NULL, &mcp251xfd_data_##inst, \
1771 &mcp251xfd_config_##inst, POST_KERNEL, CONFIG_CAN_INIT_PRIORITY, \
1772 &mcp251xfd_api_funcs);
1773
1774 DT_INST_FOREACH_STATUS_OKAY(MCP251XFD_INIT)
1775