1 /* --------------------------------------------------------------  */
2 /* (C)Copyright 2006,2008,                                         */
3 /* International Business Machines Corporation                     */
4 /* All Rights Reserved.                                            */
5 /*                                                                 */
6 /* Redistribution and use in source and binary forms, with or      */
7 /* without modification, are permitted provided that the           */
8 /* following conditions are met:                                   */
9 /*                                                                 */
10 /* - Redistributions of source code must retain the above copyright*/
11 /*   notice, this list of conditions and the following disclaimer. */
12 /*                                                                 */
13 /* - Redistributions in binary form must reproduce the above       */
14 /*   copyright notice, this list of conditions and the following   */
15 /*   disclaimer in the documentation and/or other materials        */
16 /*   provided with the distribution.                               */
17 /*                                                                 */
18 /* - Neither the name of IBM Corporation nor the names of its      */
19 /*   contributors may be used to endorse or promote products       */
20 /*   derived from this software without specific prior written     */
21 /*   permission.                                                   */
22 /*                                                                 */
23 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
24 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
25 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
26 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
27 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
28 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
29 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
30 /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
31 /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
32 /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
33 /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
34 /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
35 /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
36 /* --------------------------------------------------------------  */
37 /* PROLOG END TAG zYx                                              */
38 
39 #ifdef __SPU__
40 
41 #ifndef _ASIND2_H_
42 #define _ASIND2_H_	1
43 
44 #include "simdmath.h"
45 #include <spu_intrinsics.h>
46 #include "sqrtd2.h"
47 #include "divd2.h"
48 
49 
50 
51 /*
52  * FUNCTION
53  *	vector double _asind2(vector double x)
54  *
55  * DESCRIPTION
56  * 	Compute the arc sine of the vector of double precision elements
57  * 	specified by x, returning the resulting angles in radians. The input
58  *      elements are to be in the closed interval [-1, 1]. Values outside
59  *      this range result in a invalid operation execption being latched in
60  *	the FPSCR register and a NAN is returned.
61  *
62  * 	The basic algorithm computes the arc sine using a rational polynomial
63  * 	of the form x + x^3 * P(x^2) / Q(x^2) for inputs |x| in the interval
64  *      [0, 0.5]. Values outsize this range are transformed as by:
65  *
66  * 	asin(x) =  PI/2 - 2*asin(sqrt((1-x)/2)) for x in the range (0.5, 1.0]
67  *
68  * 	asin(x) = -PI/2 + 2*asin(sqrt((1+x)/2)) for x in the range [-1.0, -0.5)
69  *
70  * 	This yields the basic algorithm of:
71  *
72  *	   absx = (x < 0.0) ? -x : x;
73  *
74  *	   if (absx > 0.5) {
75  *	     if (x < 0) {
76  *	       addend = -SM_PI_2;
77  *	       multiplier = -2.0;
78  *	     } else {
79  *	       addend = SM_PI_2;
80  *	       multiplier = 2.0;
81  *	     }
82  *
83  *	     x = sqrt(-0.5 * absx + 0.5);
84  *	   } else {
85  *	     addend = 0.0;
86  *	     multiplier = 1.0;
87  *	   }
88  *
89  *	    x2 = x * x;
90  *	    x3 = x2 * x;
91  *
92  *	    p = ((((P5 * x2 + P4)*x2 + P3)*x2 + P2)*x2 + P1)*x2 + P0;
93  *
94  *	    q = ((((Q5 * x2 + Q4)*x2 + Q3)*x2 + Q2)*x2 + Q1)*x2 + Q0;;
95  *
96  *	    pq = p / q;
97  *
98  *	    result = addend - (x3*pq + x)*multiplier;
99  *
100  *	 Where P5-P0 and Q5-Q0 are the polynomial coeficients.
101  */
_asind2(vector double x)102 static __inline vector double _asind2(vector double x)
103 {
104   vec_uint4   x_gt_half, x_eq_half;
105   vec_double2 x_abs;			// absolute value of x
106   vec_double2 x_trans;			// transformed x when |x| > 0.5
107   vec_double2 x2, x3;			// x squared and x cubed, respectively.
108   vec_double2 result;
109   vec_double2 multiplier, addend;
110   vec_double2 p, q, pq;
111   vec_double2 half = spu_splats(0.5);
112   vec_double2 sign = (vec_double2)spu_splats(0x8000000000000000ULL);
113   vec_uchar16 splat_hi = ((vec_uchar16){0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11});
114 
115   // Compute the absolute value of x
116   x_abs = spu_andc(x, sign);
117 
118   // Perform transformation for the case where |x| > 0.5. We rely on
119   // sqrtd2 producing a NAN is |x| > 1.0.
120   x_trans = _sqrtd2(spu_nmsub(x_abs, half, half));
121 
122   // Determine the correct addend and multiplier.
123   x_gt_half = spu_cmpgt((vec_uint4)x_abs, (vec_uint4)half);
124   x_eq_half = spu_cmpeq((vec_uint4)x_abs, (vec_uint4)half);
125   x_gt_half = spu_or(x_gt_half, spu_and(x_eq_half, spu_rlqwbyte(x_gt_half, 4)));
126   x_gt_half = spu_shuffle(x_gt_half, x_gt_half, splat_hi);
127 
128   addend = spu_and(spu_sel(spu_splats((double)SM_PI_2), x, (vec_ullong2)sign), (vec_double2)x_gt_half);
129 
130   multiplier = spu_sel(spu_splats(-1.0), spu_sel(spu_splats(2.0), x, (vec_ullong2)sign), (vec_ullong2)x_gt_half);
131 
132   // Select whether to use the x or the transformed x for the polygon evaluation.
133   // if |x| > 0.5 use x_trans
134   // else         use x
135 
136   x = spu_sel(x, x_trans, (vec_ullong2)x_gt_half);
137 
138   // Compute the polynomials.
139 
140   x2 = spu_mul(x, x);
141   x3 = spu_mul(x2, x);
142 
143   p = spu_madd(spu_splats(0.004253011369004428248960), x2, spu_splats(-0.6019598008014123785661));
144   p = spu_madd(p, x2, spu_splats(5.444622390564711410273));
145   p = spu_madd(p, x2, spu_splats(-16.26247967210700244449));
146   p = spu_madd(p, x2, spu_splats(19.56261983317594739197));
147   p = spu_madd(p, x2, spu_splats(-8.198089802484824371615));
148 
149   q = spu_add(x2, spu_splats(-14.74091372988853791896));
150   q = spu_madd(q, x2, spu_splats(70.49610280856842141659));
151   q = spu_madd(q, x2, spu_splats(-147.1791292232726029859));
152   q = spu_madd(q, x2, spu_splats(139.5105614657485689735));
153   q = spu_madd(q, x2, spu_splats(-49.18853881490881290097));
154 
155   // Compute the rational solution p/q and final multiplication and addend
156   // correction.
157   pq = _divd2(p, q);
158 
159   result = spu_nmsub(spu_madd(x3, pq, x), multiplier, addend);
160 
161   return (result);
162 }
163 
164 #endif /* _ASIND2_H_ */
165 #endif /* __SPU__ */
166