1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_quaternion_product_f32.c
4 * Description: Floating-point quaternion product
5 *
6 * $Date: 23 April 2021
7 * $Revision: V1.9.0
8 *
9 * Target Processor: Cortex-M and Cortex-A cores
10 * -------------------------------------------------------------------- */
11 /*
12 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13 *
14 * SPDX-License-Identifier: Apache-2.0
15 *
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
19 *
20 * www.apache.org/licenses/LICENSE-2.0
21 *
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
27 */
28
29 #include "dsp/quaternion_math_functions.h"
30 #include <math.h>
31
32 /**
33 @ingroup groupQuaternionMath
34 */
35
36 /**
37 @defgroup QuatProd Quaternion Product
38
39 Compute the product of quaternions.
40 */
41
42 /**
43 @ingroup QuatProd
44 */
45
46 /**
47 @defgroup QuatProdVect Elementwise Quaternion Product
48
49 Compute the elementwise product of quaternions.
50 */
51
52 /**
53 @addtogroup QuatProdVect
54 @{
55 */
56
57 /**
58 @brief Floating-point elementwise product two quaternions.
59 @param[in] qa first array of quaternions
60 @param[in] qb second array of quaternions
61 @param[out] qr elementwise product of quaternions
62 @param[in] nbQuaternions number of quaternions in the array
63 @return none
64 */
65
66 #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
67
68 #include "arm_helium_utils.h"
69
arm_quaternion_product_f32(const float32_t * qa,const float32_t * qb,float32_t * qr,uint32_t nbQuaternions)70 void arm_quaternion_product_f32(const float32_t *qa,
71 const float32_t *qb,
72 float32_t *qr,
73 uint32_t nbQuaternions)
74 {
75 static uint32_t patternA[4] = { 0, 1, 0, 1 };
76 static uint32_t patternB[4] = { 3, 2, 3, 2 };
77 static uint32_t patternC[4] = { 3, 2, 1, 0 };
78 static float32_t signA[4] = { -1, -1, 1, 1 };
79
80 uint32x4_t vecA = vld1q_u32(patternA);
81 uint32x4_t vecB = vld1q_u32(patternB);
82 uint32x4_t vecC = vld1q_u32(patternC);
83 f32x4_t vecSignA = vld1q_f32(signA);
84
85 while (nbQuaternions > 0U)
86 {
87 f32x4_t vecTmpA, vecTmpB, vecAcc;
88
89 vecTmpA = vldrwq_gather_shifted_offset_f32(qa, vecA);
90 vecTmpB = vld1q(qb);
91 /*
92 * vcmul(r, [a1, a2, a1, a2], [b1, b2, b3, b4], 0)
93 */
94 vecAcc = vcmulq(vecTmpA, vecTmpB);
95 /*
96 * vcmla(r, [a1, a2, a1, a2], [b1, b2, b3, b4], 90)
97 */
98 vecAcc = vcmlaq_rot90(vecAcc, vecTmpA, vecTmpB);
99
100 vecTmpA = vldrwq_gather_shifted_offset_f32(qa, vecB);
101 vecTmpB = vldrwq_gather_shifted_offset_f32(qb, vecC);
102 /*
103 * build [-b4, -b3, b2, b1]
104 */
105 vecTmpB = vecTmpB * vecSignA;
106 /*
107 * vcmla(r, [a4, a3, a4, a3], [-b4, -b3, b2, b1], 270)
108 */
109 vecAcc = vcmlaq_rot270(vecAcc, vecTmpA, vecTmpB);
110 /*
111 * vcmla(r, [a4, a3, a4, a3], [-b4, -b3, b2, b1], 0)
112 */
113 vecAcc = vcmlaq(vecAcc, vecTmpA, vecTmpB);
114 /*
115 * store accumulator
116 */
117 vst1q_f32(qr, vecAcc);
118
119 /* move to next quaternion */
120 qa += 4;
121 qb += 4;
122 qr += 4;
123
124 nbQuaternions--;
125 }
126 }
127
128 #else
129
arm_quaternion_product_f32(const float32_t * qa,const float32_t * qb,float32_t * qr,uint32_t nbQuaternions)130 void arm_quaternion_product_f32(const float32_t *qa,
131 const float32_t *qb,
132 float32_t *qr,
133 uint32_t nbQuaternions)
134 {
135 for(uint32_t i=0; i < nbQuaternions; i++)
136 {
137 arm_quaternion_product_single_f32(qa, qb, qr);
138
139 qa += 4;
140 qb += 4;
141 qr += 4;
142 }
143 }
144 #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
145
146 /**
147 @} end of QuatProdVect group
148 */
149