1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2012 ARM Limited. All rights reserved.
3 *
4 * $Date:         17. January 2013
5 * $Revision:     V1.4.0
6 *
7 * Project:       CMSIS DSP Library
8 * Title:         arm_convolution_example_f32.c
9 *
10 * Description:   Example code demonstrating Convolution of two input signals using fft.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 *   - Redistributions of source code must retain the above copyright
18 *     notice, this list of conditions and the following disclaimer.
19 *   - Redistributions in binary form must reproduce the above copyright
20 *     notice, this list of conditions and the following disclaimer in
21 *     the documentation and/or other materials provided with the
22 *     distribution.
23 *   - Neither the name of ARM LIMITED nor the names of its contributors
24 *     may be used to endorse or promote products derived from this
25 *     software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40 
41 /**
42  * @addtogroup groupExamples
43  * @{
44  *
45  * @defgroup ConvolutionExample Convolution Example
46  *
47  * \par Description:
48  * \par
49  * Demonstrates the convolution theorem with the use of the Complex FFT, Complex-by-Complex
50  * Multiplication, and Support Functions.
51  *
52  * \par Algorithm:
53  * \par
54  * The convolution theorem states that convolution in the time domain corresponds to
55  * multiplication in the frequency domain. Therefore, the Fourier transform of the convoution of
56  * two signals is equal to the product of their individual Fourier transforms.
57  * The Fourier transform of a signal can be evaluated efficiently using the Fast Fourier Transform (FFT).
58  * \par
59  * Two input signals, <code>a[n]</code> and <code>b[n]</code>, with lengths \c n1 and \c n2 respectively,
60  * are zero padded so that their lengths become \c N, which is greater than or equal to <code>(n1+n2-1)</code>
61  * and is a power of 4 as FFT implementation is radix-4.
62  * The convolution of <code>a[n]</code> and <code>b[n]</code> is obtained by taking the FFT of the input
63  * signals, multiplying the Fourier transforms of the two signals, and taking the inverse FFT of
64  * the multiplied result.
65  * \par
66  * This is denoted by the following equations:
67  * <pre> A[k] = FFT(a[n],N)
68  * B[k] = FFT(b[n],N)
69  * conv(a[n], b[n]) = IFFT(A[k] * B[k], N)</pre>
70  * where <code>A[k]</code> and <code>B[k]</code> are the N-point FFTs of the signals <code>a[n]</code>
71  * and <code>b[n]</code> respectively.
72  * The length of the convolved signal is <code>(n1+n2-1)</code>.
73  *
74  * \par Block Diagram:
75  * \par
76  * \image html Convolution.gif
77  *
78  * \par Variables Description:
79  * \par
80  * \li \c testInputA_f32 points to the first input sequence
81  * \li \c srcALen length of the first input sequence
82  * \li \c testInputB_f32 points to the second input sequence
83  * \li \c srcBLen length of the second input sequence
84  * \li \c outLen length of convolution output sequence, <code>(srcALen + srcBLen - 1)</code>
85  * \li \c AxB points to the output array where the product of individual FFTs of inputs is stored.
86  *
87  * \par CMSIS DSP Software Library Functions Used:
88  * \par
89  * - arm_fill_f32()
90  * - arm_copy_f32()
91  * - arm_cfft_radix4_init_f32()
92  * - arm_cfft_radix4_f32()
93  * - arm_cmplx_mult_cmplx_f32()
94  *
95  * <b> Refer  </b>
96  * \link arm_convolution_example_f32.c \endlink
97  *
98  * \example arm_convolution_example_f32.c
99  *
100  * @} */
101 
102 #include "arm_math.h"
103 #include "math_helper.h"
104 
105 #if defined(SEMIHOSTING)
106 #include <stdio.h>
107 #endif
108 
109 /* ----------------------------------------------------------------------
110 * Defines each of the tests performed
111 * ------------------------------------------------------------------- */
112 #define MAX_BLOCKSIZE   128
113 #define DELTA           (0.000001f)
114 #define SNR_THRESHOLD   90
115 
116 /* ----------------------------------------------------------------------
117 * Declare I/O buffers
118 * ------------------------------------------------------------------- */
119 float32_t Ak[MAX_BLOCKSIZE];        /* Input A */
120 float32_t Bk[MAX_BLOCKSIZE];        /* Input B */
121 float32_t AxB[MAX_BLOCKSIZE * 2];   /* Output */
122 
123 /* ----------------------------------------------------------------------
124 * Test input data for Floating point Convolution example for 32-blockSize
125 * Generated by the MATLAB randn() function
126 * ------------------------------------------------------------------- */
127 float32_t testInputA_f32[64] =
128 {
129   -0.808920,   1.357369,   1.180861,  -0.504544,   1.762637,  -0.703285,
130    1.696966,   0.620571,  -0.151093,  -0.100235,  -0.872382,  -0.403579,
131   -0.860749,  -0.382648,  -1.052338,   0.128113,  -0.646269,   1.093377,
132   -2.209198,   0.471706,   0.408901,   1.266242,   0.598252,   1.176827,
133   -0.203421,   0.213596,  -0.851964,  -0.466958,   0.021841,  -0.698938,
134   -0.604107,   0.461778,  -0.318219,   0.942520,   0.577585,   0.417619,
135    0.614665,   0.563679,  -1.295073,  -0.764437,   0.952194,  -0.859222,
136   -0.618554,  -2.268542,  -1.210592,   1.655853,  -2.627219,  -0.994249,
137   -1.374704,   0.343799,   0.025619,   1.227481,  -0.708031,   0.069355,
138   -1.845228,  -1.570886,   1.010668,  -1.802084,   1.630088,   1.286090,
139   -0.161050,  -0.940794,   0.367961,   0.291907
140 
141 };
142 
143 float32_t testInputB_f32[64] =
144 {
145    0.933724,   0.046881,   1.316470,   0.438345,   0.332682,   2.094885,
146    0.512081,   0.035546,   0.050894,  -2.320371,   0.168711,  -1.830493,
147   -0.444834,  -1.003242,  -0.531494,  -1.365600,  -0.155420,  -0.757692,
148   -0.431880,  -0.380021,   0.096243,  -0.695835,   0.558850,  -1.648962,
149    0.020369,  -0.363630,   0.887146,   0.845503,  -0.252864,  -0.330397,
150    1.269131,  -1.109295,  -1.027876,   0.135940,   0.116721,  -0.293399,
151   -1.349799,   0.166078,  -0.802201,   0.369367,  -0.964568,  -2.266011,
152    0.465178,   0.651222,  -0.325426,   0.320245,  -0.784178,  -0.579456,
153    0.093374,   0.604778,  -0.048225,   0.376297,  -0.394412,   0.578182,
154   -1.218141,  -1.387326,   0.692462,  -0.631297,   0.153137,  -0.638952,
155   0.635474,   -0.970468,   1.334057,  -0.111370
156 };
157 
158 const float testRefOutput_f32[127] =
159 {
160    -0.818943,    1.229484,  -0.533664,    1.016604,   0.341875,  -1.963656,
161     5.171476,    3.478033,   7.616361,    6.648384,   0.479069,   1.792012,
162    -1.295591,   -7.447818,   0.315830,  -10.657445,  -2.483469,  -6.524236,
163    -7.380591,   -3.739005,  -8.388957,    0.184147,  -1.554888,   3.786508,
164    -1.684421,    5.400610,  -1.578126,    7.403361,   8.315999,   2.080267,
165    11.077776,    2.749673,   7.138962,    2.748762,   0.660363,   0.981552,
166     1.442275,    0.552721,  -2.576892,    4.703989,   0.989156,   8.759344,
167    -0.564825,   -3.994680,   0.954710,   -5.014144,   6.592329,   1.599488,
168   -13.979146,   -0.391891,  -4.453369,   -2.311242,  -2.948764,   1.761415,
169    -0.138322,   10.433007,  -2.309103,    4.297153,   8.535523,   3.209462,
170     8.695819,    5.569919,   2.514304,    5.582029,   2.060199,   0.642280,
171     7.024616,    1.686615,  -6.481756,    1.343084,  -3.526451,   1.099073,
172    -2.965764,   -0.173723,  -4.111484,    6.528384,  -6.965658,   1.726291,
173     1.535172,   11.023435,   2.338401,   -4.690188,   1.298210,   3.943885,
174     8.407885,    5.168365,   0.684131,    1.559181,   1.859998,   2.852417,
175     8.574070,   -6.369078,   6.023458,   11.837963,  -6.027632,   4.469678,
176    -6.799093,   -2.674048,   6.250367,   -6.809971,  -3.459360,   9.112410,
177    -2.711621,   -1.336678,   1.564249,   -1.564297,  -1.296760,   8.904013,
178    -3.230109,    6.878013,  -7.819823,    3.369909,  -1.657410,  -2.007358,
179    -4.112825,    1.370685,  -3.420525,   -6.276605,   3.244873,  -3.352638,
180     1.545372,    0.902211,   0.197489,   -1.408732,   0.523390,   0.348440, 0
181 };
182 
183 
184 /* ----------------------------------------------------------------------
185 * Declare Global variables
186 * ------------------------------------------------------------------- */
187 uint32_t srcALen = 64;   /* Length of Input A */
188 uint32_t srcBLen = 64;   /* Length of Input B */
189 uint32_t outLen;         /* Length of convolution output */
190 float32_t snr;           /* output SNR */
191 
main(void)192 int32_t main(void)
193 {
194   arm_status status;                           /* Status of the example */
195   arm_cfft_radix4_instance_f32 cfft_instance;  /* CFFT Structure instance */
196 
197 #if defined(SEMIHOSTING)
198   printf("START\n");
199 #endif
200 
201   /* CFFT Structure instance pointer */
202   arm_cfft_radix4_instance_f32 *cfft_instance_ptr =
203       (arm_cfft_radix4_instance_f32*) &cfft_instance;
204 
205   /* output length of convolution */
206   outLen = srcALen + srcBLen - 1;
207 
208   /* Initialise the fft input buffers with all zeros */
209   arm_fill_f32(0.0,  Ak, MAX_BLOCKSIZE);
210   arm_fill_f32(0.0,  Bk, MAX_BLOCKSIZE);
211 
212   /* Copy the input values to the fft input buffers */
213   arm_copy_f32(testInputA_f32,  Ak, MAX_BLOCKSIZE/2);
214   arm_copy_f32(testInputB_f32,  Bk, MAX_BLOCKSIZE/2);
215 
216   /* Initialize the CFFT function to compute 64 point fft */
217   status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 0, 1);
218 
219   /* Transform input a[n] from time domain to frequency domain A[k] */
220   arm_cfft_radix4_f32(cfft_instance_ptr, Ak);
221   /* Transform input b[n] from time domain to frequency domain B[k] */
222   arm_cfft_radix4_f32(cfft_instance_ptr, Bk);
223 
224   /* Complex Multiplication of the two input buffers in frequency domain */
225   arm_cmplx_mult_cmplx_f32(Ak, Bk, AxB, MAX_BLOCKSIZE/2);
226 
227   /* Initialize the CIFFT function to compute 64 point ifft */
228   status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 1, 1);
229 
230   /* Transform the multiplication output from frequency domain to time domain,
231      that gives the convolved output. */
232   arm_cfft_radix4_f32(cfft_instance_ptr, AxB);
233 
234   /* SNR Calculation */
235   snr = arm_snr_f32((float32_t *)testRefOutput_f32, AxB, srcALen + srcBLen - 1);
236 
237   /* Compare the SNR with threshold to test whether the
238      computed output is matched with the reference output values. */
239   status = (snr <= SNR_THRESHOLD) ? ARM_MATH_TEST_FAILURE : ARM_MATH_SUCCESS;
240 
241   if (status != ARM_MATH_SUCCESS)
242   {
243 #if defined (SEMIHOSTING)
244     printf("FAILURE\n");
245 #else
246     while (1);                             /* main function does not return */
247 #endif
248   }
249   else
250   {
251 #if defined (SEMIHOSTING)
252     printf("SUCCESS\n");
253 #else
254     while (1);                             /* main function does not return */
255 #endif
256   }
257 
258 }
259 
260  /** \endlink */
261