1
2 /* ----------------------------------------------------------------------
3 * Project: CMSIS DSP Library
4 * Title: arm_biquad_cascade_df1_init_f16.c
5 * Description: Floating-point Biquad cascade DirectFormI(DF1) filter initialization function
6 *
7 * $Date: 23 April 2021
8 * $Revision: V1.9.0
9 *
10 * Target Processor: Cortex-M and Cortex-A cores
11 * -------------------------------------------------------------------- */
12 /*
13 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
14 *
15 * SPDX-License-Identifier: Apache-2.0
16 *
17 * Licensed under the Apache License, Version 2.0 (the License); you may
18 * not use this file except in compliance with the License.
19 * You may obtain a copy of the License at
20 *
21 * www.apache.org/licenses/LICENSE-2.0
22 *
23 * Unless required by applicable law or agreed to in writing, software
24 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
25 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
26 * See the License for the specific language governing permissions and
27 * limitations under the License.
28 */
29
30 #include "dsp/filtering_functions_f16.h"
31
32 #if defined(ARM_FLOAT16_SUPPORTED)
33 /**
34 @ingroup groupFilters
35 */
36
37 /**
38 @addtogroup BiquadCascadeDF1
39 @{
40 */
41
42 /**
43 @brief Initialization function for the floating-point Biquad cascade filter.
44 @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
45 @param[in] numStages number of 2nd order stages in the filter.
46 @param[in] pCoeffs points to the filter coefficients.
47 @param[in] pState points to the state buffer.
48
49 @par Coefficient and State Ordering
50 The coefficients are stored in the array <code>pCoeffs</code> in the following order:
51 <pre>
52 {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...}
53 </pre>
54
55 @par
56 where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage,
57 <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage,
58 and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values.
59 @par
60 The <code>pState</code> is a pointer to state array.
61 Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>.
62 The state variables are arranged in the <code>pState</code> array as:
63 <pre>
64 {x[n-1], x[n-2], y[n-1], y[n-2]}
65 </pre>
66 The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
67 The state array has a total length of <code>4*numStages</code> values.
68 The state variables are updated after each block of data is processed; the coefficients are untouched.
69
70 @par For MVE code, an additional buffer of modified coefficients is required.
71 Its size is numStages and each element of this buffer has type arm_biquad_mod_coef_f16.
72 So, its total size is 96*numStages float16_t elements.
73
74 The initialization function which must be used is arm_biquad_cascade_df1_mve_init_f16.
75 */
76
77
arm_biquad_cascade_df1_init_f16(arm_biquad_casd_df1_inst_f16 * S,uint8_t numStages,const float16_t * pCoeffs,float16_t * pState)78 ARM_DSP_ATTRIBUTE void arm_biquad_cascade_df1_init_f16(
79 arm_biquad_casd_df1_inst_f16 * S,
80 uint8_t numStages,
81 const float16_t * pCoeffs,
82 float16_t * pState)
83 {
84 /* Assign filter stages */
85 S->numStages = numStages;
86
87 /* Assign coefficient pointer */
88 S->pCoeffs = pCoeffs;
89
90 /* Clear state buffer and size is always 4 * numStages */
91 memset(pState, 0, (4U * (uint32_t) numStages) * sizeof(float16_t));
92
93 /* Assign state pointer */
94 S->pState = pState;
95 }
96
97 #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
98
99 /*
100
101 The computation of the coefficients is done in float32 otherwise the
102 resulting filter is too different from the expected one.
103
104 */
generateCoefsFastBiquadF16(float16_t b0,float16_t b1,float16_t b2,float16_t a1,float16_t a2,arm_biquad_mod_coef_f16 * newCoef)105 static void generateCoefsFastBiquadF16(float16_t b0, float16_t b1, float16_t b2, float16_t a1, float16_t a2,
106 arm_biquad_mod_coef_f16 * newCoef)
107 {
108 float32_t coeffs[8][12] = {
109 {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, (float32_t)b0, (float32_t)b1, (float32_t)b2, (float32_t)a1, (float32_t)a2},
110 {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, (float32_t)b0, (float32_t)b1, (float32_t)b2, 0.0f, (float32_t)a2, 0.0f},
111 {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, (float32_t)b0, (float32_t)b1, (float32_t)b2, 0.0f, 0.0f, 0.0f, 0.0f},
112 {0.0f, 0.0f, 0.0f, 0.0f, (float32_t)b0, (float32_t)b1, (float32_t)b2, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
113 {0.0f, 0.0f, 0.0f, (float32_t)b0, (float32_t)b1, (float32_t)b2, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
114 {0.0f, 0.0f, (float32_t)b0, (float32_t)b1, (float32_t)b2, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
115 {0.0f, (float32_t)b0, (float32_t)b1, (float32_t)b2, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
116 {(float32_t)b0, (float32_t)b1, (float32_t)b2, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}
117 };
118
119 for (int i = 0; i < 12; i++)
120 {
121 coeffs[1][i] += ((float32_t)a1 * coeffs[0][i]);
122 coeffs[2][i] += ((float32_t)a1 * coeffs[1][i]) + ((float32_t)a2 * coeffs[0][i]);
123 coeffs[3][i] += ((float32_t)a1 * coeffs[2][i]) + ((float32_t)a2 * coeffs[1][i]);
124 coeffs[4][i] += ((float32_t)a1 * coeffs[3][i]) + ((float32_t)a2 * coeffs[2][i]);
125 coeffs[5][i] += ((float32_t)a1 * coeffs[4][i]) + ((float32_t)a2 * coeffs[3][i]);
126 coeffs[6][i] += ((float32_t)a1 * coeffs[5][i]) + ((float32_t)a2 * coeffs[4][i]);
127 coeffs[7][i] += ((float32_t)a1 * coeffs[6][i]) + ((float32_t)a2 * coeffs[5][i]);
128
129 /*
130 * transpose
131 */
132 newCoef->coeffs[i][0] = (float16_t) coeffs[0][i];
133 newCoef->coeffs[i][1] = (float16_t) coeffs[1][i];
134 newCoef->coeffs[i][2] = (float16_t) coeffs[2][i];
135 newCoef->coeffs[i][3] = (float16_t) coeffs[3][i];
136 newCoef->coeffs[i][4] = (float16_t) coeffs[4][i];
137 newCoef->coeffs[i][5] = (float16_t) coeffs[5][i];
138 newCoef->coeffs[i][6] = (float16_t) coeffs[6][i];
139 newCoef->coeffs[i][7] = (float16_t) coeffs[7][i];
140
141 }
142 }
143
arm_biquad_cascade_df1_mve_init_f16(arm_biquad_casd_df1_inst_f16 * S,uint8_t numStages,const float16_t * pCoeffs,arm_biquad_mod_coef_f16 * pCoeffsMod,float16_t * pState)144 ARM_DSP_ATTRIBUTE void arm_biquad_cascade_df1_mve_init_f16(arm_biquad_casd_df1_inst_f16 * S,
145 uint8_t numStages,
146 const float16_t * pCoeffs,
147 arm_biquad_mod_coef_f16 * pCoeffsMod,
148 float16_t * pState)
149 {
150 arm_biquad_cascade_df1_init_f16(S, numStages, (float16_t *)pCoeffsMod, pState);
151
152 /* Generate SIMD friendly modified coefs */
153 for (int i = 0; i < numStages; i++)
154 {
155 generateCoefsFastBiquadF16(pCoeffs[0], pCoeffs[1], pCoeffs[2], pCoeffs[3], pCoeffs[4], pCoeffsMod);
156 pCoeffs += 5;
157 pCoeffsMod++;
158 }
159 }
160
161 #endif
162
163 /**
164 @} end of BiquadCascadeDF1 group
165 */
166 #endif /* #if defined(ARMfloat16_t_SUPPORTED) */
167