1 /*
2  *  AES-NI support functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
22  * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
23  */
24 
25 #include "common.h"
26 
27 #if defined(MBEDTLS_AESNI_C)
28 
29 #include "aesni.h"
30 
31 #include <string.h>
32 
33 #if defined(MBEDTLS_AESNI_HAVE_CODE)
34 
35 #if MBEDTLS_AESNI_HAVE_CODE == 2
36 #if !defined(_WIN32)
37 #include <cpuid.h>
38 #endif
39 #include <immintrin.h>
40 #endif
41 
42 /*
43  * AES-NI support detection routine
44  */
mbedtls_aesni_has_support(unsigned int what)45 int mbedtls_aesni_has_support(unsigned int what)
46 {
47     static int done = 0;
48     static unsigned int c = 0;
49 
50     if (!done) {
51 #if MBEDTLS_AESNI_HAVE_CODE == 2
52         static unsigned info[4] = { 0, 0, 0, 0 };
53 #if defined(_MSC_VER)
54         __cpuid(info, 1);
55 #else
56         __cpuid(1, info[0], info[1], info[2], info[3]);
57 #endif
58         c = info[2];
59 #else /* AESNI using asm */
60         asm ("movl  $1, %%eax   \n\t"
61              "cpuid             \n\t"
62              : "=c" (c)
63              :
64              : "eax", "ebx", "edx");
65 #endif /* MBEDTLS_AESNI_HAVE_CODE */
66         done = 1;
67     }
68 
69     return (c & what) != 0;
70 }
71 
72 #if MBEDTLS_AESNI_HAVE_CODE == 2
73 
74 /*
75  * AES-NI AES-ECB block en(de)cryption
76  */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])77 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
78                             int mode,
79                             const unsigned char input[16],
80                             unsigned char output[16])
81 {
82     const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
83     unsigned nr = ctx->nr; // Number of remaining rounds
84 
85     // Load round key 0
86     __m128i state;
87     memcpy(&state, input, 16);
88     state = _mm_xor_si128(state, rk[0]);  // state ^= *rk;
89     ++rk;
90     --nr;
91 
92     if (mode == 0) {
93         while (nr != 0) {
94             state = _mm_aesdec_si128(state, *rk);
95             ++rk;
96             --nr;
97         }
98         state = _mm_aesdeclast_si128(state, *rk);
99     } else {
100         while (nr != 0) {
101             state = _mm_aesenc_si128(state, *rk);
102             ++rk;
103             --nr;
104         }
105         state = _mm_aesenclast_si128(state, *rk);
106     }
107 
108     memcpy(output, &state, 16);
109     return 0;
110 }
111 
112 /*
113  * GCM multiplication: c = a times b in GF(2^128)
114  * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
115  */
116 
gcm_clmul(const __m128i aa,const __m128i bb,__m128i * cc,__m128i * dd)117 static void gcm_clmul(const __m128i aa, const __m128i bb,
118                       __m128i *cc, __m128i *dd)
119 {
120     /*
121      * Caryless multiplication dd:cc = aa * bb
122      * using [CLMUL-WP] algorithm 1 (p. 12).
123      */
124     *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
125     *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
126     __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
127     __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
128     ff = _mm_xor_si128(ff, ee);                      // e1+f1:e0+f0
129     ee = ff;                                         // e1+f1:e0+f0
130     ff = _mm_srli_si128(ff, 8);                      // 0:e1+f1
131     ee = _mm_slli_si128(ee, 8);                      // e0+f0:0
132     *dd = _mm_xor_si128(*dd, ff);                    // d1:d0+e1+f1
133     *cc = _mm_xor_si128(*cc, ee);                    // c1+e0+f0:c0
134 }
135 
gcm_shift(__m128i * cc,__m128i * dd)136 static void gcm_shift(__m128i *cc, __m128i *dd)
137 {
138     /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
139      * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
140     //                                        // *cc = r1:r0
141     //                                        // *dd = r3:r2
142     __m128i cc_lo = _mm_slli_epi64(*cc, 1);   // r1<<1:r0<<1
143     __m128i dd_lo = _mm_slli_epi64(*dd, 1);   // r3<<1:r2<<1
144     __m128i cc_hi = _mm_srli_epi64(*cc, 63);  // r1>>63:r0>>63
145     __m128i dd_hi = _mm_srli_epi64(*dd, 63);  // r3>>63:r2>>63
146     __m128i xmm5 = _mm_srli_si128(cc_hi, 8);  // 0:r1>>63
147     cc_hi = _mm_slli_si128(cc_hi, 8);         // r0>>63:0
148     dd_hi = _mm_slli_si128(dd_hi, 8);         // 0:r1>>63
149 
150     *cc = _mm_or_si128(cc_lo, cc_hi);         // r1<<1|r0>>63:r0<<1
151     *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
152 }
153 
gcm_reduce(__m128i xx)154 static __m128i gcm_reduce(__m128i xx)
155 {
156     //                                            // xx = x1:x0
157     /* [CLMUL-WP] Algorithm 5 Step 2 */
158     __m128i aa = _mm_slli_epi64(xx, 63);          // x1<<63:x0<<63 = stuff:a
159     __m128i bb = _mm_slli_epi64(xx, 62);          // x1<<62:x0<<62 = stuff:b
160     __m128i cc = _mm_slli_epi64(xx, 57);          // x1<<57:x0<<57 = stuff:c
161     __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
162     return _mm_xor_si128(dd, xx);                 // x1+a+b+c:x0 = d:x0
163 }
164 
gcm_mix(__m128i dx)165 static __m128i gcm_mix(__m128i dx)
166 {
167     /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
168     __m128i ee = _mm_srli_epi64(dx, 1);           // e1:x0>>1 = e1:e0'
169     __m128i ff = _mm_srli_epi64(dx, 2);           // f1:x0>>2 = f1:f0'
170     __m128i gg = _mm_srli_epi64(dx, 7);           // g1:x0>>7 = g1:g0'
171 
172     // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
173     // bits carried from d. Now get those bits back in.
174     __m128i eh = _mm_slli_epi64(dx, 63);          // d<<63:stuff
175     __m128i fh = _mm_slli_epi64(dx, 62);          // d<<62:stuff
176     __m128i gh = _mm_slli_epi64(dx, 57);          // d<<57:stuff
177     __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
178 
179     return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
180 }
181 
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])182 void mbedtls_aesni_gcm_mult(unsigned char c[16],
183                             const unsigned char a[16],
184                             const unsigned char b[16])
185 {
186     __m128i aa, bb, cc, dd;
187 
188     /* The inputs are in big-endian order, so byte-reverse them */
189     for (size_t i = 0; i < 16; i++) {
190         ((uint8_t *) &aa)[i] = a[15 - i];
191         ((uint8_t *) &bb)[i] = b[15 - i];
192     }
193 
194     gcm_clmul(aa, bb, &cc, &dd);
195     gcm_shift(&cc, &dd);
196     /*
197      * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
198      * using [CLMUL-WP] algorithm 5 (p. 18).
199      * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
200      */
201     __m128i dx = gcm_reduce(cc);
202     __m128i xh = gcm_mix(dx);
203     cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
204 
205     /* Now byte-reverse the outputs */
206     for (size_t i = 0; i < 16; i++) {
207         c[i] = ((uint8_t *) &cc)[15 - i];
208     }
209 
210     return;
211 }
212 
213 /*
214  * Compute decryption round keys from encryption round keys
215  */
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)216 void mbedtls_aesni_inverse_key(unsigned char *invkey,
217                                const unsigned char *fwdkey, int nr)
218 {
219     __m128i *ik = (__m128i *) invkey;
220     const __m128i *fk = (const __m128i *) fwdkey + nr;
221 
222     *ik = *fk;
223     for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
224         *ik = _mm_aesimc_si128(*fk);
225     }
226     *ik = *fk;
227 }
228 
229 /*
230  * Key expansion, 128-bit case
231  */
aesni_set_rk_128(__m128i state,__m128i xword)232 static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
233 {
234     /*
235      * Finish generating the next round key.
236      *
237      * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
238      * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
239      *
240      * On exit, xword is r7:r6:r5:r4
241      * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
242      * and this is returned, to be written to the round key buffer.
243      */
244     xword = _mm_shuffle_epi32(xword, 0xff);   // X:X:X:X
245     xword = _mm_xor_si128(xword, state);      // X+r3:X+r2:X+r1:r4
246     state = _mm_slli_si128(state, 4);         // r2:r1:r0:0
247     xword = _mm_xor_si128(xword, state);      // X+r3+r2:X+r2+r1:r5:r4
248     state = _mm_slli_si128(state, 4);         // r1:r0:0:0
249     xword = _mm_xor_si128(xword, state);      // X+r3+r2+r1:r6:r5:r4
250     state = _mm_slli_si128(state, 4);         // r0:0:0:0
251     state = _mm_xor_si128(xword, state);      // r7:r6:r5:r4
252     return state;
253 }
254 
aesni_setkey_enc_128(unsigned char * rk_bytes,const unsigned char * key)255 static void aesni_setkey_enc_128(unsigned char *rk_bytes,
256                                  const unsigned char *key)
257 {
258     __m128i *rk = (__m128i *) rk_bytes;
259 
260     memcpy(&rk[0], key, 16);
261     rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
262     rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
263     rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
264     rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
265     rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
266     rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
267     rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
268     rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
269     rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
270     rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
271 }
272 
273 /*
274  * Key expansion, 192-bit case
275  */
aesni_set_rk_192(__m128i * state0,__m128i * state1,__m128i xword,unsigned char * rk)276 static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
277                              unsigned char *rk)
278 {
279     /*
280      * Finish generating the next 6 quarter-keys.
281      *
282      * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
283      * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
284      * (obtained with AESKEYGENASSIST).
285      *
286      * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
287      * and those are written to the round key buffer.
288      */
289     xword = _mm_shuffle_epi32(xword, 0x55);   // X:X:X:X
290     xword = _mm_xor_si128(xword, *state0);    // X+r3:X+r2:X+r1:X+r0
291     *state0 = _mm_slli_si128(*state0, 4);     // r2:r1:r0:0
292     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
293     *state0 = _mm_slli_si128(*state0, 4);     // r1:r0:0:0
294     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
295     *state0 = _mm_slli_si128(*state0, 4);     // r0:0:0:0
296     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
297     *state0 = xword;                          // = r9:r8:r7:r6
298 
299     xword = _mm_shuffle_epi32(xword, 0xff);   // r9:r9:r9:r9
300     xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5:r9+r4
301     *state1 = _mm_slli_si128(*state1, 4);     // stuff:stuff:r4:0
302     xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5+r4:r9+r4
303     *state1 = xword;                          // = stuff:stuff:r11:r10
304 
305     /* Store state0 and the low half of state1 into rk, which is conceptually
306      * an array of 24-byte elements. Since 24 is not a multiple of 16,
307      * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
308     memcpy(rk, state0, 16);
309     memcpy(rk + 16, state1, 8);
310 }
311 
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)312 static void aesni_setkey_enc_192(unsigned char *rk,
313                                  const unsigned char *key)
314 {
315     /* First round: use original key */
316     memcpy(rk, key, 24);
317     /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
318     __m128i state0 = ((__m128i *) rk)[0];
319     __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
320 
321     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
322     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
323     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
324     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
325     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
326     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
327     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
328     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
329 }
330 
331 /*
332  * Key expansion, 256-bit case
333  */
aesni_set_rk_256(__m128i state0,__m128i state1,__m128i xword,__m128i * rk0,__m128i * rk1)334 static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
335                              __m128i *rk0, __m128i *rk1)
336 {
337     /*
338      * Finish generating the next two round keys.
339      *
340      * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
341      * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
342      * (obtained with AESKEYGENASSIST).
343      *
344      * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
345      */
346     xword = _mm_shuffle_epi32(xword, 0xff);
347     xword = _mm_xor_si128(xword, state0);
348     state0 = _mm_slli_si128(state0, 4);
349     xword = _mm_xor_si128(xword, state0);
350     state0 = _mm_slli_si128(state0, 4);
351     xword = _mm_xor_si128(xword, state0);
352     state0 = _mm_slli_si128(state0, 4);
353     state0 = _mm_xor_si128(state0, xword);
354     *rk0 = state0;
355 
356     /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
357      * and proceed to generate next round key from there */
358     xword = _mm_aeskeygenassist_si128(state0, 0x00);
359     xword = _mm_shuffle_epi32(xword, 0xaa);
360     xword = _mm_xor_si128(xword, state1);
361     state1 = _mm_slli_si128(state1, 4);
362     xword = _mm_xor_si128(xword, state1);
363     state1 = _mm_slli_si128(state1, 4);
364     xword = _mm_xor_si128(xword, state1);
365     state1 = _mm_slli_si128(state1, 4);
366     state1 = _mm_xor_si128(state1, xword);
367     *rk1 = state1;
368 }
369 
aesni_setkey_enc_256(unsigned char * rk_bytes,const unsigned char * key)370 static void aesni_setkey_enc_256(unsigned char *rk_bytes,
371                                  const unsigned char *key)
372 {
373     __m128i *rk = (__m128i *) rk_bytes;
374 
375     memcpy(&rk[0], key, 16);
376     memcpy(&rk[1], key + 16, 16);
377 
378     /*
379      * Main "loop" - Generating one more key than necessary,
380      * see definition of mbedtls_aes_context.buf
381      */
382     aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
383     aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
384     aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
385     aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
386     aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
387     aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
388     aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
389 }
390 
391 #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
392 
393 #if defined(__has_feature)
394 #if __has_feature(memory_sanitizer)
395 #warning \
396     "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
397 #endif
398 #endif
399 
400 /*
401  * Binutils needs to be at least 2.19 to support AES-NI instructions.
402  * Unfortunately, a lot of users have a lower version now (2014-04).
403  * Emit bytecode directly in order to support "old" version of gas.
404  *
405  * Opcodes from the Intel architecture reference manual, vol. 3.
406  * We always use registers, so we don't need prefixes for memory operands.
407  * Operand macros are in gas order (src, dst) as opposed to Intel order
408  * (dst, src) in order to blend better into the surrounding assembly code.
409  */
410 #define AESDEC(regs)      ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
411 #define AESDECLAST(regs)  ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
412 #define AESENC(regs)      ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
413 #define AESENCLAST(regs)  ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
414 #define AESIMC(regs)      ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
415 #define AESKEYGENA(regs, imm)  ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
416 #define PCLMULQDQ(regs, imm)   ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
417 
418 #define xmm0_xmm0   "0xC0"
419 #define xmm0_xmm1   "0xC8"
420 #define xmm0_xmm2   "0xD0"
421 #define xmm0_xmm3   "0xD8"
422 #define xmm0_xmm4   "0xE0"
423 #define xmm1_xmm0   "0xC1"
424 #define xmm1_xmm2   "0xD1"
425 
426 /*
427  * AES-NI AES-ECB block en(de)cryption
428  */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])429 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
430                             int mode,
431                             const unsigned char input[16],
432                             unsigned char output[16])
433 {
434     asm ("movdqu    (%3), %%xmm0    \n\t" // load input
435          "movdqu    (%1), %%xmm1    \n\t" // load round key 0
436          "pxor      %%xmm1, %%xmm0  \n\t" // round 0
437          "add       $16, %1         \n\t" // point to next round key
438          "subl      $1, %0          \n\t" // normal rounds = nr - 1
439          "test      %2, %2          \n\t" // mode?
440          "jz        2f              \n\t" // 0 = decrypt
441 
442          "1:                        \n\t" // encryption loop
443          "movdqu    (%1), %%xmm1    \n\t" // load round key
444          AESENC(xmm1_xmm0)                // do round
445          "add       $16, %1         \n\t" // point to next round key
446          "subl      $1, %0          \n\t" // loop
447          "jnz       1b              \n\t"
448          "movdqu    (%1), %%xmm1    \n\t" // load round key
449          AESENCLAST(xmm1_xmm0)            // last round
450          "jmp       3f              \n\t"
451 
452          "2:                        \n\t" // decryption loop
453          "movdqu    (%1), %%xmm1    \n\t"
454          AESDEC(xmm1_xmm0)                // do round
455          "add       $16, %1         \n\t"
456          "subl      $1, %0          \n\t"
457          "jnz       2b              \n\t"
458          "movdqu    (%1), %%xmm1    \n\t" // load round key
459          AESDECLAST(xmm1_xmm0)            // last round
460 
461          "3:                        \n\t"
462          "movdqu    %%xmm0, (%4)    \n\t" // export output
463          :
464          : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
465          : "memory", "cc", "xmm0", "xmm1");
466 
467 
468     return 0;
469 }
470 
471 /*
472  * GCM multiplication: c = a times b in GF(2^128)
473  * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
474  */
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])475 void mbedtls_aesni_gcm_mult(unsigned char c[16],
476                             const unsigned char a[16],
477                             const unsigned char b[16])
478 {
479     unsigned char aa[16], bb[16], cc[16];
480     size_t i;
481 
482     /* The inputs are in big-endian order, so byte-reverse them */
483     for (i = 0; i < 16; i++) {
484         aa[i] = a[15 - i];
485         bb[i] = b[15 - i];
486     }
487 
488     asm ("movdqu (%0), %%xmm0               \n\t" // a1:a0
489          "movdqu (%1), %%xmm1               \n\t" // b1:b0
490 
491          /*
492           * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
493           * using [CLMUL-WP] algorithm 1 (p. 12).
494           */
495          "movdqa %%xmm1, %%xmm2             \n\t" // copy of b1:b0
496          "movdqa %%xmm1, %%xmm3             \n\t" // same
497          "movdqa %%xmm1, %%xmm4             \n\t" // same
498          PCLMULQDQ(xmm0_xmm1, "0x00")             // a0*b0 = c1:c0
499          PCLMULQDQ(xmm0_xmm2, "0x11")             // a1*b1 = d1:d0
500          PCLMULQDQ(xmm0_xmm3, "0x10")             // a0*b1 = e1:e0
501          PCLMULQDQ(xmm0_xmm4, "0x01")             // a1*b0 = f1:f0
502          "pxor %%xmm3, %%xmm4               \n\t" // e1+f1:e0+f0
503          "movdqa %%xmm4, %%xmm3             \n\t" // same
504          "psrldq $8, %%xmm4                 \n\t" // 0:e1+f1
505          "pslldq $8, %%xmm3                 \n\t" // e0+f0:0
506          "pxor %%xmm4, %%xmm2               \n\t" // d1:d0+e1+f1
507          "pxor %%xmm3, %%xmm1               \n\t" // c1+e0+f1:c0
508 
509          /*
510           * Now shift the result one bit to the left,
511           * taking advantage of [CLMUL-WP] eq 27 (p. 18)
512           */
513          "movdqa %%xmm1, %%xmm3             \n\t" // r1:r0
514          "movdqa %%xmm2, %%xmm4             \n\t" // r3:r2
515          "psllq $1, %%xmm1                  \n\t" // r1<<1:r0<<1
516          "psllq $1, %%xmm2                  \n\t" // r3<<1:r2<<1
517          "psrlq $63, %%xmm3                 \n\t" // r1>>63:r0>>63
518          "psrlq $63, %%xmm4                 \n\t" // r3>>63:r2>>63
519          "movdqa %%xmm3, %%xmm5             \n\t" // r1>>63:r0>>63
520          "pslldq $8, %%xmm3                 \n\t" // r0>>63:0
521          "pslldq $8, %%xmm4                 \n\t" // r2>>63:0
522          "psrldq $8, %%xmm5                 \n\t" // 0:r1>>63
523          "por %%xmm3, %%xmm1                \n\t" // r1<<1|r0>>63:r0<<1
524          "por %%xmm4, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1
525          "por %%xmm5, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
526 
527          /*
528           * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
529           * using [CLMUL-WP] algorithm 5 (p. 18).
530           * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
531           */
532          /* Step 2 (1) */
533          "movdqa %%xmm1, %%xmm3             \n\t" // x1:x0
534          "movdqa %%xmm1, %%xmm4             \n\t" // same
535          "movdqa %%xmm1, %%xmm5             \n\t" // same
536          "psllq $63, %%xmm3                 \n\t" // x1<<63:x0<<63 = stuff:a
537          "psllq $62, %%xmm4                 \n\t" // x1<<62:x0<<62 = stuff:b
538          "psllq $57, %%xmm5                 \n\t" // x1<<57:x0<<57 = stuff:c
539 
540          /* Step 2 (2) */
541          "pxor %%xmm4, %%xmm3               \n\t" // stuff:a+b
542          "pxor %%xmm5, %%xmm3               \n\t" // stuff:a+b+c
543          "pslldq $8, %%xmm3                 \n\t" // a+b+c:0
544          "pxor %%xmm3, %%xmm1               \n\t" // x1+a+b+c:x0 = d:x0
545 
546          /* Steps 3 and 4 */
547          "movdqa %%xmm1,%%xmm0              \n\t" // d:x0
548          "movdqa %%xmm1,%%xmm4              \n\t" // same
549          "movdqa %%xmm1,%%xmm5              \n\t" // same
550          "psrlq $1, %%xmm0                  \n\t" // e1:x0>>1 = e1:e0'
551          "psrlq $2, %%xmm4                  \n\t" // f1:x0>>2 = f1:f0'
552          "psrlq $7, %%xmm5                  \n\t" // g1:x0>>7 = g1:g0'
553          "pxor %%xmm4, %%xmm0               \n\t" // e1+f1:e0'+f0'
554          "pxor %%xmm5, %%xmm0               \n\t" // e1+f1+g1:e0'+f0'+g0'
555          // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
556          // bits carried from d. Now get those\t bits back in.
557          "movdqa %%xmm1,%%xmm3              \n\t" // d:x0
558          "movdqa %%xmm1,%%xmm4              \n\t" // same
559          "movdqa %%xmm1,%%xmm5              \n\t" // same
560          "psllq $63, %%xmm3                 \n\t" // d<<63:stuff
561          "psllq $62, %%xmm4                 \n\t" // d<<62:stuff
562          "psllq $57, %%xmm5                 \n\t" // d<<57:stuff
563          "pxor %%xmm4, %%xmm3               \n\t" // d<<63+d<<62:stuff
564          "pxor %%xmm5, %%xmm3               \n\t" // missing bits of d:stuff
565          "psrldq $8, %%xmm3                 \n\t" // 0:missing bits of d
566          "pxor %%xmm3, %%xmm0               \n\t" // e1+f1+g1:e0+f0+g0
567          "pxor %%xmm1, %%xmm0               \n\t" // h1:h0
568          "pxor %%xmm2, %%xmm0               \n\t" // x3+h1:x2+h0
569 
570          "movdqu %%xmm0, (%2)               \n\t" // done
571          :
572          : "r" (aa), "r" (bb), "r" (cc)
573          : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
574 
575     /* Now byte-reverse the outputs */
576     for (i = 0; i < 16; i++) {
577         c[i] = cc[15 - i];
578     }
579 
580     return;
581 }
582 
583 /*
584  * Compute decryption round keys from encryption round keys
585  */
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)586 void mbedtls_aesni_inverse_key(unsigned char *invkey,
587                                const unsigned char *fwdkey, int nr)
588 {
589     unsigned char *ik = invkey;
590     const unsigned char *fk = fwdkey + 16 * nr;
591 
592     memcpy(ik, fk, 16);
593 
594     for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
595         asm ("movdqu (%0), %%xmm0       \n\t"
596              AESIMC(xmm0_xmm0)
597              "movdqu %%xmm0, (%1)       \n\t"
598              :
599              : "r" (fk), "r" (ik)
600              : "memory", "xmm0");
601     }
602 
603     memcpy(ik, fk, 16);
604 }
605 
606 /*
607  * Key expansion, 128-bit case
608  */
aesni_setkey_enc_128(unsigned char * rk,const unsigned char * key)609 static void aesni_setkey_enc_128(unsigned char *rk,
610                                  const unsigned char *key)
611 {
612     asm ("movdqu (%1), %%xmm0               \n\t" // copy the original key
613          "movdqu %%xmm0, (%0)               \n\t" // as round key 0
614          "jmp 2f                            \n\t" // skip auxiliary routine
615 
616          /*
617           * Finish generating the next round key.
618           *
619           * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
620           * with X = rot( sub( r3 ) ) ^ RCON.
621           *
622           * On exit, xmm0 is r7:r6:r5:r4
623           * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
624           * and those are written to the round key buffer.
625           */
626          "1:                                \n\t"
627          "pshufd $0xff, %%xmm1, %%xmm1      \n\t" // X:X:X:X
628          "pxor %%xmm0, %%xmm1               \n\t" // X+r3:X+r2:X+r1:r4
629          "pslldq $4, %%xmm0                 \n\t" // r2:r1:r0:0
630          "pxor %%xmm0, %%xmm1               \n\t" // X+r3+r2:X+r2+r1:r5:r4
631          "pslldq $4, %%xmm0                 \n\t" // etc
632          "pxor %%xmm0, %%xmm1               \n\t"
633          "pslldq $4, %%xmm0                 \n\t"
634          "pxor %%xmm1, %%xmm0               \n\t" // update xmm0 for next time!
635          "add $16, %0                       \n\t" // point to next round key
636          "movdqu %%xmm0, (%0)               \n\t" // write it
637          "ret                               \n\t"
638 
639          /* Main "loop" */
640          "2:                                \n\t"
641          AESKEYGENA(xmm0_xmm1, "0x01")      "call 1b \n\t"
642          AESKEYGENA(xmm0_xmm1, "0x02")      "call 1b \n\t"
643          AESKEYGENA(xmm0_xmm1, "0x04")      "call 1b \n\t"
644          AESKEYGENA(xmm0_xmm1, "0x08")      "call 1b \n\t"
645          AESKEYGENA(xmm0_xmm1, "0x10")      "call 1b \n\t"
646          AESKEYGENA(xmm0_xmm1, "0x20")      "call 1b \n\t"
647          AESKEYGENA(xmm0_xmm1, "0x40")      "call 1b \n\t"
648          AESKEYGENA(xmm0_xmm1, "0x80")      "call 1b \n\t"
649          AESKEYGENA(xmm0_xmm1, "0x1B")      "call 1b \n\t"
650          AESKEYGENA(xmm0_xmm1, "0x36")      "call 1b \n\t"
651          :
652          : "r" (rk), "r" (key)
653          : "memory", "cc", "0");
654 }
655 
656 /*
657  * Key expansion, 192-bit case
658  */
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)659 static void aesni_setkey_enc_192(unsigned char *rk,
660                                  const unsigned char *key)
661 {
662     asm ("movdqu (%1), %%xmm0   \n\t" // copy original round key
663          "movdqu %%xmm0, (%0)   \n\t"
664          "add $16, %0           \n\t"
665          "movq 16(%1), %%xmm1   \n\t"
666          "movq %%xmm1, (%0)     \n\t"
667          "add $8, %0            \n\t"
668          "jmp 2f                \n\t" // skip auxiliary routine
669 
670          /*
671           * Finish generating the next 6 quarter-keys.
672           *
673           * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
674           * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
675           *
676           * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
677           * and those are written to the round key buffer.
678           */
679          "1:                            \n\t"
680          "pshufd $0x55, %%xmm2, %%xmm2  \n\t" // X:X:X:X
681          "pxor %%xmm0, %%xmm2           \n\t" // X+r3:X+r2:X+r1:r4
682          "pslldq $4, %%xmm0             \n\t" // etc
683          "pxor %%xmm0, %%xmm2           \n\t"
684          "pslldq $4, %%xmm0             \n\t"
685          "pxor %%xmm0, %%xmm2           \n\t"
686          "pslldq $4, %%xmm0             \n\t"
687          "pxor %%xmm2, %%xmm0           \n\t" // update xmm0 = r9:r8:r7:r6
688          "movdqu %%xmm0, (%0)           \n\t"
689          "add $16, %0                   \n\t"
690          "pshufd $0xff, %%xmm0, %%xmm2  \n\t" // r9:r9:r9:r9
691          "pxor %%xmm1, %%xmm2           \n\t" // stuff:stuff:r9+r5:r10
692          "pslldq $4, %%xmm1             \n\t" // r2:r1:r0:0
693          "pxor %%xmm2, %%xmm1           \n\t" // xmm1 = stuff:stuff:r11:r10
694          "movq %%xmm1, (%0)             \n\t"
695          "add $8, %0                    \n\t"
696          "ret                           \n\t"
697 
698          "2:                            \n\t"
699          AESKEYGENA(xmm1_xmm2, "0x01")  "call 1b \n\t"
700          AESKEYGENA(xmm1_xmm2, "0x02")  "call 1b \n\t"
701          AESKEYGENA(xmm1_xmm2, "0x04")  "call 1b \n\t"
702          AESKEYGENA(xmm1_xmm2, "0x08")  "call 1b \n\t"
703          AESKEYGENA(xmm1_xmm2, "0x10")  "call 1b \n\t"
704          AESKEYGENA(xmm1_xmm2, "0x20")  "call 1b \n\t"
705          AESKEYGENA(xmm1_xmm2, "0x40")  "call 1b \n\t"
706          AESKEYGENA(xmm1_xmm2, "0x80")  "call 1b \n\t"
707 
708          :
709          : "r" (rk), "r" (key)
710          : "memory", "cc", "0");
711 }
712 
713 /*
714  * Key expansion, 256-bit case
715  */
aesni_setkey_enc_256(unsigned char * rk,const unsigned char * key)716 static void aesni_setkey_enc_256(unsigned char *rk,
717                                  const unsigned char *key)
718 {
719     asm ("movdqu (%1), %%xmm0           \n\t"
720          "movdqu %%xmm0, (%0)           \n\t"
721          "add $16, %0                   \n\t"
722          "movdqu 16(%1), %%xmm1         \n\t"
723          "movdqu %%xmm1, (%0)           \n\t"
724          "jmp 2f                        \n\t" // skip auxiliary routine
725 
726          /*
727           * Finish generating the next two round keys.
728           *
729           * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
730           * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
731           *
732           * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
733           * and those have been written to the output buffer.
734           */
735          "1:                                \n\t"
736          "pshufd $0xff, %%xmm2, %%xmm2      \n\t"
737          "pxor %%xmm0, %%xmm2               \n\t"
738          "pslldq $4, %%xmm0                 \n\t"
739          "pxor %%xmm0, %%xmm2               \n\t"
740          "pslldq $4, %%xmm0                 \n\t"
741          "pxor %%xmm0, %%xmm2               \n\t"
742          "pslldq $4, %%xmm0                 \n\t"
743          "pxor %%xmm2, %%xmm0               \n\t"
744          "add $16, %0                       \n\t"
745          "movdqu %%xmm0, (%0)               \n\t"
746 
747          /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
748           * and proceed to generate next round key from there */
749          AESKEYGENA(xmm0_xmm2, "0x00")
750          "pshufd $0xaa, %%xmm2, %%xmm2      \n\t"
751          "pxor %%xmm1, %%xmm2               \n\t"
752          "pslldq $4, %%xmm1                 \n\t"
753          "pxor %%xmm1, %%xmm2               \n\t"
754          "pslldq $4, %%xmm1                 \n\t"
755          "pxor %%xmm1, %%xmm2               \n\t"
756          "pslldq $4, %%xmm1                 \n\t"
757          "pxor %%xmm2, %%xmm1               \n\t"
758          "add $16, %0                       \n\t"
759          "movdqu %%xmm1, (%0)               \n\t"
760          "ret                               \n\t"
761 
762          /*
763           * Main "loop" - Generating one more key than necessary,
764           * see definition of mbedtls_aes_context.buf
765           */
766          "2:                                \n\t"
767          AESKEYGENA(xmm1_xmm2, "0x01")      "call 1b \n\t"
768          AESKEYGENA(xmm1_xmm2, "0x02")      "call 1b \n\t"
769          AESKEYGENA(xmm1_xmm2, "0x04")      "call 1b \n\t"
770          AESKEYGENA(xmm1_xmm2, "0x08")      "call 1b \n\t"
771          AESKEYGENA(xmm1_xmm2, "0x10")      "call 1b \n\t"
772          AESKEYGENA(xmm1_xmm2, "0x20")      "call 1b \n\t"
773          AESKEYGENA(xmm1_xmm2, "0x40")      "call 1b \n\t"
774          :
775          : "r" (rk), "r" (key)
776          : "memory", "cc", "0");
777 }
778 
779 #endif  /* MBEDTLS_AESNI_HAVE_CODE */
780 
781 /*
782  * Key expansion, wrapper
783  */
mbedtls_aesni_setkey_enc(unsigned char * rk,const unsigned char * key,size_t bits)784 int mbedtls_aesni_setkey_enc(unsigned char *rk,
785                              const unsigned char *key,
786                              size_t bits)
787 {
788     switch (bits) {
789         case 128: aesni_setkey_enc_128(rk, key); break;
790         case 192: aesni_setkey_enc_192(rk, key); break;
791         case 256: aesni_setkey_enc_256(rk, key); break;
792         default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
793     }
794 
795     return 0;
796 }
797 
798 #endif /* MBEDTLS_AESNI_HAVE_CODE */
799 
800 #endif /* MBEDTLS_AESNI_C */
801