1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one
3  * or more contributor license agreements. See the NOTICE file
4  * distributed with this work for additional information
5  * regarding copyright ownership. The ASF licenses this file
6  * to you under the Apache License, Version 2.0 (the
7  * "License"); you may not use this file except in compliance
8  * with the License. You may obtain a copy of the License at
9  *
10  *   http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing,
13  * software distributed under the License is distributed on an
14  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15  * KIND, either express or implied. See the License for the
16  * specific language governing permissions and limitations
17  * under the License.
18  */
19 #ifndef _THRIFT_PROTOCOL_TCOMPACTPROTOCOL_TCC_
20 #define _THRIFT_PROTOCOL_TCOMPACTPROTOCOL_TCC_ 1
21 
22 #include <limits>
23 #include <cstdlib>
24 
25 #include "thrift/config.h"
26 
27 /*
28  * TCompactProtocol::i*ToZigzag depend on the fact that the right shift
29  * operator on a signed integer is an arithmetic (sign-extending) shift.
30  * If this is not the case, the current implementation will not work.
31  * If anyone encounters this error, we can try to figure out the best
32  * way to implement an arithmetic right shift on their platform.
33  */
34 #if !defined(SIGNED_RIGHT_SHIFT_IS) || !defined(ARITHMETIC_RIGHT_SHIFT)
35 # error "Unable to determine the behavior of a signed right shift"
36 #endif
37 #if SIGNED_RIGHT_SHIFT_IS != ARITHMETIC_RIGHT_SHIFT
38 # error "TCompactProtocol currently only works if a signed right shift is arithmetic"
39 #endif
40 
41 #ifdef __GNUC__
42 #define UNLIKELY(val) (__builtin_expect((val), 0))
43 #else
44 #define UNLIKELY(val) (val)
45 #endif
46 
47 namespace apache { namespace thrift { namespace protocol {
48 
49 namespace detail { namespace compact {
50 
51 enum Types {
52   CT_STOP           = 0x00,
53   CT_BOOLEAN_TRUE   = 0x01,
54   CT_BOOLEAN_FALSE  = 0x02,
55   CT_BYTE           = 0x03,
56   CT_I16            = 0x04,
57   CT_I32            = 0x05,
58   CT_I64            = 0x06,
59   CT_DOUBLE         = 0x07,
60   CT_BINARY         = 0x08,
61   CT_LIST           = 0x09,
62   CT_SET            = 0x0A,
63   CT_MAP            = 0x0B,
64   CT_STRUCT         = 0x0C
65 };
66 
67 const int8_t TTypeToCType[16] = {
68   CT_STOP, // T_STOP
69   0, // unused
70   CT_BOOLEAN_TRUE, // T_BOOL
71   CT_BYTE, // T_BYTE
72   CT_DOUBLE, // T_DOUBLE
73   0, // unused
74   CT_I16, // T_I16
75   0, // unused
76   CT_I32, // T_I32
77   0, // unused
78   CT_I64, // T_I64
79   CT_BINARY, // T_STRING
80   CT_STRUCT, // T_STRUCT
81   CT_MAP, // T_MAP
82   CT_SET, // T_SET
83   CT_LIST, // T_LIST
84 };
85 
86 }} // end detail::compact namespace
87 
88 
89 template <class Transport_>
writeMessageBegin(const std::string & name,const TMessageType messageType,const int32_t seqid)90 uint32_t TCompactProtocolT<Transport_>::writeMessageBegin(
91     const std::string& name,
92     const TMessageType messageType,
93     const int32_t seqid) {
94   uint32_t wsize = 0;
95   wsize += writeByte(PROTOCOL_ID);
96   wsize += writeByte((VERSION_N & VERSION_MASK) | (((int32_t)messageType << TYPE_SHIFT_AMOUNT) & TYPE_MASK));
97   wsize += writeVarint32(seqid);
98   wsize += writeString(name);
99   return wsize;
100 }
101 
102 /**
103  * Write a field header containing the field id and field type. If the
104  * difference between the current field id and the last one is small (< 15),
105  * then the field id will be encoded in the 4 MSB as a delta. Otherwise, the
106  * field id will follow the type header as a zigzag varint.
107  */
108 template <class Transport_>
writeFieldBegin(const char * name,const TType fieldType,const int16_t fieldId)109 uint32_t TCompactProtocolT<Transport_>::writeFieldBegin(const char* name,
110                                                         const TType fieldType,
111                                                         const int16_t fieldId) {
112   if (fieldType == T_BOOL) {
113     booleanField_.name = name;
114     booleanField_.fieldType = fieldType;
115     booleanField_.fieldId = fieldId;
116   } else {
117     return writeFieldBeginInternal(name, fieldType, fieldId, -1);
118   }
119   return 0;
120 }
121 
122 /**
123  * Write the STOP symbol so we know there are no more fields in this struct.
124  */
125 template <class Transport_>
writeFieldStop()126 uint32_t TCompactProtocolT<Transport_>::writeFieldStop() {
127   return writeByte(T_STOP);
128 }
129 
130 /**
131  * Write a struct begin. This doesn't actually put anything on the wire. We
132  * use it as an opportunity to put special placeholder markers on the field
133  * stack so we can get the field id deltas correct.
134  */
135 template <class Transport_>
writeStructBegin(const char * name)136 uint32_t TCompactProtocolT<Transport_>::writeStructBegin(const char* name) {
137   (void) name;
138   lastField_.push(lastFieldId_);
139   lastFieldId_ = 0;
140   return 0;
141 }
142 
143 /**
144  * Write a struct end. This doesn't actually put anything on the wire. We use
145  * this as an opportunity to pop the last field from the current struct off
146  * of the field stack.
147  */
148 template <class Transport_>
writeStructEnd()149 uint32_t TCompactProtocolT<Transport_>::writeStructEnd() {
150   lastFieldId_ = lastField_.top();
151   lastField_.pop();
152   return 0;
153 }
154 
155 /**
156  * Write a List header.
157  */
158 template <class Transport_>
writeListBegin(const TType elemType,const uint32_t size)159 uint32_t TCompactProtocolT<Transport_>::writeListBegin(const TType elemType,
160                                                        const uint32_t size) {
161   return writeCollectionBegin(elemType, size);
162 }
163 
164 /**
165  * Write a set header.
166  */
167 template <class Transport_>
writeSetBegin(const TType elemType,const uint32_t size)168 uint32_t TCompactProtocolT<Transport_>::writeSetBegin(const TType elemType,
169                                                       const uint32_t size) {
170   return writeCollectionBegin(elemType, size);
171 }
172 
173 /**
174  * Write a map header. If the map is empty, omit the key and value type
175  * headers, as we don't need any additional information to skip it.
176  */
177 template <class Transport_>
writeMapBegin(const TType keyType,const TType valType,const uint32_t size)178 uint32_t TCompactProtocolT<Transport_>::writeMapBegin(const TType keyType,
179                                                       const TType valType,
180                                                       const uint32_t size) {
181   uint32_t wsize = 0;
182 
183   if (size == 0) {
184     wsize += writeByte(0);
185   } else {
186     wsize += writeVarint32(size);
187     wsize += writeByte(getCompactType(keyType) << 4 | getCompactType(valType));
188   }
189   return wsize;
190 }
191 
192 /**
193  * Write a boolean value. Potentially, this could be a boolean field, in
194  * which case the field header info isn't written yet. If so, decide what the
195  * right type header is for the value and then write the field header.
196  * Otherwise, write a single byte.
197  */
198 template <class Transport_>
writeBool(const bool value)199 uint32_t TCompactProtocolT<Transport_>::writeBool(const bool value) {
200   uint32_t wsize = 0;
201 
202   if (booleanField_.name != nullptr) {
203     // we haven't written the field header yet
204     wsize
205       += writeFieldBeginInternal(booleanField_.name,
206                                  booleanField_.fieldType,
207                                  booleanField_.fieldId,
208                                  static_cast<int8_t>(value
209                                                      ? detail::compact::CT_BOOLEAN_TRUE
210                                                      : detail::compact::CT_BOOLEAN_FALSE));
211     booleanField_.name = nullptr;
212   } else {
213     // we're not part of a field, so just write the value
214     wsize
215       += writeByte(static_cast<int8_t>(value
216                                        ? detail::compact::CT_BOOLEAN_TRUE
217                                        : detail::compact::CT_BOOLEAN_FALSE));
218   }
219   return wsize;
220 }
221 
222 template <class Transport_>
writeByte(const int8_t byte)223 uint32_t TCompactProtocolT<Transport_>::writeByte(const int8_t byte) {
224   trans_->write((uint8_t*)&byte, 1);
225   return 1;
226 }
227 
228 /**
229  * Write an i16 as a zigzag varint.
230  */
231 template <class Transport_>
writeI16(const int16_t i16)232 uint32_t TCompactProtocolT<Transport_>::writeI16(const int16_t i16) {
233   return writeVarint32(i32ToZigzag(i16));
234 }
235 
236 /**
237  * Write an i32 as a zigzag varint.
238  */
239 template <class Transport_>
writeI32(const int32_t i32)240 uint32_t TCompactProtocolT<Transport_>::writeI32(const int32_t i32) {
241   return writeVarint32(i32ToZigzag(i32));
242 }
243 
244 /**
245  * Write an i64 as a zigzag varint.
246  */
247 template <class Transport_>
writeI64(const int64_t i64)248 uint32_t TCompactProtocolT<Transport_>::writeI64(const int64_t i64) {
249   return writeVarint64(i64ToZigzag(i64));
250 }
251 
252 /**
253  * Write a double to the wire as 8 bytes.
254  */
255 template <class Transport_>
writeDouble(const double dub)256 uint32_t TCompactProtocolT<Transport_>::writeDouble(const double dub) {
257   static_assert(sizeof(double) == sizeof(uint64_t), "sizeof(double) == sizeof(uint64_t)");
258   static_assert(std::numeric_limits<double>::is_iec559, "std::numeric_limits<double>::is_iec559");
259 
260   auto bits = bitwise_cast<uint64_t>(dub);
261   bits = THRIFT_htolell(bits);
262   trans_->write((uint8_t*)&bits, 8);
263   return 8;
264 }
265 
266 /**
267  * Write a string to the wire with a varint size preceding.
268  */
269 template <class Transport_>
writeString(const std::string & str)270 uint32_t TCompactProtocolT<Transport_>::writeString(const std::string& str) {
271   return writeBinary(str);
272 }
273 
274 template <class Transport_>
writeBinary(const std::string & str)275 uint32_t TCompactProtocolT<Transport_>::writeBinary(const std::string& str) {
276   if(str.size() > (std::numeric_limits<uint32_t>::max)())
277     throw TProtocolException(TProtocolException::SIZE_LIMIT);
278   auto ssize = static_cast<uint32_t>(str.size());
279   uint32_t wsize = writeVarint32(ssize) ;
280   // checking ssize + wsize > uint_max, but we don't want to overflow while checking for overflows.
281   // transforming the check to ssize > uint_max - wsize
282   if(ssize > (std::numeric_limits<uint32_t>::max)() - wsize)
283     throw TProtocolException(TProtocolException::SIZE_LIMIT);
284   wsize += ssize;
285   trans_->write((uint8_t*)str.data(), ssize);
286   return wsize;
287 }
288 
289 //
290 // Internal Writing methods
291 //
292 
293 /**
294  * The workhorse of writeFieldBegin. It has the option of doing a
295  * 'type override' of the type header. This is used specifically in the
296  * boolean field case.
297  */
298 template <class Transport_>
writeFieldBeginInternal(const char * name,const TType fieldType,const int16_t fieldId,int8_t typeOverride)299 int32_t TCompactProtocolT<Transport_>::writeFieldBeginInternal(
300     const char* name,
301     const TType fieldType,
302     const int16_t fieldId,
303     int8_t typeOverride) {
304   (void) name;
305   uint32_t wsize = 0;
306 
307   // if there's a type override, use that.
308   int8_t typeToWrite = (typeOverride == -1 ? getCompactType(fieldType) : typeOverride);
309 
310   // check if we can use delta encoding for the field id
311   if (fieldId > lastFieldId_ && fieldId - lastFieldId_ <= 15) {
312     // write them together
313     wsize += writeByte(static_cast<int8_t>((fieldId - lastFieldId_)
314                                            << 4 | typeToWrite));
315   } else {
316     // write them separate
317     wsize += writeByte(typeToWrite);
318     wsize += writeI16(fieldId);
319   }
320 
321   lastFieldId_ = fieldId;
322   return wsize;
323 }
324 
325 /**
326  * Abstract method for writing the start of lists and sets. List and sets on
327  * the wire differ only by the type indicator.
328  */
329 template <class Transport_>
writeCollectionBegin(const TType elemType,int32_t size)330 uint32_t TCompactProtocolT<Transport_>::writeCollectionBegin(const TType elemType,
331                                                              int32_t size) {
332   uint32_t wsize = 0;
333   if (size <= 14) {
334     wsize += writeByte(static_cast<int8_t>(size
335                                            << 4 | getCompactType(elemType)));
336   } else {
337     wsize += writeByte(0xf0 | getCompactType(elemType));
338     wsize += writeVarint32(size);
339   }
340   return wsize;
341 }
342 
343 /**
344  * Write an i32 as a varint. Results in 1-5 bytes on the wire.
345  */
346 template <class Transport_>
writeVarint32(uint32_t n)347 uint32_t TCompactProtocolT<Transport_>::writeVarint32(uint32_t n) {
348   uint8_t buf[5];
349   uint32_t wsize = 0;
350 
351   while (true) {
352     if ((n & ~0x7F) == 0) {
353       buf[wsize++] = (int8_t)n;
354       break;
355     } else {
356       buf[wsize++] = (int8_t)((n & 0x7F) | 0x80);
357       n >>= 7;
358     }
359   }
360   trans_->write(buf, wsize);
361   return wsize;
362 }
363 
364 /**
365  * Write an i64 as a varint. Results in 1-10 bytes on the wire.
366  */
367 template <class Transport_>
writeVarint64(uint64_t n)368 uint32_t TCompactProtocolT<Transport_>::writeVarint64(uint64_t n) {
369   uint8_t buf[10];
370   uint32_t wsize = 0;
371 
372   while (true) {
373     if ((n & ~0x7FL) == 0) {
374       buf[wsize++] = (int8_t)n;
375       break;
376     } else {
377       buf[wsize++] = (int8_t)((n & 0x7F) | 0x80);
378       n >>= 7;
379     }
380   }
381   trans_->write(buf, wsize);
382   return wsize;
383 }
384 
385 /**
386  * Convert l into a zigzag long. This allows negative numbers to be
387  * represented compactly as a varint.
388  */
389 template <class Transport_>
i64ToZigzag(const int64_t l)390 uint64_t TCompactProtocolT<Transport_>::i64ToZigzag(const int64_t l) {
391   return (static_cast<uint64_t>(l) << 1) ^ (l >> 63);
392 }
393 
394 /**
395  * Convert n into a zigzag int. This allows negative numbers to be
396  * represented compactly as a varint.
397  */
398 template <class Transport_>
i32ToZigzag(const int32_t n)399 uint32_t TCompactProtocolT<Transport_>::i32ToZigzag(const int32_t n) {
400   return (static_cast<uint32_t>(n) << 1) ^ (n >> 31);
401 }
402 
403 /**
404  * Given a TType value, find the appropriate detail::compact::Types value
405  */
406 template <class Transport_>
getCompactType(const TType ttype)407 int8_t TCompactProtocolT<Transport_>::getCompactType(const TType ttype) {
408   return detail::compact::TTypeToCType[ttype];
409 }
410 
411 //
412 // Reading Methods
413 //
414 
415 /**
416  * Read a message header.
417  */
418 template <class Transport_>
readMessageBegin(std::string & name,TMessageType & messageType,int32_t & seqid)419 uint32_t TCompactProtocolT<Transport_>::readMessageBegin(
420     std::string& name,
421     TMessageType& messageType,
422     int32_t& seqid) {
423   uint32_t rsize = 0;
424   int8_t protocolId;
425   int8_t versionAndType;
426   int8_t version;
427 
428   rsize += readByte(protocolId);
429   if (protocolId != PROTOCOL_ID) {
430     throw TProtocolException(TProtocolException::BAD_VERSION, "Bad protocol identifier");
431   }
432 
433   rsize += readByte(versionAndType);
434   version = (int8_t)(versionAndType & VERSION_MASK);
435   if (version != VERSION_N) {
436     throw TProtocolException(TProtocolException::BAD_VERSION, "Bad protocol version");
437   }
438 
439   messageType = (TMessageType)((versionAndType >> TYPE_SHIFT_AMOUNT) & TYPE_BITS);
440   rsize += readVarint32(seqid);
441   rsize += readString(name);
442 
443   return rsize;
444 }
445 
446 /**
447  * Read a struct begin. There's nothing on the wire for this, but it is our
448  * opportunity to push a new struct begin marker on the field stack.
449  */
450 template <class Transport_>
readStructBegin(std::string & name)451 uint32_t TCompactProtocolT<Transport_>::readStructBegin(std::string& name) {
452   name = "";
453   lastField_.push(lastFieldId_);
454   lastFieldId_ = 0;
455   return 0;
456 }
457 
458 /**
459  * Doesn't actually consume any wire data, just removes the last field for
460  * this struct from the field stack.
461  */
462 template <class Transport_>
readStructEnd()463 uint32_t TCompactProtocolT<Transport_>::readStructEnd() {
464   lastFieldId_ = lastField_.top();
465   lastField_.pop();
466   return 0;
467 }
468 
469 /**
470  * Read a field header off the wire.
471  */
472 template <class Transport_>
readFieldBegin(std::string & name,TType & fieldType,int16_t & fieldId)473 uint32_t TCompactProtocolT<Transport_>::readFieldBegin(std::string& name,
474                                                        TType& fieldType,
475                                                        int16_t& fieldId) {
476   (void) name;
477   uint32_t rsize = 0;
478   int8_t byte;
479   int8_t type;
480 
481   rsize += readByte(byte);
482   type = (byte & 0x0f);
483 
484   // if it's a stop, then we can return immediately, as the struct is over.
485   if (type == T_STOP) {
486     fieldType = T_STOP;
487     fieldId = 0;
488     return rsize;
489   }
490 
491   // mask off the 4 MSB of the type header. it could contain a field id delta.
492   auto modifier = (int16_t)(((uint8_t)byte & 0xf0) >> 4);
493   if (modifier == 0) {
494     // not a delta, look ahead for the zigzag varint field id.
495     rsize += readI16(fieldId);
496   } else {
497     fieldId = (int16_t)(lastFieldId_ + modifier);
498   }
499   fieldType = getTType(type);
500 
501   // if this happens to be a boolean field, the value is encoded in the type
502   if (type == detail::compact::CT_BOOLEAN_TRUE ||
503       type == detail::compact::CT_BOOLEAN_FALSE) {
504     // save the boolean value in a special instance variable.
505     boolValue_.hasBoolValue = true;
506     boolValue_.boolValue =
507       (type == detail::compact::CT_BOOLEAN_TRUE ? true : false);
508   }
509 
510   // push the new field onto the field stack so we can keep the deltas going.
511   lastFieldId_ = fieldId;
512   return rsize;
513 }
514 
515 /**
516  * Read a map header off the wire. If the size is zero, skip reading the key
517  * and value type. This means that 0-length maps will yield TMaps without the
518  * "correct" types.
519  */
520 template <class Transport_>
readMapBegin(TType & keyType,TType & valType,uint32_t & size)521 uint32_t TCompactProtocolT<Transport_>::readMapBegin(TType& keyType,
522                                                      TType& valType,
523                                                      uint32_t& size) {
524   uint32_t rsize = 0;
525   int8_t kvType = 0;
526   int32_t msize = 0;
527 
528   rsize += readVarint32(msize);
529   if (msize != 0)
530     rsize += readByte(kvType);
531 
532   if (msize < 0) {
533     throw TProtocolException(TProtocolException::NEGATIVE_SIZE);
534   } else if (container_limit_ && msize > container_limit_) {
535     throw TProtocolException(TProtocolException::SIZE_LIMIT);
536   }
537 
538   keyType = getTType((int8_t)((uint8_t)kvType >> 4));
539   valType = getTType((int8_t)((uint8_t)kvType & 0xf));
540   size = (uint32_t)msize;
541 
542   TMap map(keyType, valType, size);
543   checkReadBytesAvailable(map);
544 
545   return rsize;
546 }
547 
548 /**
549  * Read a list header off the wire. If the list size is 0-14, the size will
550  * be packed into the element type header. If it's a longer list, the 4 MSB
551  * of the element type header will be 0xF, and a varint will follow with the
552  * true size.
553  */
554 template <class Transport_>
readListBegin(TType & elemType,uint32_t & size)555 uint32_t TCompactProtocolT<Transport_>::readListBegin(TType& elemType,
556                                                       uint32_t& size) {
557   int8_t size_and_type;
558   uint32_t rsize = 0;
559   int32_t lsize;
560 
561   rsize += readByte(size_and_type);
562 
563   lsize = ((uint8_t)size_and_type >> 4) & 0x0f;
564   if (lsize == 15) {
565     rsize += readVarint32(lsize);
566   }
567 
568   if (lsize < 0) {
569     throw TProtocolException(TProtocolException::NEGATIVE_SIZE);
570   } else if (container_limit_ && lsize > container_limit_) {
571     throw TProtocolException(TProtocolException::SIZE_LIMIT);
572   }
573 
574   elemType = getTType((int8_t)(size_and_type & 0x0f));
575   size = (uint32_t)lsize;
576 
577   TList list(elemType, size);
578   checkReadBytesAvailable(list);
579 
580   return rsize;
581 }
582 
583 /**
584  * Read a set header off the wire. If the set size is 0-14, the size will
585  * be packed into the element type header. If it's a longer set, the 4 MSB
586  * of the element type header will be 0xF, and a varint will follow with the
587  * true size.
588  */
589 template <class Transport_>
readSetBegin(TType & elemType,uint32_t & size)590 uint32_t TCompactProtocolT<Transport_>::readSetBegin(TType& elemType,
591                                                      uint32_t& size) {
592   return readListBegin(elemType, size);
593 }
594 
595 /**
596  * Read a boolean off the wire. If this is a boolean field, the value should
597  * already have been read during readFieldBegin, so we'll just consume the
598  * pre-stored value. Otherwise, read a byte.
599  */
600 template <class Transport_>
readBool(bool & value)601 uint32_t TCompactProtocolT<Transport_>::readBool(bool& value) {
602   if (boolValue_.hasBoolValue == true) {
603     value = boolValue_.boolValue;
604     boolValue_.hasBoolValue = false;
605     return 0;
606   } else {
607     int8_t val;
608     readByte(val);
609     value = (val == detail::compact::CT_BOOLEAN_TRUE);
610     return 1;
611   }
612 }
613 
614 /**
615  * Read a single byte off the wire. Nothing interesting here.
616  */
617 template <class Transport_>
readByte(int8_t & byte)618 uint32_t TCompactProtocolT<Transport_>::readByte(int8_t& byte) {
619   uint8_t b[1];
620   trans_->readAll(b, 1);
621   byte = *(int8_t*)b;
622   return 1;
623 }
624 
625 /**
626  * Read an i16 from the wire as a zigzag varint.
627  */
628 template <class Transport_>
readI16(int16_t & i16)629 uint32_t TCompactProtocolT<Transport_>::readI16(int16_t& i16) {
630   int32_t value;
631   uint32_t rsize = readVarint32(value);
632   i16 = (int16_t)zigzagToI32(value);
633   return rsize;
634 }
635 
636 /**
637  * Read an i32 from the wire as a zigzag varint.
638  */
639 template <class Transport_>
readI32(int32_t & i32)640 uint32_t TCompactProtocolT<Transport_>::readI32(int32_t& i32) {
641   int32_t value;
642   uint32_t rsize = readVarint32(value);
643   i32 = zigzagToI32(value);
644   return rsize;
645 }
646 
647 /**
648  * Read an i64 from the wire as a zigzag varint.
649  */
650 template <class Transport_>
readI64(int64_t & i64)651 uint32_t TCompactProtocolT<Transport_>::readI64(int64_t& i64) {
652   int64_t value;
653   uint32_t rsize = readVarint64(value);
654   i64 = zigzagToI64(value);
655   return rsize;
656 }
657 
658 /**
659  * No magic here - just read a double off the wire.
660  */
661 template <class Transport_>
readDouble(double & dub)662 uint32_t TCompactProtocolT<Transport_>::readDouble(double& dub) {
663   static_assert(sizeof(double) == sizeof(uint64_t), "sizeof(double) == sizeof(uint64_t)");
664   static_assert(std::numeric_limits<double>::is_iec559, "std::numeric_limits<double>::is_iec559");
665 
666   union {
667     uint64_t bits;
668     uint8_t b[8];
669   } u;
670   trans_->readAll(u.b, 8);
671   u.bits = THRIFT_letohll(u.bits);
672   dub = bitwise_cast<double>(u.bits);
673   return 8;
674 }
675 
676 template <class Transport_>
readString(std::string & str)677 uint32_t TCompactProtocolT<Transport_>::readString(std::string& str) {
678   return readBinary(str);
679 }
680 
681 /**
682  * Read a byte[] from the wire.
683  */
684 template <class Transport_>
readBinary(std::string & str)685 uint32_t TCompactProtocolT<Transport_>::readBinary(std::string& str) {
686   int32_t rsize = 0;
687   int32_t size;
688 
689   rsize += readVarint32(size);
690   // Catch empty string case
691   if (size == 0) {
692     str = "";
693     return rsize;
694   }
695 
696   // Catch error cases
697   if (size < 0) {
698     throw TProtocolException(TProtocolException::NEGATIVE_SIZE);
699   }
700   if (string_limit_ > 0 && size > string_limit_) {
701     throw TProtocolException(TProtocolException::SIZE_LIMIT);
702   }
703 
704   // Use the heap here to prevent stack overflow for v. large strings
705   if (size > string_buf_size_ || string_buf_ == nullptr) {
706     void* new_string_buf = std::realloc(string_buf_, (uint32_t)size);
707     if (new_string_buf == nullptr) {
708       throw std::bad_alloc();
709     }
710     string_buf_ = (uint8_t*)new_string_buf;
711     string_buf_size_ = size;
712   }
713   trans_->readAll(string_buf_, size);
714   str.assign((char*)string_buf_, size);
715 
716   trans_->checkReadBytesAvailable(rsize + (uint32_t)size);
717 
718   return rsize + (uint32_t)size;
719 }
720 
721 /**
722  * Read an i32 from the wire as a varint. The MSB of each byte is set
723  * if there is another byte to follow. This can read up to 5 bytes.
724  */
725 template <class Transport_>
readVarint32(int32_t & i32)726 uint32_t TCompactProtocolT<Transport_>::readVarint32(int32_t& i32) {
727   int64_t val;
728   uint32_t rsize = readVarint64(val);
729   i32 = (int32_t)val;
730   return rsize;
731 }
732 
733 /**
734  * Read an i64 from the wire as a proper varint. The MSB of each byte is set
735  * if there is another byte to follow. This can read up to 10 bytes.
736  */
737 template <class Transport_>
readVarint64(int64_t & i64)738 uint32_t TCompactProtocolT<Transport_>::readVarint64(int64_t& i64) {
739   uint32_t rsize = 0;
740   uint64_t val = 0;
741   int shift = 0;
742   uint8_t buf[10];  // 64 bits / (7 bits/byte) = 10 bytes.
743   uint32_t buf_size = sizeof(buf);
744   const uint8_t* borrowed = trans_->borrow(buf, &buf_size);
745 
746   // Fast path.
747   if (borrowed != nullptr) {
748     while (true) {
749       uint8_t byte = borrowed[rsize];
750       rsize++;
751       val |= (uint64_t)(byte & 0x7f) << shift;
752       shift += 7;
753       if (!(byte & 0x80)) {
754         i64 = val;
755         trans_->consume(rsize);
756         return rsize;
757       }
758       // Have to check for invalid data so we don't crash.
759       if (UNLIKELY(rsize == sizeof(buf))) {
760         throw TProtocolException(TProtocolException::INVALID_DATA, "Variable-length int over 10 bytes.");
761       }
762     }
763   }
764 
765   // Slow path.
766   else {
767     while (true) {
768       uint8_t byte;
769       rsize += trans_->readAll(&byte, 1);
770       val |= (uint64_t)(byte & 0x7f) << shift;
771       shift += 7;
772       if (!(byte & 0x80)) {
773         i64 = val;
774         return rsize;
775       }
776       // Might as well check for invalid data on the slow path too.
777       if (UNLIKELY(rsize >= sizeof(buf))) {
778         throw TProtocolException(TProtocolException::INVALID_DATA, "Variable-length int over 10 bytes.");
779       }
780     }
781   }
782 }
783 
784 /**
785  * Convert from zigzag int to int.
786  */
787 template <class Transport_>
zigzagToI32(uint32_t n)788 int32_t TCompactProtocolT<Transport_>::zigzagToI32(uint32_t n) {
789   return (n >> 1) ^ static_cast<uint32_t>(-static_cast<int32_t>(n & 1));
790 }
791 
792 /**
793  * Convert from zigzag long to long.
794  */
795 template <class Transport_>
zigzagToI64(uint64_t n)796 int64_t TCompactProtocolT<Transport_>::zigzagToI64(uint64_t n) {
797   return (n >> 1) ^ static_cast<uint64_t>(-static_cast<int64_t>(n & 1));
798 }
799 
800 template <class Transport_>
getTType(int8_t type)801 TType TCompactProtocolT<Transport_>::getTType(int8_t type) {
802   switch (type) {
803     case T_STOP:
804       return T_STOP;
805     case detail::compact::CT_BOOLEAN_FALSE:
806     case detail::compact::CT_BOOLEAN_TRUE:
807       return T_BOOL;
808     case detail::compact::CT_BYTE:
809       return T_BYTE;
810     case detail::compact::CT_I16:
811       return T_I16;
812     case detail::compact::CT_I32:
813       return T_I32;
814     case detail::compact::CT_I64:
815       return T_I64;
816     case detail::compact::CT_DOUBLE:
817       return T_DOUBLE;
818     case detail::compact::CT_BINARY:
819       return T_STRING;
820     case detail::compact::CT_LIST:
821       return T_LIST;
822     case detail::compact::CT_SET:
823       return T_SET;
824     case detail::compact::CT_MAP:
825       return T_MAP;
826     case detail::compact::CT_STRUCT:
827       return T_STRUCT;
828     default:
829       throw TException(std::string("don't know what type: ") + (char)type);
830   }
831 }
832 
833 // Return the minimum number of bytes a type will consume on the wire
834 template <class Transport_>
getMinSerializedSize(TType type)835 int TCompactProtocolT<Transport_>::getMinSerializedSize(TType type)
836 {
837   switch (type)
838   {
839     case T_STOP:    return 0;
840     case T_VOID:    return 0;
841     case T_BOOL:   return sizeof(int8_t);
842     case T_DOUBLE: return 8;  // uses fixedLongToBytes() which always writes 8 bytes
843     case T_BYTE: return sizeof(int8_t);
844     case T_I16:     return sizeof(int8_t);  // zigzag
845     case T_I32:     return sizeof(int8_t);  // zigzag
846     case T_I64:     return sizeof(int8_t);  // zigzag
847     case T_STRING: return sizeof(int8_t);  // string length
848     case T_STRUCT:  return 0;             // empty struct
849     case T_MAP:     return sizeof(int8_t);  // element count
850     case T_SET:    return sizeof(int8_t);  // element count
851     case T_LIST:    return sizeof(int8_t);  // element count
852     default: throw TProtocolException(TProtocolException::UNKNOWN, "unrecognized type code");
853   }
854 }
855 
856 
857 }}} // apache::thrift::protocol
858 
859 #endif // _THRIFT_PROTOCOL_TCOMPACTPROTOCOL_TCC_
860