1 /*
2  * SPDX-FileCopyrightText: Copyright 2010-2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_svdf_s8.c
22  * Description:  S8 basic SVDF layer function
23  *
24  * $Date:        14 Feb 2024
25  * $Revision:    V.6.1.0
26  *
27  * Target :  Arm(R) M-Profile Architecture
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  * @ingroup Public
36  */
37 
38 /**
39  * @addtogroup SVDF
40  * @{
41  */
42 
43 /*
44  * S8 SVDF layer function for TensorFlow Lite with 8 bit state tensor
45  *
46  * Refer to header file for details.
47  *
48  */
49 
arm_svdf_s8(const cmsis_nn_context * ctx,const cmsis_nn_context * input_ctx,const cmsis_nn_context * output_ctx,const cmsis_nn_svdf_params * svdf_params,const cmsis_nn_per_tensor_quant_params * input_quant_params,const cmsis_nn_per_tensor_quant_params * output_quant_params,const cmsis_nn_dims * input_dims,const int8_t * input_data,const cmsis_nn_dims * state_dims,int8_t * state_data,const cmsis_nn_dims * weights_feature_dims,const int8_t * weights_feature_data,const cmsis_nn_dims * weights_time_dims,const int8_t * weights_time_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,int8_t * output_data)50 arm_cmsis_nn_status arm_svdf_s8(const cmsis_nn_context *ctx,
51                                 const cmsis_nn_context *input_ctx,
52                                 const cmsis_nn_context *output_ctx,
53                                 const cmsis_nn_svdf_params *svdf_params,
54                                 const cmsis_nn_per_tensor_quant_params *input_quant_params,
55                                 const cmsis_nn_per_tensor_quant_params *output_quant_params,
56                                 const cmsis_nn_dims *input_dims,
57                                 const int8_t *input_data,
58                                 const cmsis_nn_dims *state_dims,
59                                 int8_t *state_data,
60                                 const cmsis_nn_dims *weights_feature_dims,
61                                 const int8_t *weights_feature_data,
62                                 const cmsis_nn_dims *weights_time_dims,
63                                 const int8_t *weights_time_data,
64                                 const cmsis_nn_dims *bias_dims,
65                                 const int32_t *bias_data,
66                                 const cmsis_nn_dims *output_dims,
67                                 int8_t *output_data)
68 {
69     (void)bias_dims;
70     (void)state_dims;
71     (void)output_dims;
72 
73 #if defined(ARM_MATH_MVEI)
74     if (ctx->buf == NULL)
75     {
76         return (ARM_CMSIS_NN_ARG_ERROR);
77     }
78 #endif
79 
80     const int32_t multiplier_in = input_quant_params->multiplier;
81     const int32_t shift_in = input_quant_params->shift;
82     const int32_t multiplier_out = output_quant_params->multiplier;
83     const int32_t shift_2 = output_quant_params->shift;
84     const int32_t zp_in = svdf_params->input_offset;
85     const int32_t zp_out = svdf_params->output_offset;
86     const int32_t in_activation_min = svdf_params->input_activation.min;
87     const int32_t in_activation_max = svdf_params->input_activation.max;
88     const int32_t out_activation_min = svdf_params->output_activation.min;
89     const int32_t out_activation_max = svdf_params->output_activation.max;
90     const int16_t rank = svdf_params->rank;
91 
92     const int32_t input_batches = input_dims->n;
93     const int32_t input_height = input_dims->h;
94     const int32_t feature_batches = weights_feature_dims->n;
95     const int32_t time_batches = weights_time_dims->h;
96     const int32_t unit_count = feature_batches / rank;
97 
98     if (input_ctx->buf == NULL)
99     {
100         return ARM_CMSIS_NN_ARG_ERROR;
101     }
102     int32_t *buffer_a = (int32_t *)input_ctx->buf;
103 
104     if (output_ctx->buf == NULL)
105     {
106         return ARM_CMSIS_NN_ARG_ERROR;
107     }
108     int32_t *buffer_b = (int32_t *)output_ctx->buf;
109 
110     int32_t *kernel_sum_data = (int32_t *)ctx->buf;
111 
112     // Left shift state
113     memmove((int8_t *)state_data,
114             (int8_t *)state_data + 1,
115             (size_t)((input_batches * feature_batches * time_batches - 1) * (int32_t)sizeof(int8_t)));
116 
117     // Matrix multiplication input * feature weight
118     for (int i_batch = 0; i_batch < input_batches; i_batch++)
119     {
120         int8_t *res_ptr = state_data + (time_batches * i_batch * feature_batches) + (time_batches - 1);
121         const int8_t *input = input_data + i_batch * input_height;
122 
123         arm_cmsis_nn_status res = arm_nn_vec_mat_mult_t_s8(input,
124                                                            weights_feature_data,
125                                                            kernel_sum_data,
126                                                            NULL,
127                                                            res_ptr,
128                                                            -zp_in,
129                                                            0,
130                                                            multiplier_in,
131                                                            shift_in,
132                                                            input_height,
133                                                            feature_batches,
134                                                            in_activation_min,
135                                                            in_activation_max,
136                                                            time_batches,
137                                                            0);
138 
139         if (res != ARM_CMSIS_NN_SUCCESS)
140         {
141             return res;
142         }
143     }
144 
145     // Matrix multiplicate time weight * state tensors
146     {
147         int32_t *ptr_a = buffer_a;
148         const int8_t *v2 = state_data;
149         for (int i_batch = 0; i_batch < input_batches; i_batch++)
150         {
151             const int8_t *v1 = weights_time_data;
152 
153             for (int i_feature_batch = 0; i_feature_batch < feature_batches; i_feature_batch++)
154             {
155                 *ptr_a = 0;
156                 int32_t sum = 0;
157 #if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
158                 // Perform matrix multiplication in blocks of four
159                 int j = 0;
160                 int32_t block_count = time_batches >> 2;
161                 for (int i = 0; i < block_count; i++)
162                 {
163                     j += 4;
164 
165                     int32_t r1_1, r1_2, r2_1, r2_2;
166                     v1 = read_and_pad_reordered(v1, &r1_1, &r1_2);
167                     v2 = read_and_pad_reordered(v2, &r2_1, &r2_2);
168                     sum = SMLAD(r1_1, r2_1, sum);
169                     sum = SMLAD(r1_2, r2_2, sum);
170                 }
171 
172                 // Process the remaining data
173                 for (; j < time_batches; j++)
174                 {
175                     sum += *v1 * *v2;
176                     v1++;
177                     v2++;
178                 }
179 #else
180                 for (int j = 0; j < time_batches; j++)
181                 {
182                     sum += *v1 * *v2;
183                     v1++;
184                     v2++;
185                 }
186 #endif
187 
188                 *ptr_a = sum;
189                 ptr_a++;
190             }
191         }
192     }
193 
194     if (bias_data)
195     {
196         if (unit_count == feature_batches)
197         {
198             for (int i = 0; i < input_batches; i++)
199             {
200                 int32_t *output_temp = buffer_b + i * feature_batches;
201                 const int32_t *ptr_a = buffer_a + i * feature_batches;
202 
203                 const int32_t *bi = bias_data;
204                 for (int j = 0; j < feature_batches; j++)
205                 {
206                     output_temp[j] = ptr_a[j] + bi[j];
207                 }
208             }
209         }
210         else
211         {
212             for (int i_batch = 0; i_batch < input_batches; i_batch++)
213             {
214                 int32_t *output_data_temp = buffer_b + i_batch * unit_count;
215                 int32_t *ptr_a = buffer_a + i_batch * feature_batches;
216 
217                 for (int i = 0; i < unit_count; i++)
218                 {
219                     int32_t sum = bias_data[i];
220                     for (int j = 0; j < rank; j++)
221                     {
222                         sum += *ptr_a;
223                         ptr_a++;
224                     }
225                     output_data_temp[i] = sum;
226                 }
227             }
228         }
229     }
230     else
231     {
232         for (int i_batch = 0; i_batch < input_batches; i_batch++)
233         {
234             int32_t *output_data_temp = buffer_b + i_batch * unit_count;
235             int32_t *ptr_a = buffer_a + i_batch * feature_batches;
236 
237             for (int i = 0; i < unit_count; i++)
238             {
239                 int32_t sum = 0;
240                 for (int j = 0; j < rank; j++)
241                 {
242                     sum += *ptr_a;
243                     ptr_a++;
244                 }
245                 output_data_temp[i] = sum;
246             }
247         }
248     }
249 
250 #if defined(ARM_MATH_MVEI)
251     int32_t num_elements = input_batches * unit_count;
252     const int32_t loop_count = (num_elements + 3) / 4;
253     for (int i_op = 0; i_op < loop_count; i_op++)
254     {
255         mve_pred16_t p = vctp32q((uint32_t)num_elements);
256         int32x4_t op = vldrwq_z_s32(buffer_b, p);
257         op = arm_requantize_mve(op, multiplier_out, shift_2);
258         op = vaddq_n_s32(op, zp_out);
259         const int32x4_t min_vec = vdupq_n_s32((int8_t)out_activation_min);
260         const int32x4_t max_vec = vdupq_n_s32((int8_t)out_activation_max);
261         op = vmaxq_s32(op, min_vec);
262         op = vminq_s32(op, max_vec);
263         vstrbq_p_s32(output_data, op, p);
264         output_data += 4;
265         buffer_b += 4;
266         num_elements -= 4;
267     }
268 #else
269     for (int i = 0; i < input_batches * unit_count; i++)
270     {
271         output_data[i] = (int8_t)CLAMP(
272             arm_nn_requantize(buffer_b[i], multiplier_out, shift_2) + zp_out, out_activation_max, out_activation_min);
273     }
274 #endif
275 
276     return (ARM_CMSIS_NN_SUCCESS);
277 }
278 
279 /**
280  * @} end of SVDF group
281  */
282