1 /*
2  * SPDX-FileCopyrightText: Copyright 2023-2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_transpose_conv_s8.c
22  * Description:  s8 version of transpose convolution using symmetric quantization.
23  *
24  * $Date:        31 January 2024
25  * $Revision:    V.1.1.0
26  *
27  * Target :  Arm(R) M-Profile Architecture
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  *  @ingroup Public
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /*
44  * Basic s8 transpose convolution function.
45  *
46  * Refer header file for details.
47  *
48  */
arm_transpose_conv_s8(const cmsis_nn_context * ctx,const cmsis_nn_context * output_ctx,const cmsis_nn_transpose_conv_params * transpose_conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int8_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * filter_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,int8_t * output_data)49 arm_cmsis_nn_status arm_transpose_conv_s8(const cmsis_nn_context *ctx,
50                                           const cmsis_nn_context *output_ctx,
51                                           const cmsis_nn_transpose_conv_params *transpose_conv_params,
52                                           const cmsis_nn_per_channel_quant_params *quant_params,
53                                           const cmsis_nn_dims *input_dims,
54                                           const int8_t *input_data,
55                                           const cmsis_nn_dims *filter_dims,
56                                           const int8_t *filter_data,
57                                           const cmsis_nn_dims *bias_dims,
58                                           const int32_t *bias_data,
59                                           const cmsis_nn_dims *output_dims,
60                                           int8_t *output_data)
61 {
62     (void)bias_dims;
63 
64     if (ctx->buf == NULL || output_ctx->buf == NULL)
65     {
66         return ARM_CMSIS_NN_ARG_ERROR;
67     }
68 
69     const int32_t activation_min = transpose_conv_params->activation.min;
70     const int32_t activation_max = transpose_conv_params->activation.max;
71 
72     const int32_t input_ch = input_dims->c;
73     const int32_t input_size = input_dims->w * input_dims->h;
74 
75     const uint16_t kernel_x = filter_dims->w;
76     const uint16_t kernel_y = filter_dims->h;
77 
78     const int32_t output_x = output_dims->w;
79     const int32_t output_y = output_dims->h;
80     const int32_t output_ch = output_dims->c;
81 
82     const int32_t pad_x = transpose_conv_params->padding.w;
83     const int32_t pad_y = transpose_conv_params->padding.h;
84     const int32_t pad_x_offset = transpose_conv_params->padding_offsets.w;
85     const int32_t pad_y_offset = transpose_conv_params->padding_offsets.h;
86 
87     const int32_t stride_x = transpose_conv_params->stride.w;
88     const int32_t stride_y = transpose_conv_params->stride.h;
89     const int32_t filter_size = filter_dims->w * filter_dims->h;
90 
91     const int32_t *output_multiplier = quant_params->multiplier;
92     const int32_t *output_shift = quant_params->shift;
93 
94     const int32_t out_offset = transpose_conv_params->output_offset;
95     const int32_t input_offset = transpose_conv_params->input_offset;
96 
97     const int8_t *input_data_ptr = input_data;
98     int8_t *output_data_ptr = output_data;
99 
100     int32_t *const col_data = (int32_t *)ctx->buf;
101     const int32_t col_buf_size = arm_transpose_conv_s8_get_buffer_size(input_dims, filter_dims, output_dims);
102 
103     int32_t batch_cnt = input_dims->n;
104 
105     int32_t *const img_buf = output_ctx->buf;
106     int32_t *img_buf_ptr = img_buf;
107 
108     while (batch_cnt)
109     {
110         if (bias_data == NULL)
111         {
112             arm_memset_s8((int8_t *)img_buf_ptr, 0, output_x * output_y * output_ch * sizeof(int32_t));
113         }
114         else
115         {
116             int32_t *img_data = img_buf;
117 
118             for (int i = 0; i < output_x * output_y; i++)
119             {
120                 memcpy(img_data, bias_data, output_ch * sizeof(int32_t));
121                 img_data += output_ch;
122             }
123         }
124 
125         int32_t *col_data_ptr = col_data;
126         const int8_t *filter_data_ptr = filter_data;
127 
128         arm_memset_s8((int8_t *)col_data_ptr, 0, col_buf_size);
129 
130         for (int i_output_ch = 0; i_output_ch < output_ch; i_output_ch++)
131         {
132             arm_nn_mat_mult_nt_t_s8_s32(input_data_ptr,
133                                         filter_data_ptr,
134                                         col_data_ptr,
135                                         input_size,
136                                         input_ch,
137                                         filter_size,
138                                         input_offset,
139                                         output_ch);
140 
141             filter_data_ptr += (input_ch * filter_size);
142             col_data_ptr++;
143         }
144 
145         int32_t *col_buf = col_data;
146         int32_t *img_data = img_buf_ptr;
147         const int32_t col_y = (output_y + pad_y_offset + pad_y - kernel_y) / stride_y + 1;
148         const int32_t col_x = (output_x + pad_x_offset + pad_x - kernel_x) / stride_x + 1;
149 
150         // Column to image
151         for (int i_col_y = 0, i_pad_y = -pad_y; i_col_y < col_y; i_col_y++, i_pad_y += stride_y)
152         {
153             for (int i_col_x = 0, i_pad_x = -pad_x; i_col_x < col_x; i_col_x++, i_pad_x += stride_x)
154             {
155                 int32_t *dst_data = img_data + (i_pad_y * output_x + i_pad_x) * output_ch;
156 
157                 for (int32_t i_ker_y = i_pad_y; i_ker_y < i_pad_y + kernel_y; i_ker_y++)
158                 {
159                     for (int32_t i_ker_x = i_pad_x; i_ker_x < i_pad_x + kernel_x; i_ker_x++)
160                     {
161                         if (i_ker_y >= 0 && i_ker_y < output_y && i_ker_x >= 0 && i_ker_x < output_x)
162                         {
163                             for (int i_output_ch = 0; i_output_ch < output_ch; i_output_ch++)
164                             {
165                                 dst_data[i_output_ch] += col_buf[i_output_ch];
166                             }
167                         }
168                         dst_data += output_ch;
169                         col_buf += output_ch;
170                     }
171                     dst_data += (output_x - kernel_x) * output_ch;
172                 }
173             }
174         }
175         img_data = img_buf_ptr;
176         for (int i = 0; i < output_x * output_y; i++)
177         {
178 #if defined(ARM_MATH_MVEI)
179             int output_ch_idx = 0;
180             int8_t *ip_out_data = output_data_ptr;
181             for (int32_t i_channel_rmdr = output_ch; i_channel_rmdr > 0; i_channel_rmdr -= 4)
182             {
183                 mve_pred16_t p = vctp32q((uint32_t)i_channel_rmdr);
184                 int32x4_t result = vldrwq_z_s32(&img_data[output_ch_idx], p);
185                 result = arm_requantize_mve_32x4(result,
186                                                  vldrwq_z_s32(&output_multiplier[output_ch_idx], p),
187                                                  vldrwq_z_s32(&output_shift[output_ch_idx], p));
188                 result = vaddq_n_s32(result, out_offset);
189                 result = vmaxq_s32(result, vdupq_n_s32(activation_min));
190                 result = vminq_s32(result, vdupq_n_s32(activation_max));
191                 vstrbq_p_s32(ip_out_data, result, p);
192                 ip_out_data += 4;
193                 output_ch_idx += 4;
194             }
195             output_data_ptr += output_ch;
196 #else
197             int i_output_ch = 0;
198             for (; i_output_ch < output_ch; i_output_ch++)
199             {
200                 int32_t result =
201                     arm_nn_requantize(img_data[i_output_ch], output_multiplier[i_output_ch], output_shift[i_output_ch]);
202                 result += out_offset;
203                 result = MAX(result, activation_min);
204                 result = MIN(result, activation_max);
205                 *output_data_ptr++ = (int8_t)result;
206             }
207 #endif
208             img_data += output_ch;
209         }
210         input_data_ptr += (input_size * input_ch);
211         batch_cnt--;
212     }
213     /* Return to application */
214     return ARM_CMSIS_NN_SUCCESS;
215 }
216 
217 /**
218  * @} end of NNConv group
219  */
220