1 /*
2  * SPDX-FileCopyrightText: Copyright 2010-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_convolve_wrapper_s8.c
22  * Description:  s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
23  * cmsis-nn to perform the convolution.
24  *
25  * $Date:        8 March 2023
26  * $Revision:    V.2.4.0
27  *
28  * Target :  Arm(R) M-Profile Architecture
29  *
30  * -------------------------------------------------------------------- */
31 
32 #include "arm_nnfunctions.h"
33 
34 /**
35  *  @ingroup Public
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /*
44  * Convolution layer
45  *
46  * Refer header file for details.
47  *
48  */
49 
arm_convolve_wrapper_s8(const cmsis_nn_context * ctx,const cmsis_nn_conv_params * conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int8_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * filter_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,int8_t * output_data)50 arm_cmsis_nn_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
51                                             const cmsis_nn_conv_params *conv_params,
52                                             const cmsis_nn_per_channel_quant_params *quant_params,
53                                             const cmsis_nn_dims *input_dims,
54                                             const int8_t *input_data,
55                                             const cmsis_nn_dims *filter_dims,
56                                             const int8_t *filter_data,
57                                             const cmsis_nn_dims *bias_dims,
58                                             const int32_t *bias_data,
59                                             const cmsis_nn_dims *output_dims,
60                                             int8_t *output_data)
61 {
62     if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (filter_dims->w == 1) &&
63         (filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
64     {
65         if ((conv_params->stride.w == 1) && (conv_params->stride.h == 1))
66         {
67             return arm_convolve_1x1_s8_fast(ctx,
68                                             conv_params,
69                                             quant_params,
70                                             input_dims,
71                                             input_data,
72                                             filter_dims,
73                                             filter_data,
74                                             bias_dims,
75                                             bias_data,
76                                             output_dims,
77                                             output_data);
78         }
79         else
80         {
81             return arm_convolve_1x1_s8(ctx,
82                                        conv_params,
83                                        quant_params,
84                                        input_dims,
85                                        input_data,
86                                        filter_dims,
87                                        filter_data,
88                                        bias_dims,
89                                        bias_data,
90                                        output_dims,
91                                        output_data);
92         }
93     }
94     else if ((input_dims->h == 1) && conv_params->dilation.w == 1 && (filter_dims->h == 1) &&
95              ((conv_params->stride.w * input_dims->c) % 4 == 0))
96     {
97         return arm_convolve_1_x_n_s8(ctx,
98                                      conv_params,
99                                      quant_params,
100                                      input_dims,
101                                      input_data,
102                                      filter_dims,
103                                      filter_data,
104                                      bias_dims,
105                                      bias_data,
106                                      output_dims,
107                                      output_data);
108     }
109     else
110     {
111         return arm_convolve_s8(ctx,
112                                conv_params,
113                                quant_params,
114                                input_dims,
115                                input_data,
116                                filter_dims,
117                                filter_data,
118                                bias_dims,
119                                bias_data,
120                                output_dims,
121                                output_data);
122     }
123 }
124 
125 /**
126  * @} end of NNConv group
127  */
128