1 /*
2 * SPDX-FileCopyrightText: Copyright 2023-2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 *
6 * Licensed under the Apache License, Version 2.0 (the License); you may
7 * not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 */
18
19 /* ----------------------------------------------------------------------
20 * Project: CMSIS NN Library
21 * Title: arm_convolve_s4.c
22 * Description: s8 version of convolution using symmetric quantization with 4 bit weights.
23 *
24 * $Date: 10 April 2024
25 * $Revision: V.1.1.0
26 *
27 * Target : Arm(R) M-Profile Architecture
28 *
29 * -------------------------------------------------------------------- */
30
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33
34 /**
35 * @ingroup Public
36 */
37
38 /**
39 * @addtogroup NNConv
40 * @{
41 */
42
43 /*
44 * Basic s8 convolution function with int4 weights.
45 *
46 * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
47 * are multiples of 4 or at least greater than 4.
48 *
49 */
arm_convolve_s4(const cmsis_nn_context * ctx,const cmsis_nn_conv_params * conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int8_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * packed_filter_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,int8_t * output_data)50 arm_cmsis_nn_status arm_convolve_s4(const cmsis_nn_context *ctx,
51 const cmsis_nn_conv_params *conv_params,
52 const cmsis_nn_per_channel_quant_params *quant_params,
53 const cmsis_nn_dims *input_dims,
54 const int8_t *input_data,
55 const cmsis_nn_dims *filter_dims,
56 const int8_t *packed_filter_data,
57 const cmsis_nn_dims *bias_dims,
58 const int32_t *bias_data,
59 const cmsis_nn_dims *output_dims,
60 int8_t *output_data)
61 {
62 (void)bias_dims;
63
64 if (ctx->buf == NULL)
65 {
66 return ARM_CMSIS_NN_ARG_ERROR;
67 }
68 int16_t *buffer_a = (int16_t *)ctx->buf;
69
70 const int32_t input_batches = input_dims->n;
71 const uint16_t input_x = input_dims->w;
72 const uint16_t input_y = input_dims->h;
73 const uint16_t input_ch = input_dims->c;
74 const uint16_t kernel_x = filter_dims->w;
75 const uint16_t kernel_y = filter_dims->h;
76 const uint16_t output_x = output_dims->w;
77 const uint16_t output_y = output_dims->h;
78 const uint16_t output_ch = output_dims->c;
79
80 const uint16_t pad_x = conv_params->padding.w;
81 const uint16_t pad_y = conv_params->padding.h;
82 const uint16_t stride_x = conv_params->stride.w;
83 const uint16_t stride_y = conv_params->stride.h;
84 const int32_t dilation_x = conv_params->dilation.w;
85 const int32_t dilation_y = conv_params->dilation.h;
86 const int32_t out_offset = conv_params->output_offset;
87 const int32_t out_activation_min = conv_params->activation.min;
88 const int32_t out_activation_max = conv_params->activation.max;
89 const int32_t rhs_cols = kernel_x * kernel_y * input_ch;
90 const int32_t input_offset = conv_params->input_offset;
91
92 int32_t *output_mult = quant_params->multiplier;
93 int32_t *output_shift = quant_params->shift;
94
95 int i_batch;
96 for (i_batch = 0; i_batch < input_batches; i_batch++)
97 {
98 #if defined(ARM_MATH_MVEI)
99 /* Generate up to four columns from the input tensor a GEMM computation */
100 int8_t *im2col_buf = (int8_t *)buffer_a;
101 const int32_t rhs_rows = output_dims->c;
102 int8_t *out = output_data;
103 int32_t lhs_rows = 0;
104
105 /* This part implements the im2col function */
106 for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
107 {
108 for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
109 {
110 const int32_t base_idx_x = stride_x * i_out_x - pad_x;
111 const int32_t base_idx_y = stride_y * i_out_y - pad_y;
112
113 for (int32_t i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
114 {
115 for (int32_t i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
116 {
117 const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
118 const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
119
120 if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
121 {
122 arm_memset_s8(im2col_buf, (int8_t)-input_offset, sizeof(int8_t) * input_ch);
123 }
124 else
125 {
126 arm_memcpy_s8(im2col_buf, input_data + (k_y * input_x + k_x) * input_ch, input_ch);
127 }
128 im2col_buf += input_ch;
129 }
130 }
131 lhs_rows++;
132
133 /* Computation is filed for every 4 columns */
134 if (lhs_rows == 4)
135 {
136 arm_nn_mat_mult_nt_t_s4((int8_t *)buffer_a,
137 packed_filter_data,
138 bias_data,
139 out,
140 output_mult,
141 output_shift,
142 lhs_rows,
143 rhs_rows,
144 rhs_cols,
145 input_offset,
146 out_offset,
147 out_activation_min,
148 out_activation_max,
149 rhs_cols);
150 out += lhs_rows * rhs_rows;
151
152 lhs_rows = 0;
153 im2col_buf = (int8_t *)buffer_a;
154 }
155 }
156
157 if (out == NULL)
158 {
159 return ARM_CMSIS_NN_NO_IMPL_ERROR;
160 }
161 }
162
163 /* Handle left over columns */
164 if (lhs_rows != 0)
165 {
166 arm_nn_mat_mult_nt_t_s4((int8_t *)buffer_a,
167 packed_filter_data,
168 bias_data,
169 out,
170 output_mult,
171 output_shift,
172 lhs_rows,
173 rhs_rows,
174 rhs_cols,
175 input_offset,
176 out_offset,
177 out_activation_min,
178 out_activation_max,
179 rhs_cols);
180 out += lhs_rows * rhs_rows;
181 lhs_rows = 0;
182 im2col_buf = (int8_t *)buffer_a;
183 }
184 #else // #if defined(ARM_MATH_MVEI)
185 int16_t *two_column_buf = buffer_a;
186 int8_t *out = output_data;
187 int32_t lhs_rows = 0;
188
189 /* This part implements the im2col function */
190 for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
191 {
192 for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
193 {
194 const int32_t base_idx_x = stride_x * i_out_x - pad_x;
195 const int32_t base_idx_y = stride_y * i_out_y - pad_y;
196
197 for (int32_t i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
198 {
199 for (int32_t i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
200 {
201 const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
202 const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
203
204 if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
205 {
206 /* Filling 0 for out-of-bound paddings */
207 memset(two_column_buf, 0, sizeof(int16_t) * input_ch);
208 }
209 else
210 {
211 /* Copying the pixel data to column */
212 arm_q7_to_q15_with_offset(
213 input_data + (k_y * input_x + k_x) * input_ch, two_column_buf, input_ch, input_offset);
214 }
215 two_column_buf += input_ch;
216 }
217 }
218 lhs_rows++;
219 /* Computation is filed for every 2 columns */
220 if (lhs_rows == 2)
221 {
222 out = arm_nn_mat_mult_kernel_s4_s16(packed_filter_data,
223 buffer_a,
224 output_ch,
225 output_shift,
226 output_mult,
227 out_offset,
228 out_activation_min,
229 out_activation_max,
230 rhs_cols,
231 bias_data,
232 out);
233
234 /* counter reset */
235 two_column_buf = buffer_a;
236 lhs_rows = 0;
237 }
238 }
239
240 if (out == NULL)
241 {
242 return ARM_CMSIS_NN_NO_IMPL_ERROR;
243 }
244 }
245
246 /* Handle left over columns */
247 if (lhs_rows != 0)
248 {
249 const int8_t *ker_a_ptr = packed_filter_data;
250 int i;
251 int8_t spilled_ker_a = 0;
252 for (i = 0; i < output_ch; i++)
253 {
254 /* Load the accumulator with bias first */
255 int32_t sum = 0;
256 if (bias_data)
257 {
258 sum = bias_data[i];
259 }
260
261 const int16_t *ip_as_col = buffer_a;
262
263 if (rhs_cols % 2 && (i % 2))
264 {
265 int16_t ip_b0 = *ip_as_col++;
266 sum += spilled_ker_a * ip_b0;
267 }
268
269 #if defined(ARM_MATH_DSP)
270 /* 4 multiply and accumulates are done in one loop. */
271 uint16_t col_count = rhs_cols / 4;
272 while (col_count)
273 {
274 int32_t ker_a1, ker_a2;
275 int32_t ip_b1, ip_b2;
276
277 read_and_pad_s4_ordered(ker_a_ptr, &ker_a1, &ker_a2);
278 ker_a_ptr += 2;
279 ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
280 sum = SMLAD(ker_a1, ip_b1, sum);
281 ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
282 sum = SMLAD(ker_a2, ip_b2, sum);
283
284 col_count--;
285 }
286 col_count = (rhs_cols & 0x3) >> 1;
287 #else
288 uint16_t col_count = rhs_cols >> 1;
289 #endif
290
291 while (col_count)
292 {
293 int8_t ker_a0 = (int8_t)(*ker_a_ptr << 4) >> 4;
294 int8_t ker_a1 = *ker_a_ptr >> 4;
295 ker_a_ptr++;
296
297 int16_t ip_b0 = *ip_as_col++;
298 sum += ker_a0 * ip_b0;
299
300 ip_b0 = *ip_as_col++;
301 sum += ker_a1 * ip_b0;
302
303 col_count--;
304 }
305
306 if (rhs_cols % 2 && !(i % 2))
307 {
308 int8_t ker_a0 = (int8_t)(*ker_a_ptr << 4) >> 4;
309 spilled_ker_a = *ker_a_ptr >> 4;
310 ker_a_ptr++;
311 int16_t ip_b0 = *ip_as_col;
312
313 sum += ker_a0 * ip_b0;
314 }
315
316 sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
317 sum += out_offset;
318 sum = MAX(sum, out_activation_min);
319 sum = MIN(sum, out_activation_max);
320 *out++ = (int8_t)sum;
321 }
322 }
323 #endif
324 /* Advance to the next batch */
325 input_data += (input_x * input_y * input_ch);
326 output_data += (output_x * output_y * output_ch);
327 }
328
329 /* Return to application */
330 return ARM_CMSIS_NN_SUCCESS;
331 }
332
333 /**
334 * @} end of NNConv group
335 */
336