1 /*
2  * SPDX-FileCopyrightText: Copyright 2010-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_convolve_s16.c
22  * Description:  s16 version of convolution using symmetric quantization.
23  *
24  * $Date:        30 January 2023
25  * $Revision:    V.2.1.0
26  *
27  * Target :  Arm(R) M-Profile Architecture
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  *  @ingroup Public
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /*
44  * Basic s16 convolution function.
45  *
46  * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
47  * are multiples of 4 or atleast greater than 4.
48  *
49  */
50 
arm_convolve_s16(const cmsis_nn_context * ctx,const cmsis_nn_conv_params * conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int16_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * filter_data,const cmsis_nn_dims * bias_dims,const int64_t * bias_data,const cmsis_nn_dims * output_dims,int16_t * output_data)51 arm_cmsis_nn_status arm_convolve_s16(const cmsis_nn_context *ctx,
52                                      const cmsis_nn_conv_params *conv_params,
53                                      const cmsis_nn_per_channel_quant_params *quant_params,
54                                      const cmsis_nn_dims *input_dims,
55                                      const int16_t *input_data,
56                                      const cmsis_nn_dims *filter_dims,
57                                      const int8_t *filter_data,
58                                      const cmsis_nn_dims *bias_dims,
59                                      const int64_t *bias_data,
60                                      const cmsis_nn_dims *output_dims,
61                                      int16_t *output_data)
62 {
63     (void)bias_dims;
64     (void)ctx;
65 
66     const int32_t input_batches = input_dims->n;
67     const int32_t input_x = input_dims->w;
68     const int32_t input_y = input_dims->h;
69     const int32_t input_ch = input_dims->c;
70     const int32_t kernel_x = filter_dims->w;
71     const int32_t kernel_y = filter_dims->h;
72     const int32_t output_x = output_dims->w;
73     const int32_t output_y = output_dims->h;
74     const int32_t output_ch = output_dims->c;
75 
76     const int32_t pad_x = conv_params->padding.w;
77     const int32_t pad_y = conv_params->padding.h;
78     const int32_t stride_x = conv_params->stride.w;
79     const int32_t stride_y = conv_params->stride.h;
80     const int32_t dilation_x = conv_params->dilation.w;
81     const int32_t dilation_y = conv_params->dilation.h;
82 
83     const int32_t out_activation_min = conv_params->activation.min;
84     const int32_t out_activation_max = conv_params->activation.max;
85     int32_t *output_mult = quant_params->multiplier;
86     int32_t *output_shift = quant_params->shift;
87 
88     for (int i_batch = 0; i_batch < input_batches; i_batch++)
89     {
90         /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
91         for (int32_t i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
92         {
93             const int32_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i_out_ch]);
94 
95             for (int32_t base_idx_y = -pad_y, i_out_y = 0; i_out_y < output_y; base_idx_y += stride_y, i_out_y++)
96             {
97                 for (int32_t base_idx_x = -pad_x, i_out_x = 0; i_out_x < output_x; base_idx_x += stride_x, i_out_x++)
98                 {
99                     int64_t conv_out_acc = 0;
100 
101                     const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
102                     const int32_t ker_y_start = MAX(0, start_y_max);
103                     const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
104                     const int32_t ker_x_start = MAX(0, start_x_max);
105                     const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
106                     const int32_t ker_y_end = MIN(kernel_y, end_min_y);
107                     const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
108                     const int32_t ker_x_end = MIN(kernel_x, end_min_x);
109 
110                     for (int32_t i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
111                     {
112                         for (int32_t i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
113                         {
114                             const int32_t in_row = base_idx_y + dilation_y * i_ker_y;
115                             const int32_t in_col = base_idx_x + dilation_x * i_ker_x;
116 
117                             for (int32_t i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
118                             {
119                                 conv_out_acc += input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] *
120                                     filter_data[i_out_ch * input_ch * kernel_y * kernel_x +
121                                                 (i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch];
122                             }
123                         }
124                     }
125 
126                     if (bias_data)
127                     {
128                         conv_out_acc += bias_data[i_out_ch];
129                     }
130 
131                     int32_t conv_out = arm_nn_requantize_s64(conv_out_acc, reduced_multiplier, output_shift[i_out_ch]);
132                     conv_out = MAX(conv_out, out_activation_min);
133                     conv_out = MIN(conv_out, out_activation_max);
134                     output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int16_t)conv_out;
135                 }
136             }
137         }
138         /* Advance to the next batch */
139         input_data += (input_x * input_y * input_ch);
140         output_data += (output_x * output_y * output_ch);
141     }
142 
143     /* Return to application */
144     return ARM_CMSIS_NN_SUCCESS;
145 }
146 
147 /**
148  * @} end of NNConv group
149  */
150