1 /*
2  * SPDX-FileCopyrightText: Copyright 2010-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_convolve_fast_s16.c
22  * Description:  Optimized s16 version of convolution.
23  *
24  * $Date:        23 March 2023
25  * $Revision:    V.2.3.0
26  *
27  * Target :  Arm(R) M-Profile Architecture
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  *  @ingroup Public
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /*
44  * Basic s16 convolution function.
45  *
46  * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
47  * are multiples of 4 or atleast greater than 4.
48  *
49  */
50 
arm_convolve_fast_s16(const cmsis_nn_context * ctx,const cmsis_nn_conv_params * conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int16_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * filter_data,const cmsis_nn_dims * bias_dims,const int64_t * bias_data,const cmsis_nn_dims * output_dims,int16_t * output_data)51 arm_cmsis_nn_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
52                                           const cmsis_nn_conv_params *conv_params,
53                                           const cmsis_nn_per_channel_quant_params *quant_params,
54                                           const cmsis_nn_dims *input_dims,
55                                           const int16_t *input_data,
56                                           const cmsis_nn_dims *filter_dims,
57                                           const int8_t *filter_data,
58                                           const cmsis_nn_dims *bias_dims,
59                                           const int64_t *bias_data,
60                                           const cmsis_nn_dims *output_dims,
61                                           int16_t *output_data)
62 {
63     (void)bias_dims;
64     if (filter_dims->w * filter_dims->h * input_dims->c >= 512)
65     {
66         return ARM_CMSIS_NN_ARG_ERROR;
67     }
68 
69     if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
70     {
71         return ARM_CMSIS_NN_ARG_ERROR;
72     }
73     int16_t *buffer_a = (int16_t *)ctx->buf;
74 
75     const int32_t input_batches = input_dims->n;
76     const int32_t input_x = input_dims->w;
77     const int32_t input_y = input_dims->h;
78     const int32_t input_ch = input_dims->c;
79     const int32_t kernel_x = filter_dims->w;
80     const int32_t kernel_y = filter_dims->h;
81     const int32_t output_x = output_dims->w;
82     const int32_t output_y = output_dims->h;
83     const int32_t output_ch = output_dims->c;
84     const int32_t rhs_cols = input_ch * kernel_y * kernel_x;
85 
86     const int32_t pad_x = conv_params->padding.w;
87     const int32_t pad_y = conv_params->padding.h;
88     const int32_t stride_x = conv_params->stride.w;
89     const int32_t stride_y = conv_params->stride.h;
90 
91     const int16_t out_activation_min = conv_params->activation.min;
92     const int16_t out_activation_max = conv_params->activation.max;
93     int32_t *output_mult = quant_params->multiplier;
94     int32_t *output_shift = quant_params->shift;
95 
96     for (int i_batch = 0; i_batch < input_batches; i_batch++)
97     {
98 #if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
99         /* Generate two columns from the input tensor a GEMM computation */
100         int16_t *two_column_buf = buffer_a;
101         int16_t *out = output_data;
102         /* This part implements the im2col function */
103         for (int32_t i_out_y = 0; i_out_y < output_y; i_out_y++)
104         {
105             for (int32_t i_out_x = 0; i_out_x < output_x; i_out_x++)
106             {
107                 for (int32_t i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y;
108                      i_ker_y++)
109                 {
110                     for (int32_t i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x;
111                          i_ker_x++)
112                     {
113                         if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
114                         {
115                             /* Filling 0 for out-of-bound paddings */
116                             arm_memset_s8((int8_t *)two_column_buf, 0, sizeof(int16_t) * input_ch);
117                         }
118                         else
119                         {
120                             arm_memcpy_s8((int8_t *)two_column_buf,
121                                           (const int8_t *)(input_data + (i_ker_y * input_x + i_ker_x) * input_ch),
122                                           input_ch * sizeof(int16_t));
123                         }
124                         two_column_buf += input_ch;
125                     }
126                 }
127                 /* Computation is filed for every 2 columns */
128                 if (two_column_buf == buffer_a + 2 * rhs_cols)
129                 {
130                     out = arm_nn_mat_mult_kernel_s16(filter_data,
131                                                      buffer_a,
132                                                      output_ch,
133                                                      output_shift,
134                                                      output_mult,
135                                                      out_activation_min,
136                                                      out_activation_max,
137                                                      rhs_cols,
138                                                      bias_data,
139                                                      out);
140 
141                     /* Counter reset */
142                     two_column_buf = buffer_a;
143                 }
144             }
145         }
146 
147         /* Left-over because odd number of output pixels */
148         if (two_column_buf != buffer_a)
149         {
150             const int8_t *ker_a = filter_data;
151             int i;
152 
153             for (i = 0; i < output_ch; i++)
154             {
155                 /* Init the accumulator*/
156                 int32_t sum = 0;
157 
158                 /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
159                 const int16_t *ip_as_col = buffer_a;
160 
161                 /* 4 multiply and accumulates are done in one loop. */
162                 int32_t col_count = rhs_cols >> 2;
163 
164                 while (col_count)
165                 {
166                     int32_t ker_a1, ker_a2;
167                     int32_t ip_b1, ip_b2;
168 
169                     ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
170 
171                     ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
172                     sum = SMLAD(ker_a1, ip_b1, sum);
173                     ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
174                     sum = SMLAD(ker_a2, ip_b2, sum);
175 
176                     col_count--;
177                 }
178                 /* Handle left over mac */
179                 col_count = rhs_cols & 0x3;
180                 while (col_count)
181                 {
182                     int8_t ker_a1 = *ker_a++;
183                     int16_t ip_b1 = *ip_as_col++;
184                     sum += ker_a1 * ip_b1;
185                     col_count--;
186                 }
187                 if (bias_data)
188                 {
189                     int32_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i]);
190                     int64_t acc_64 = sum + bias_data[i];
191                     sum = arm_nn_requantize_s64(acc_64, reduced_multiplier, output_shift[i]);
192                 }
193                 else
194                 {
195                     sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
196                 }
197                 sum = MAX(sum, out_activation_min);
198                 sum = MIN(sum, out_activation_max);
199                 *out++ = (int16_t)sum;
200             }
201         }
202 #else
203         (void)input_data;
204         (void)output_data;
205         (void)bias_data;
206         (void)filter_data;
207         (void)buffer_a;
208         (void)kernel_x;
209         (void)kernel_y;
210         (void)pad_x;
211         (void)pad_y;
212         (void)stride_x;
213         (void)stride_y;
214         (void)out_activation_min;
215         (void)out_activation_max;
216         (void)output_mult;
217         (void)output_shift;
218         (void)rhs_cols;
219         return ARM_CMSIS_NN_ARG_ERROR;
220 #endif
221         /* Advance to the next batch */
222         input_data += (input_x * input_y * input_ch);
223         output_data += (output_x * output_y * output_ch);
224     }
225 
226     /* Return to application */
227     return ARM_CMSIS_NN_SUCCESS;
228 }
229 
230 /**
231  * @} end of NNConv group
232  */
233