1 /*
2  * SPDX-FileCopyrightText: Copyright 2022-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_convolve_1x1_s8.c
22  * Description:  Generic s8 version of 1x1 convolution
23  *
24  * $Date:        20 January 2023
25  * $Revision:    V.1.0.1
26  *
27  * Target :  Arm(R) M-Profile Architecture
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 
34 /**
35  *  @ingroup Public
36  */
37 
38 /**
39  * @addtogroup NNConv
40  * @{
41  */
42 
43 /*
44  * A more generic version of s8 1x1 convolution intended for non-unity strides. This is slower
45  * than the _fast() version if used for unity stride values.
46  *
47  * Refer header file for details.
48  *
49  */
arm_convolve_1x1_s8(const cmsis_nn_context * ctx,const cmsis_nn_conv_params * conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int8_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * filter_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,int8_t * output_data)50 arm_cmsis_nn_status arm_convolve_1x1_s8(const cmsis_nn_context *ctx,
51                                         const cmsis_nn_conv_params *conv_params,
52                                         const cmsis_nn_per_channel_quant_params *quant_params,
53                                         const cmsis_nn_dims *input_dims,
54                                         const int8_t *input_data,
55                                         const cmsis_nn_dims *filter_dims,
56                                         const int8_t *filter_data,
57                                         const cmsis_nn_dims *bias_dims,
58                                         const int32_t *bias_data,
59                                         const cmsis_nn_dims *output_dims,
60                                         int8_t *output_data)
61 {
62     (void)ctx;
63     (void)filter_dims;
64     (void)bias_dims;
65     if (conv_params->padding.w != 0 || conv_params->padding.h != 0)
66     {
67         return ARM_CMSIS_NN_ARG_ERROR;
68     }
69 
70     const int32_t lhs_rows = output_dims->w;
71     const int32_t rhs_rows = output_dims->c;
72     const int32_t rhs_cols = input_dims->c;
73     const int32_t stride_w = conv_params->stride.w;
74     const int32_t input_inc = input_dims->w * conv_params->stride.h * rhs_cols;
75     const int32_t output_inc = output_dims->w * rhs_rows;
76     const int32_t output_h = output_dims->h;
77     const int32_t batch = input_dims->n;
78     const int8_t *input_data_ref = input_data;
79 
80     for (int i_batch = 0; i_batch < batch; i_batch++)
81     {
82         input_data = input_data_ref + (i_batch * rhs_cols * input_dims->w * input_dims->h);
83         for (int i_output_h = 0; i_output_h < output_h; i_output_h++)
84         {
85             // Process one input row
86             arm_cmsis_nn_status result = arm_nn_mat_mult_nt_t_s8(input_data,
87                                                                  filter_data,
88                                                                  bias_data,
89                                                                  output_data,
90                                                                  quant_params->multiplier,
91                                                                  quant_params->shift,
92                                                                  lhs_rows,
93                                                                  rhs_rows,
94                                                                  rhs_cols,
95                                                                  conv_params->input_offset,
96                                                                  conv_params->output_offset,
97                                                                  conv_params->activation.min,
98                                                                  conv_params->activation.max,
99                                                                  rhs_cols * stride_w);
100             if (result != ARM_CMSIS_NN_SUCCESS)
101             {
102                 return result;
103             }
104             input_data += input_inc;
105             output_data += output_inc;
106         }
107     }
108 
109     /* Return to application */
110     return ARM_CMSIS_NN_SUCCESS;
111 }
112 
113 /**
114  * @} end of NNConv group
115  */
116