1 /*
2  * SPDX-FileCopyrightText: Copyright 2010-2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Licensed under the Apache License, Version 2.0 (the License); you may
7  * not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  * www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  */
18 
19 /* ----------------------------------------------------------------------
20  * Project:      CMSIS NN Library
21  * Title:        arm_convolve_1_x_n_s4.c
22  * Description:  s4 version of 1xN convolution using symmetric quantization.
23  *
24  * $Date:        10 April 2024
25  * $Revision:    V.1.0.0
26  *
27  * Target :  Arm(R) M-Profile Architecture
28  *
29  * -------------------------------------------------------------------- */
30 
31 #include "arm_nnfunctions.h"
32 #include "arm_nnsupportfunctions.h"
33 /**
34  *  @ingroup Public
35  */
36 
37 /**
38  * @addtogroup NNConv
39  * @{
40  */
41 
42 /*
43  * 1xN s4 convolution function.
44  *
45  * Refer header file for details.
46  *
47  */
48 
arm_convolve_1_x_n_s4(const cmsis_nn_context * ctx,const cmsis_nn_conv_params * conv_params,const cmsis_nn_per_channel_quant_params * quant_params,const cmsis_nn_dims * input_dims,const int8_t * input_data,const cmsis_nn_dims * filter_dims,const int8_t * filter_data,const cmsis_nn_dims * bias_dims,const int32_t * bias_data,const cmsis_nn_dims * output_dims,int8_t * output_data)49 arm_cmsis_nn_status arm_convolve_1_x_n_s4(const cmsis_nn_context *ctx,
50                                           const cmsis_nn_conv_params *conv_params,
51                                           const cmsis_nn_per_channel_quant_params *quant_params,
52                                           const cmsis_nn_dims *input_dims,
53                                           const int8_t *input_data,
54                                           const cmsis_nn_dims *filter_dims,
55                                           const int8_t *filter_data,
56                                           const cmsis_nn_dims *bias_dims,
57                                           const int32_t *bias_data,
58                                           const cmsis_nn_dims *output_dims,
59                                           int8_t *output_data)
60 {
61     arm_cmsis_nn_status status = ARM_CMSIS_NN_SUCCESS;
62     int32_t buffer_size = arm_convolve_1_x_n_s4_get_buffer_size(conv_params, input_dims, filter_dims, output_dims);
63     /* The wrapper API is the ultimate reference for argument check */
64     if ((input_dims->h != 1) || conv_params->dilation.w != 1 || (buffer_size != 0 && ctx->buf == NULL) ||
65         conv_params->stride.w == 0 || (conv_params->stride.w * input_dims->c % 4 != 0))
66     {
67         status = ARM_CMSIS_NN_ARG_ERROR;
68         goto out;
69     }
70 
71 #if defined(ARM_MATH_MVEI)
72     (void)bias_dims;
73     const uint16_t input_x = input_dims->w;
74     const uint16_t kernel_x = filter_dims->w;
75     const uint16_t output_x = output_dims->w;
76     const uint16_t output_ch = output_dims->c;
77     const uint16_t input_ch = input_dims->c;
78     const uint16_t pad_x = conv_params->padding.w;
79     const uint16_t stride_x = conv_params->stride.w;
80 
81     // Total pad for dilation of 1
82     const int32_t total_pad = ((output_x - 1) * stride_x + kernel_x - input_x);
83     const int32_t asym_pad = total_pad % 2;
84 
85     if (pad_x * 2 + asym_pad != total_pad)
86     {
87         return ARM_CMSIS_NN_FAILURE;
88     }
89 
90     const int32_t right_pad_num = pad_x + asym_pad != 0 ? MAX(1, (pad_x + asym_pad + stride_x - 1) / stride_x) : 0;
91     const int32_t left_pad_num = pad_x != 0 ? MAX(1, (pad_x + stride_x - 1) / stride_x) : 0;
92     const int32_t no_pad_num = MAX(output_x - (right_pad_num + left_pad_num), 0);
93 
94     if (right_pad_num + no_pad_num + left_pad_num != output_x)
95     {
96         return ARM_CMSIS_NN_FAILURE;
97     }
98 
99     for (int i_batch = 0; i_batch < input_dims->n; i_batch++)
100     {
101         // Handle left padded sections
102         int32_t lhs_rows = left_pad_num;
103         const int32_t rhs_cols = kernel_x * input_dims->c;
104         const int32_t rhs_rows = output_dims->c;
105         const int32_t lhs_offset = input_ch * stride_x;
106 
107         int32_t out_idx = 0;
108 
109         for (int i = 0; i < lhs_rows; i++)
110         {
111             const int32_t est_input_x_idx = stride_x * i - pad_x;
112             const int32_t ker_begin_idx = -est_input_x_idx;
113             const int32_t actual_kernel_len = kernel_x - ker_begin_idx;
114             status = arm_nn_mat_mul_core_1x_s4(actual_kernel_len * input_ch,
115                                                ker_begin_idx * input_ch,
116                                                input_data,
117                                                filter_data + ((ker_begin_idx * input_ch) >> 1),
118                                                output_ch,
119                                                conv_params,
120                                                quant_params,
121                                                bias_data,
122                                                output_data);
123             output_data += output_ch;
124         }
125 
126         out_idx += lhs_rows;
127         int32_t input_start = stride_x * lhs_rows - pad_x;
128 
129         if (input_start < 0)
130         {
131             return ARM_CMSIS_NN_FAILURE;
132         }
133         /* Non padded elements */
134         input_start *= input_ch;
135         lhs_rows = no_pad_num;
136         arm_nn_mat_mult_nt_t_s4(input_data + input_start,
137                                 filter_data,
138                                 bias_data,
139                                 output_data,
140                                 quant_params->multiplier,
141                                 quant_params->shift,
142                                 lhs_rows,
143                                 rhs_rows,
144                                 rhs_cols,
145                                 conv_params->input_offset,
146                                 conv_params->output_offset,
147                                 conv_params->activation.min,
148                                 conv_params->activation.max,
149                                 lhs_offset);
150 
151         output_data += lhs_rows * rhs_rows;
152         /* Right padded elements */
153         out_idx += lhs_rows;
154         lhs_rows = output_x - out_idx;
155 
156         if (lhs_rows < 0)
157         {
158             return ARM_CMSIS_NN_FAILURE;
159         }
160 
161         for (int i = out_idx; i < output_x; i++)
162         {
163             const int32_t est_input_x_idx = stride_x * i - pad_x;
164             const int32_t ker_end_idx = MIN(kernel_x, input_x - est_input_x_idx);
165             status = arm_nn_mat_mul_core_1x_s4(ker_end_idx * input_ch,
166                                                (kernel_x - ker_end_idx) * input_ch,
167                                                input_data + est_input_x_idx * input_ch,
168                                                filter_data,
169                                                output_ch,
170                                                conv_params,
171                                                quant_params,
172                                                bias_data,
173                                                output_data);
174             output_data += output_ch;
175         }
176         /* Advance to the next batch */
177         input_data += (input_x * input_ch);
178     }
179 #else
180     status = arm_convolve_s4(ctx,
181                              conv_params,
182                              quant_params,
183                              input_dims,
184                              input_data,
185                              filter_dims,
186                              filter_data,
187                              bias_dims,
188                              bias_data,
189                              output_dims,
190                              output_data);
191 
192 #endif
193 
194 out:
195     /* Return to application */
196     return status;
197 }
198 
199 /**
200  * @} end of NNConv group
201  */
202