1 /*
2 * Copyright (c) 2016, 2019 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #ifndef __ARM_COMPUTE_NEMATH_H__
25 #define __ARM_COMPUTE_NEMATH_H__
26
27
28 #if defined(ARM_MATH_NEON)
29
30 #if defined(__aarch64__)
31
32 /** Perform a 7th degree polynomial approximation using Estrin's method.
33 *
34 * @param[in] x Input vector value in F32 format.
35 * @param[in] coeffs Polynomial coefficients table. (array of flattened float32x4_t vectors)
36 *
37 * @return The calculated approximation.
38 */
39 static inline float64x2_t vtaylor_polyq_f64(float64x2_t x, const float64_t *coeffs);
40
41 /** Calculate reciprocal.
42 *
43 * @param[in] x Input value.
44 *
45 * @return The calculated reciprocal.
46 */
47 static inline float64x2_t vinvq_f64(float64x2_t x);
48
49 #endif /* #if defined(__aarch64__) */
50
51 /** Calculate floor of a vector.
52 *
53 * @param[in] val Input vector value in F32 format.
54 *
55 * @return The calculated floor vector.
56 */
57 static inline float32x4_t vfloorq_f32(float32x4_t val);
58
59 /** Calculate inverse square root.
60 *
61 * @param[in] x Input value.
62 *
63 * @return The calculated inverse square root.
64 */
65 static inline float32x2_t vinvsqrt_f32(float32x2_t x);
66
67 /** Calculate inverse square root.
68 *
69 * @param[in] x Input value.
70 *
71 * @return The calculated inverse square root.
72 */
73 static inline float32x4_t vinvsqrtq_f32(float32x4_t x);
74
75 /** Calculate reciprocal.
76 *
77 * @param[in] x Input value.
78 *
79 * @return The calculated reciprocal.
80 */
81 static inline float32x2_t vinv_f32(float32x2_t x);
82
83 /** Calculate reciprocal.
84 *
85 * @param[in] x Input value.
86 *
87 * @return The calculated reciprocal.
88 */
89 static inline float32x4_t vinvq_f32(float32x4_t x);
90
91 /** Perform a 7th degree polynomial approximation using Estrin's method.
92 *
93 * @param[in] x Input vector value in F32 format.
94 * @param[in] coeffs Polynomial coefficients table. (array of flattened float32x4_t vectors)
95 *
96 * @return The calculated approximation.
97 */
98 static inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs);
99
100 /** Calculate exponential
101 *
102 * @param[in] x Input vector value in F32 format.
103 *
104 * @return The calculated exponent.
105 */
106 static inline float32x4_t vexpq_f32(float32x4_t x);
107
108 /** Calculate logarithm
109 *
110 * @param[in] x Input vector value in F32 format.
111 *
112 * @return The calculated logarithm.
113 */
114 static inline float32x4_t vlogq_f32(float32x4_t x);
115
116 /** Calculate hyperbolic tangent.
117 *
118 * tanh(x) = (e^2x - 1)/(e^2x + 1)
119 *
120 * @note We clamp x to [-5,5] to avoid overflowing issues.
121 *
122 * @param[in] val Input vector value in F32 format.
123 *
124 * @return The calculated Hyperbolic Tangent.
125 */
126 static inline float32x4_t vtanhq_f32(float32x4_t val);
127
128 /** Calculate n power of a number.
129 *
130 * pow(x,n) = e^(n*log(x))
131 *
132 * @param[in] val Input vector value in F32 format.
133 * @param[in] n Powers to raise the input to.
134 *
135 * @return The calculated power.
136 */
137 static inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n);
138
139 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
140 /** Calculate hyperbolic tangent.
141 *
142 * tanh(x) = (e^2x - 1)/(e^2x + 1)
143 *
144 * @note We clamp x to [-5,5] to avoid overflowing issues.
145 *
146 * @param[in] val Input vector value in F32 format.
147 *
148 * @return The calculated Hyperbolic Tangent.
149 */
150 static inline float16x8_t vtanhq_f16(float16x8_t val);
151
152 /** Calculate reciprocal.
153 *
154 * @param[in] x Input value.
155 *
156 * @return The calculated reciprocal.
157 */
158 static inline float16x4_t vinv_f16(float16x4_t x);
159
160 /** Calculate reciprocal.
161 *
162 * @param[in] x Input value.
163 *
164 * @return The calculated reciprocal.
165 */
166 static inline float16x8_t vinvq_f16(float16x8_t x);
167
168 /** Calculate inverse square root.
169 *
170 * @param[in] x Input value.
171 *
172 * @return The calculated inverse square root.
173 */
174 static inline float16x4_t vinvsqrt_f16(float16x4_t x);
175
176 /** Calculate inverse square root.
177 *
178 * @param[in] x Input value.
179 *
180 * @return The calculated inverse square root.
181 */
182 static inline float16x8_t vinvsqrtq_f16(float16x8_t x);
183
184 /** Calculate exponential
185 *
186 * @param[in] x Input vector value in F16 format.
187 *
188 * @return The calculated exponent.
189 */
190 static inline float16x8_t vexpq_f16(float16x8_t x);
191
192 /** Calculate n power of a number.
193 *
194 * pow(x,n) = e^(n*log(x))
195 *
196 * @param[in] val Input vector value in F16 format.
197 * @param[in] n Powers to raise the input to.
198 *
199 * @return The calculated power.
200 */
201 static inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n);
202 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
203
204 /** Exponent polynomial coefficients */
205 extern const float32_t exp_tab[4*8];
206
207 extern const float64_t exp_tab_64[2*8];
208
209
210 /** Logarithm polynomial coefficients */
211 extern const float32_t log_tab[4*8];
212
213 extern const float64_t log_tab_64[2*8];
214
215 #ifndef DOXYGEN_SKIP_THIS
vfloorq_f32(float32x4_t val)216 static inline float32x4_t vfloorq_f32(float32x4_t val)
217 {
218 static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f};
219
220 const int32x4_t z = vcvtq_s32_f32(val);
221 const float32x4_t r = vcvtq_f32_s32(z);
222
223 return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, vld1q_f32(CONST_1)), r);
224 }
225
vinvsqrt_f32(float32x2_t x)226 static inline float32x2_t vinvsqrt_f32(float32x2_t x)
227 {
228 float32x2_t sqrt_reciprocal = vrsqrte_f32(x);
229 sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
230 sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
231
232 return sqrt_reciprocal;
233 }
234
vinvsqrtq_f32(float32x4_t x)235 static inline float32x4_t vinvsqrtq_f32(float32x4_t x)
236 {
237 float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
238 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
239 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
240
241 return sqrt_reciprocal;
242 }
243
vinv_f32(float32x2_t x)244 static inline float32x2_t vinv_f32(float32x2_t x)
245 {
246 float32x2_t recip = vrecpe_f32(x);
247 recip = vmul_f32(vrecps_f32(x, recip), recip);
248 recip = vmul_f32(vrecps_f32(x, recip), recip);
249 return recip;
250 }
251
vinvq_f32(float32x4_t x)252 static inline float32x4_t vinvq_f32(float32x4_t x)
253 {
254 float32x4_t recip = vrecpeq_f32(x);
255 recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
256 recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
257 return recip;
258 }
259
260 #if defined(__aarch64__)
261
vinvq_f64(float64x2_t x)262 static inline float64x2_t vinvq_f64(float64x2_t x)
263 {
264 float64x2_t recip = vrecpeq_f64(x);
265 recip = vmulq_f64(vrecpsq_f64(x, recip), recip);
266 recip = vmulq_f64(vrecpsq_f64(x, recip), recip);
267 return recip;
268 }
269
270 #endif /* #if defined(__aarch64__) */
271
vtaylor_polyq_f32(float32x4_t x,const float32_t * coeffs)272 static inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs)
273 {
274 float32x4_t A = vmlaq_f32(vld1q_f32(&coeffs[4*0]), vld1q_f32(&coeffs[4*4]), x);
275 float32x4_t B = vmlaq_f32(vld1q_f32(&coeffs[4*2]), vld1q_f32(&coeffs[4*6]), x);
276 float32x4_t C = vmlaq_f32(vld1q_f32(&coeffs[4*1]), vld1q_f32(&coeffs[4*5]), x);
277 float32x4_t D = vmlaq_f32(vld1q_f32(&coeffs[4*3]), vld1q_f32(&coeffs[4*7]), x);
278 float32x4_t x2 = vmulq_f32(x, x);
279 float32x4_t x4 = vmulq_f32(x2, x2);
280 float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
281 return res;
282 }
283
284 #if defined(__aarch64__)
285
vtaylor_polyq_f64(float64x2_t x,const float64_t * coeffs)286 static inline float64x2_t vtaylor_polyq_f64(float64x2_t x, const float64_t *coeffs)
287 {
288 float64x2_t A = vmlaq_f64(vld1q_f64(&coeffs[2*0]), vld1q_f64(&coeffs[2*4]), x);
289 float64x2_t B = vmlaq_f64(vld1q_f64(&coeffs[2*2]), vld1q_f64(&coeffs[2*6]), x);
290 float64x2_t C = vmlaq_f64(vld1q_f64(&coeffs[2*1]), vld1q_f64(&coeffs[2*5]), x);
291 float64x2_t D = vmlaq_f64(vld1q_f64(&coeffs[2*3]), vld1q_f64(&coeffs[2*7]), x);
292 float64x2_t x2 = vmulq_f64(x, x);
293 float64x2_t x4 = vmulq_f64(x2, x2);
294 float64x2_t res = vmlaq_f64(vmlaq_f64(A, B, x2), vmlaq_f64(C, D, x2), x4);
295 return res;
296 }
297
298 #endif /* #if defined(__aarch64__) */
299
300
vexpq_f32(float32x4_t x)301 static inline float32x4_t vexpq_f32(float32x4_t x)
302 {
303 static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2)
304 static const float32_t CONST_INV_LN2[4] = {1.4426950408f,1.4426950408f,1.4426950408f,1.4426950408f}; // 1/ln(2)
305 static const float32_t CONST_0[4] = {0.f,0.f,0.f,0.f};
306 static const int32_t CONST_NEGATIVE_126[4] = {-126,-126,-126,-126};
307
308 // Perform range reduction [-log(2),log(2)]
309 int32x4_t m = vcvtq_s32_f32(vmulq_f32(x, vld1q_f32(CONST_INV_LN2)));
310 float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2));
311
312 // Polynomial Approximation
313 float32x4_t poly = vtaylor_polyq_f32(val, exp_tab);
314
315 // Reconstruct
316 poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23)));
317 poly = vbslq_f32(vcltq_s32(m, vld1q_s32(CONST_NEGATIVE_126)), vld1q_f32(CONST_0), poly);
318
319
320 return poly;
321 }
322
vlogq_f32(float32x4_t x)323 static inline float32x4_t vlogq_f32(float32x4_t x)
324 {
325 static const int32_t CONST_127[4] = {127,127,127,127}; // 127
326 static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2)
327
328 // Extract exponent
329 int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), vld1q_s32(CONST_127));
330 float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
331
332 // Polynomial Approximation
333 float32x4_t poly = vtaylor_polyq_f32(val, log_tab);
334
335 // Reconstruct
336 poly = vmlaq_f32(poly, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2));
337
338 return poly;
339 }
340
341
vtanhq_f32(float32x4_t val)342 static inline float32x4_t vtanhq_f32(float32x4_t val)
343 {
344 static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f};
345 static const float32_t CONST_2[4] = {2.f,2.f,2.f,2.f};
346 static const float32_t CONST_MIN_TANH[4] = {-10.f,-10.f,-10.f,-10.f};
347 static const float32_t CONST_MAX_TANH[4] = {10.f,10.f,10.f,10.f};
348
349 float32x4_t x = vminq_f32(vmaxq_f32(val, vld1q_f32(CONST_MIN_TANH)), vld1q_f32(CONST_MAX_TANH));
350 float32x4_t exp2x = vexpq_f32(vmulq_f32(vld1q_f32(CONST_2), x));
351 float32x4_t num = vsubq_f32(exp2x, vld1q_f32(CONST_1));
352 float32x4_t den = vaddq_f32(exp2x, vld1q_f32(CONST_1));
353 float32x4_t tanh = vmulq_f32(num, vinvq_f32(den));
354 return tanh;
355 }
356
vpowq_f32(float32x4_t val,float32x4_t n)357 static inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
358 {
359 return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
360 }
361 #endif /* DOXYGEN_SKIP_THIS */
362
363 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
364 /** Exponent polynomial coefficients */
365 /** Logarithm polynomial coefficients */
366 #ifndef DOXYGEN_SKIP_THIS
vfloorq_f16(float16x8_t val)367 static inline float16x8_t vfloorq_f16(float16x8_t val)
368 {
369 static const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f};
370
371 const int16x8_t z = vcvtq_s16_f16(val);
372 const float16x8_t r = vcvtq_f16_s16(z);
373
374 return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, vld1q_f16(CONST_1)), r);
375 }
vinvsqrt_f16(float16x4_t x)376 static inline float16x4_t vinvsqrt_f16(float16x4_t x)
377 {
378 float16x4_t sqrt_reciprocal = vrsqrte_f16(x);
379 sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
380 sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
381 return sqrt_reciprocal;
382 }
383
vinvsqrtq_f16(float16x8_t x)384 static inline float16x8_t vinvsqrtq_f16(float16x8_t x)
385 {
386 float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
387 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
388 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
389 return sqrt_reciprocal;
390 }
391
vinv_f16(float16x4_t x)392 static inline float16x4_t vinv_f16(float16x4_t x)
393 {
394 float16x4_t recip = vrecpe_f16(x);
395 recip = vmul_f16(vrecps_f16(x, recip), recip);
396 recip = vmul_f16(vrecps_f16(x, recip), recip);
397 return recip;
398 }
399
vinvq_f16(float16x8_t x)400 static inline float16x8_t vinvq_f16(float16x8_t x)
401 {
402 float16x8_t recip = vrecpeq_f16(x);
403 recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
404 recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
405 return recip;
406 }
407
vtanhq_f16(float16x8_t val)408 static inline float16x8_t vtanhq_f16(float16x8_t val)
409 {
410 const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f};
411 const float16_t CONST_2[8] = {2.f,2.f,2.f,2.f,2.f,2.f,2.f,2.f};
412 const float16_t CONST_MIN_TANH[8] = {-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f};
413 const float16_t CONST_MAX_TANH[8] = {10.f,10.f,10.f,10.f,10.f,10.f,10.f,10.f};
414
415 const float16x8_t x = vminq_f16(vmaxq_f16(val, vld1q_f16(CONST_MIN_TANH)), vld1q_f16(CONST_MAX_TANH));
416 const float16x8_t exp2x = vexpq_f16(vmulq_f16(vld1q_f16(CONST_2), x));
417 const float16x8_t num = vsubq_f16(exp2x, vld1q_f16(CONST_1));
418 const float16x8_t den = vaddq_f16(exp2x, vld1q_f16(CONST_1));
419 const float16x8_t tanh = vmulq_f16(num, vinvq_f16(den));
420 return tanh;
421 }
422
vtaylor_polyq_f16(float16x8_t x,const float16_t * coeffs)423 static inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const float16_t *coeffs)
424 {
425 const float16x8_t A = vaddq_f16(vld1q_f16(&coeffs[8*0]), vmulq_f16(vld1q_f16(&coeffs[8*4]), x));
426 const float16x8_t B = vaddq_f16(vld1q_f16(&coeffs[8*2]), vmulq_f16(vld1q_f16(&coeffs[8*6]), x));
427 const float16x8_t C = vaddq_f16(vld1q_f16(&coeffs[8*1]), vmulq_f16(vld1q_f16(&coeffs[8*5]), x));
428 const float16x8_t D = vaddq_f16(vld1q_f16(&coeffs[8*3]), vmulq_f16(vld1q_f16(&coeffs[8*7]), x));
429 const float16x8_t x2 = vmulq_f16(x, x);
430 const float16x8_t x4 = vmulq_f16(x2, x2);
431 const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
432 return res;
433 }
434
vexpq_f16(float16x8_t x)435 static inline float16x8_t vexpq_f16(float16x8_t x)
436 {
437 // TODO (COMPMID-1535) : Revisit FP16 approximations
438 const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
439 const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
440
441 const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vexpq_f32(x_low)), vexpq_f32(x_high));
442 return res;
443 }
444
vlogq_f16(float16x8_t x)445 static inline float16x8_t vlogq_f16(float16x8_t x)
446 {
447 // TODO (COMPMID-1535) : Revisit FP16 approximations
448 const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
449 const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
450
451 const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vlogq_f32(x_low)), vlogq_f32(x_high));
452 return res;
453 }
454
vpowq_f16(float16x8_t val,float16x8_t n)455 static inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
456 {
457 // TODO (giaiod01) - COMPMID-1535
458 float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n));
459 float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n));
460 float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));
461 float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));
462
463 float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));
464 float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));
465
466 return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));
467 }
468 #endif /* DOXYGEN_SKIP_THIS */
469 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
470 #endif
471 #endif /* __ARM_COMPUTE_NEMATH_H__ */
472