1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_mat_scale_f32.c
4  * Description:  Multiplies a floating-point matrix by a scalar
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/matrix_functions.h"
30 
31 /**
32   @ingroup groupMatrix
33  */
34 
35 /**
36   @defgroup MatrixScale Matrix Scale
37 
38   Multiplies a matrix by a scalar.  This is accomplished by multiplying each element in the
39   matrix by the scalar.  For example:
40 
41   @par Matrix Scaling of a 3 x 3 matrix
42 
43   \f[
44   \begin{pmatrix}
45   a_{1,1} & a_{1,2} & a_{1,3} \\
46   a_{2,1} & a_{2,2} & a_{2,3} \\
47   a_{3,1} & a_{3,2} & a_{3,3} \\
48   \end{pmatrix}
49   * K =
50   \begin{pmatrix}
51    K a_{1,1} & K a_{1,2} & K a_{1,3} \\
52    K a_{2,1} & K a_{2,2} & K a_{2,3} \\
53    K a_{3,1} & K a_{3,2} & K a_{3,3} \\
54   \end{pmatrix}
55   \f]
56 
57   The function checks to make sure that the input and output matrices are of the same size.
58 
59   In the fixed-point Q15 and Q31 functions, <code>scale</code> is represented by
60   a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>.
61   The shift allows the gain of the scaling operation to exceed 1.0.
62   The overall scale factor applied to the fixed-point data is
63   <pre>
64       scale = scaleFract * 2^shift.
65   </pre>
66  */
67 
68 /**
69   @addtogroup MatrixScale
70   @{
71  */
72 
73 /**
74   @brief         Floating-point matrix scaling.
75   @param[in]     pSrc       points to input matrix
76   @param[in]     scale      scale factor to be applied
77   @param[out]    pDst       points to output matrix structure
78   @return        execution status
79                    - \ref ARM_MATH_SUCCESS       : Operation successful
80                    - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
81  */
82 #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_mat_scale_f32(const arm_matrix_instance_f32 * pSrc,float32_t scale,arm_matrix_instance_f32 * pDst)83 ARM_DSP_ATTRIBUTE arm_status arm_mat_scale_f32(
84   const arm_matrix_instance_f32 * pSrc,
85   float32_t scale,
86   arm_matrix_instance_f32 * pDst)
87 {
88   arm_status status;                             /* status of matrix scaling     */
89   #ifdef ARM_MATH_MATRIX_CHECK
90   /* Check for matrix mismatch condition */
91   if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
92   {
93     /* Set status as ARM_MATH_SIZE_MISMATCH */
94     status = ARM_MATH_SIZE_MISMATCH;
95   }
96   else
97 #endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
98   {
99     float32_t *pIn = pSrc->pData;   /* input data matrix pointer */
100     float32_t *pOut = pDst->pData;  /* output data matrix pointer */
101     uint32_t  numSamples;           /* total number of elements in the matrix */
102     uint32_t  blkCnt;               /* loop counters */
103     f32x4_t vecIn, vecOut;
104     float32_t const *pInVec;
105 
106     pInVec = (float32_t const *) pIn;
107     /*
108      * Total number of samples in the input matrix
109      */
110     numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
111     blkCnt = numSamples >> 2;
112     while (blkCnt > 0U)
113     {
114         /*
115          * C(m,n) = A(m,n) * scale
116          * Scaling and results are stored in the destination buffer.
117          */
118         vecIn = vld1q(pInVec);
119         pInVec += 4;
120 
121         vecOut = vecIn * scale;
122 
123         vst1q(pOut, vecOut);
124         pOut += 4;
125         /*
126          * Decrement the blockSize loop counter
127          */
128         blkCnt--;
129     }
130     /*
131      * tail
132      */
133     blkCnt = numSamples & 3;
134     if (blkCnt > 0U)
135     {
136         mve_pred16_t p0 = vctp32q(blkCnt);
137         vecIn = vld1q(pInVec);
138         vecOut = vecIn * scale;
139 
140         vstrwq_p(pOut, vecOut, p0);
141     }
142     /* Set status as ARM_MATH_SUCCESS */
143     status = ARM_MATH_SUCCESS;
144   }
145 
146   /* Return to application */
147   return (status);
148 
149 }
150 #else
151 #if defined(ARM_MATH_NEON_EXPERIMENTAL)
arm_mat_scale_f32(const arm_matrix_instance_f32 * pSrc,float32_t scale,arm_matrix_instance_f32 * pDst)152 ARM_DSP_ATTRIBUTE arm_status arm_mat_scale_f32(
153   const arm_matrix_instance_f32 * pSrc,
154   float32_t scale,
155   arm_matrix_instance_f32 * pDst)
156 {
157   float32_t *pIn = pSrc->pData;                  /* input data matrix pointer */
158   float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
159   uint32_t numSamples;                           /* total number of elements in the matrix */
160   uint32_t blkCnt;                               /* loop counters */
161   arm_status status;                             /* status of matrix scaling     */
162 
163 
164 #ifdef ARM_MATH_MATRIX_CHECK
165   /* Check for matrix mismatch condition */
166   if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols))
167   {
168     /* Set status as ARM_MATH_SIZE_MISMATCH */
169     status = ARM_MATH_SIZE_MISMATCH;
170   }
171   else
172 #endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
173   {
174     float32x4_t vec1;
175     float32x4_t res;
176 
177     /* Total number of samples in the input matrix */
178     numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
179 
180     blkCnt = numSamples >> 2;
181 
182     /* Compute 4 outputs at a time.
183      ** a second loop below computes the remaining 1 to 3 samples. */
184     while (blkCnt > 0U)
185     {
186       /* C(m,n) = A(m,n) * scale */
187       /* Scaling and results are stored in the destination buffer. */
188       vec1 = vld1q_f32(pIn);
189       res = vmulq_f32(vec1, vdupq_n_f32(scale));
190       vst1q_f32(pOut, res);
191 
192       /* update pointers to process next sampels */
193       pIn += 4U;
194       pOut += 4U;
195 
196       /* Decrement the numSamples loop counter */
197       blkCnt--;
198     }
199 
200     /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
201      ** No loop unrolling is used. */
202     blkCnt = numSamples % 0x4U;
203 
204     while (blkCnt > 0U)
205     {
206       /* C(m,n) = A(m,n) * scale */
207       /* The results are stored in the destination buffer. */
208       *pOut++ = (*pIn++) * scale;
209 
210       /* Decrement the loop counter */
211       blkCnt--;
212     }
213 
214     /* Set status as ARM_MATH_SUCCESS */
215     status = ARM_MATH_SUCCESS;
216   }
217 
218   /* Return to application */
219   return (status);
220 }
221 #else
arm_mat_scale_f32(const arm_matrix_instance_f32 * pSrc,float32_t scale,arm_matrix_instance_f32 * pDst)222 ARM_DSP_ATTRIBUTE arm_status arm_mat_scale_f32(
223   const arm_matrix_instance_f32 * pSrc,
224         float32_t                 scale,
225         arm_matrix_instance_f32 * pDst)
226 {
227   float32_t *pIn = pSrc->pData;                  /* Input data matrix pointer */
228   float32_t *pOut = pDst->pData;                 /* Output data matrix pointer */
229   uint32_t numSamples;                           /* Total number of elements in the matrix */
230   uint32_t blkCnt;                               /* Loop counters */
231   arm_status status;                             /* Status of matrix scaling */
232 
233 #ifdef ARM_MATH_MATRIX_CHECK
234 
235   /* Check for matrix mismatch condition */
236   if ((pSrc->numRows != pDst->numRows) ||
237       (pSrc->numCols != pDst->numCols)   )
238   {
239     /* Set status as ARM_MATH_SIZE_MISMATCH */
240     status = ARM_MATH_SIZE_MISMATCH;
241   }
242   else
243 
244 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
245 
246   {
247     /* Total number of samples in input matrix */
248     numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
249 
250 #if defined (ARM_MATH_LOOPUNROLL)
251 
252     /* Loop unrolling: Compute 4 outputs at a time */
253     blkCnt = numSamples >> 2U;
254 
255     while (blkCnt > 0U)
256     {
257       /* C(m,n) = A(m,n) * scale */
258 
259       /* Scale and store result in destination buffer. */
260       *pOut++ = (*pIn++) * scale;
261       *pOut++ = (*pIn++) * scale;
262       *pOut++ = (*pIn++) * scale;
263       *pOut++ = (*pIn++) * scale;
264 
265       /* Decrement loop counter */
266       blkCnt--;
267     }
268 
269     /* Loop unrolling: Compute remaining outputs */
270     blkCnt = numSamples % 0x4U;
271 
272 #else
273 
274     /* Initialize blkCnt with number of samples */
275     blkCnt = numSamples;
276 
277 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
278 
279     while (blkCnt > 0U)
280     {
281       /* C(m,n) = A(m,n) * scale */
282 
283       /* Scale and store result in destination buffer. */
284       *pOut++ = (*pIn++) * scale;
285 
286       /* Decrement loop counter */
287       blkCnt--;
288     }
289 
290     /* Set status as ARM_MATH_SUCCESS */
291     status = ARM_MATH_SUCCESS;
292   }
293 
294   /* Return to application */
295   return (status);
296 }
297 #endif /* #if defined(ARM_MATH_NEON) */
298 #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
299 
300 /**
301   @} end of MatrixScale group
302  */
303