1 /**
2 * \brief AES block cipher, ESP32-S2 hardware accelerated version
3 * Based on mbedTLS FIPS-197 compliant version.
4 *
5 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
6 * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
7 * SPDX-License-Identifier: Apache-2.0
8 *
9 * Licensed under the Apache License, Version 2.0 (the "License"); you may
10 * not use this file except in compliance with the License.
11 * You may obtain a copy of the License at
12 *
13 * http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing, software
16 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
17 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 * See the License for the specific language governing permissions and
19 * limitations under the License.
20 *
21 */
22 /*
23 * The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
24 *
25 * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
26 * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
27 */
28
29
30 /* Below XTS implementation is copied aes.c of mbedtls library.
31 * When MBEDTLS_AES_ALT is defined mbedtls expects alternate
32 * definition of XTS functions to be available. Even if this
33 * could have been avoided, it is done for consistency reason.
34 */
35
36 #include <stdio.h>
37 #include <string.h>
38 #include <sys/lock.h>
39 #include "mbedtls/aes.h"
40
41 #include "aes/esp_aes.h"
42
esp_aes_xts_init(esp_aes_xts_context * ctx)43 void esp_aes_xts_init( esp_aes_xts_context *ctx )
44 {
45 esp_aes_init( &ctx->crypt );
46 esp_aes_init( &ctx->tweak );
47 }
48
esp_aes_xts_free(esp_aes_xts_context * ctx)49 void esp_aes_xts_free( esp_aes_xts_context *ctx )
50 {
51 esp_aes_free( &ctx->crypt );
52 esp_aes_free( &ctx->tweak );
53 }
54
esp_aes_xts_decode_keys(const unsigned char * key,unsigned int keybits,const unsigned char ** key1,unsigned int * key1bits,const unsigned char ** key2,unsigned int * key2bits)55 static int esp_aes_xts_decode_keys( const unsigned char *key,
56 unsigned int keybits,
57 const unsigned char **key1,
58 unsigned int *key1bits,
59 const unsigned char **key2,
60 unsigned int *key2bits )
61 {
62 const unsigned int half_keybits = keybits / 2;
63 const unsigned int half_keybytes = half_keybits / 8;
64
65 switch ( keybits ) {
66 case 256: break;
67 case 512: break;
68 default : return ( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH );
69 }
70
71 *key1bits = half_keybits;
72 *key2bits = half_keybits;
73 *key1 = &key[0];
74 *key2 = &key[half_keybytes];
75
76 return 0;
77 }
78
esp_aes_xts_setkey_enc(esp_aes_xts_context * ctx,const unsigned char * key,unsigned int keybits)79 int esp_aes_xts_setkey_enc( esp_aes_xts_context *ctx,
80 const unsigned char *key,
81 unsigned int keybits)
82 {
83 int ret;
84 const unsigned char *key1, *key2;
85 unsigned int key1bits, key2bits;
86
87 ret = esp_aes_xts_decode_keys( key, keybits, &key1, &key1bits,
88 &key2, &key2bits );
89 if ( ret != 0 ) {
90 return ( ret );
91 }
92
93 /* Set the tweak key. Always set tweak key for the encryption mode. */
94 ret = esp_aes_setkey( &ctx->tweak, key2, key2bits );
95 if ( ret != 0 ) {
96 return ( ret );
97 }
98
99 /* Set crypt key for encryption. */
100 return esp_aes_setkey( &ctx->crypt, key1, key1bits );
101 }
102
esp_aes_xts_setkey_dec(esp_aes_xts_context * ctx,const unsigned char * key,unsigned int keybits)103 int esp_aes_xts_setkey_dec( esp_aes_xts_context *ctx,
104 const unsigned char *key,
105 unsigned int keybits)
106 {
107 int ret;
108 const unsigned char *key1, *key2;
109 unsigned int key1bits, key2bits;
110
111 ret = esp_aes_xts_decode_keys( key, keybits, &key1, &key1bits,
112 &key2, &key2bits );
113 if ( ret != 0 ) {
114 return ( ret );
115 }
116
117 /* Set the tweak key. Always set tweak key for encryption. */
118 ret = esp_aes_setkey( &ctx->tweak, key2, key2bits );
119 if ( ret != 0 ) {
120 return ( ret );
121 }
122
123 /* Set crypt key for decryption. */
124 return esp_aes_setkey( &ctx->crypt, key1, key1bits );
125 }
126
127 /* Endianess with 64 bits values */
128 #ifndef GET_UINT64_LE
129 #define GET_UINT64_LE(n,b,i) \
130 { \
131 (n) = ( (uint64_t) (b)[(i) + 7] << 56 ) \
132 | ( (uint64_t) (b)[(i) + 6] << 48 ) \
133 | ( (uint64_t) (b)[(i) + 5] << 40 ) \
134 | ( (uint64_t) (b)[(i) + 4] << 32 ) \
135 | ( (uint64_t) (b)[(i) + 3] << 24 ) \
136 | ( (uint64_t) (b)[(i) + 2] << 16 ) \
137 | ( (uint64_t) (b)[(i) + 1] << 8 ) \
138 | ( (uint64_t) (b)[(i) ] ); \
139 }
140 #endif
141
142 #ifndef PUT_UINT64_LE
143 #define PUT_UINT64_LE(n,b,i) \
144 { \
145 (b)[(i) + 7] = (unsigned char) ( (n) >> 56 ); \
146 (b)[(i) + 6] = (unsigned char) ( (n) >> 48 ); \
147 (b)[(i) + 5] = (unsigned char) ( (n) >> 40 ); \
148 (b)[(i) + 4] = (unsigned char) ( (n) >> 32 ); \
149 (b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
150 (b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
151 (b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
152 (b)[(i) ] = (unsigned char) ( (n) ); \
153 }
154 #endif
155
156 /*
157 * GF(2^128) multiplication function
158 *
159 * This function multiplies a field element by x in the polynomial field
160 * representation. It uses 64-bit word operations to gain speed but compensates
161 * for machine endianess and hence works correctly on both big and little
162 * endian machines.
163 */
esp_gf128mul_x_ble(unsigned char r[16],const unsigned char x[16])164 static void esp_gf128mul_x_ble( unsigned char r[16],
165 const unsigned char x[16] )
166 {
167 uint64_t a, b, ra, rb;
168
169 GET_UINT64_LE( a, x, 0 );
170 GET_UINT64_LE( b, x, 8 );
171
172 ra = ( a << 1 ) ^ 0x0087 >> ( 8 - ( ( b >> 63 ) << 3 ) );
173 rb = ( a >> 63 ) | ( b << 1 );
174
175 PUT_UINT64_LE( ra, r, 0 );
176 PUT_UINT64_LE( rb, r, 8 );
177 }
178
179 /*
180 * AES-XTS buffer encryption/decryption
181 */
esp_aes_crypt_xts(esp_aes_xts_context * ctx,int mode,size_t length,const unsigned char data_unit[16],const unsigned char * input,unsigned char * output)182 int esp_aes_crypt_xts( esp_aes_xts_context *ctx,
183 int mode,
184 size_t length,
185 const unsigned char data_unit[16],
186 const unsigned char *input,
187 unsigned char *output )
188 {
189 int ret;
190 size_t blocks = length / 16;
191 size_t leftover = length % 16;
192 unsigned char tweak[16];
193 unsigned char prev_tweak[16];
194 unsigned char tmp[16];
195
196 /* Sectors must be at least 16 bytes. */
197 if ( length < 16 ) {
198 return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
199 }
200
201 /* NIST SP 80-38E disallows data units larger than 2**20 blocks. */
202 if ( length > ( 1 << 20 ) * 16 ) {
203 return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
204 }
205
206 /* Compute the tweak. */
207 ret = esp_aes_crypt_ecb( &ctx->tweak, MBEDTLS_AES_ENCRYPT,
208 data_unit, tweak );
209 if ( ret != 0 ) {
210 return ( ret );
211 }
212
213 while ( blocks-- ) {
214 size_t i;
215
216 if ( leftover && ( mode == MBEDTLS_AES_DECRYPT ) && blocks == 0 ) {
217 /* We are on the last block in a decrypt operation that has
218 * leftover bytes, so we need to use the next tweak for this block,
219 * and this tweak for the lefover bytes. Save the current tweak for
220 * the leftovers and then update the current tweak for use on this,
221 * the last full block. */
222 memcpy( prev_tweak, tweak, sizeof( tweak ) );
223 esp_gf128mul_x_ble( tweak, tweak );
224 }
225
226 for ( i = 0; i < 16; i++ ) {
227 tmp[i] = input[i] ^ tweak[i];
228 }
229
230 ret = esp_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp );
231 if ( ret != 0 ) {
232 return ( ret );
233 }
234
235 for ( i = 0; i < 16; i++ ) {
236 output[i] = tmp[i] ^ tweak[i];
237 }
238
239 /* Update the tweak for the next block. */
240 esp_gf128mul_x_ble( tweak, tweak );
241
242 output += 16;
243 input += 16;
244 }
245
246 if ( leftover ) {
247 /* If we are on the leftover bytes in a decrypt operation, we need to
248 * use the previous tweak for these bytes (as saved in prev_tweak). */
249 unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;
250
251 /* We are now on the final part of the data unit, which doesn't divide
252 * evenly by 16. It's time for ciphertext stealing. */
253 size_t i;
254 unsigned char *prev_output = output - 16;
255
256 /* Copy ciphertext bytes from the previous block to our output for each
257 * byte of cyphertext we won't steal. At the same time, copy the
258 * remainder of the input for this final round (since the loop bounds
259 * are the same). */
260 for ( i = 0; i < leftover; i++ ) {
261 output[i] = prev_output[i];
262 tmp[i] = input[i] ^ t[i];
263 }
264
265 /* Copy ciphertext bytes from the previous block for input in this
266 * round. */
267 for ( ; i < 16; i++ ) {
268 tmp[i] = prev_output[i] ^ t[i];
269 }
270
271 ret = esp_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp );
272 if ( ret != 0 ) {
273 return ret;
274 }
275
276 /* Write the result back to the previous block, overriding the previous
277 * output we copied. */
278 for ( i = 0; i < 16; i++ ) {
279 prev_output[i] = tmp[i] ^ t[i];
280 }
281 }
282
283 return ( 0 );
284 }
285