1 /**
2 * \brief GCM block cipher, ESP DMA hardware accelerated version
3 * Based on mbedTLS FIPS-197 compliant version.
4 *
5 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
6 * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
7 * SPDX-License-Identifier: Apache-2.0
8 *
9 * Licensed under the Apache License, Version 2.0 (the "License"); you may
10 * not use this file except in compliance with the License.
11 * You may obtain a copy of the License at
12 *
13 * http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing, software
16 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
17 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 * See the License for the specific language governing permissions and
19 * limitations under the License.
20 *
21 */
22 /*
23 * The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
24 *
25 * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
26 * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
27 */
28
29 #include "soc/soc_caps.h"
30
31 #if SOC_AES_SUPPORT_GCM
32
33 #include "aes/esp_aes.h"
34 #include "aes/esp_aes_gcm.h"
35 #include "aes/esp_aes_internal.h"
36 #include "hal/aes_hal.h"
37
38 #include "esp_log.h"
39 #include "mbedtls/aes.h"
40 #include "esp_heap_caps.h"
41 #include "soc/soc_memory_layout.h"
42
43 #include <string.h>
44
45 #define ESP_PUT_BE64(a, val) \
46 do { \
47 *(uint64_t*)(a) = __builtin_bswap64( (uint64_t)(val) ); \
48 } while (0)
49
50 /* For simplicity limit the maxium amount of aad bytes to a single DMA descriptor
51 This should cover all normal, e.g. mbedtls, use cases */
52 #define ESP_AES_GCM_AAD_MAX_BYTES 4080
53
54 static const char *TAG = "esp-aes-gcm";
55
56 static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z);
57
58 /*
59 * Calculates the Initial Counter Block, J0
60 * and copies to to the esp_gcm_context
61 */
esp_gcm_derive_J0(esp_gcm_context * ctx)62 static void esp_gcm_derive_J0(esp_gcm_context *ctx)
63 {
64 uint8_t len_buf[16];
65
66 memset(ctx->J0, 0, AES_BLOCK_BYTES);
67 memset(len_buf, 0, AES_BLOCK_BYTES);
68
69 /* If IV is 96 bits J0 = ( IV || 0^31 || 1 ) */
70 if (ctx->iv_len == 12) {
71 memcpy(ctx->J0, ctx->iv, ctx->iv_len);
72 ctx->J0[AES_BLOCK_BYTES - 1] |= 1;
73 } else {
74 /* For IV != 96 bit, J0 = GHASH(IV || 0[s+64] || [len(IV)]64) */
75 /* First calculate GHASH on IV */
76 esp_gcm_ghash(ctx, ctx->iv, ctx->iv_len, ctx->J0);
77 /* Next create 128 bit block which is equal to
78 64 bit 0 + iv length truncated to 64 bits */
79 ESP_PUT_BE64(len_buf + 8, ctx->iv_len * 8);
80 /* Calculate GHASH on last block */
81 esp_gcm_ghash(ctx, len_buf, 16, ctx->J0);
82
83
84 }
85 }
86
87
88 /*
89 * Increment J0 as per GCM spec, by applying the Standard Incrementing
90 Function INC_32 to it.
91 * j is the counter which needs to be incremented which is
92 * copied to ctx->J0 after incrementing
93 */
increment32_j0(esp_gcm_context * ctx,uint8_t * j)94 static void increment32_j0(esp_gcm_context *ctx, uint8_t *j)
95 {
96 uint8_t j_len = AES_BLOCK_BYTES;
97 memcpy(j, ctx->J0, AES_BLOCK_BYTES);
98 if (j) {
99 for (uint32_t i = j_len; i > (j_len - 4); i--) {
100 if (++j[i - 1] != 0) {
101 break;
102 }
103 }
104 memcpy(ctx->J0, j, AES_BLOCK_BYTES);
105 }
106 }
107
108 /* Function to xor two data blocks */
xor_data(uint8_t * d,const uint8_t * s)109 static void xor_data(uint8_t *d, const uint8_t *s)
110 {
111 uint32_t *dst = (uint32_t *) d;
112 uint32_t *src = (uint32_t *) s;
113 *dst++ ^= *src++;
114 *dst++ ^= *src++;
115 *dst++ ^= *src++;
116 *dst++ ^= *src++;
117 }
118
119
120 /*
121 * 32-bit integer manipulation macros (big endian)
122 */
123 #ifndef GET_UINT32_BE
124 #define GET_UINT32_BE(n,b,i) \
125 { \
126 (n) = ( (uint32_t) (b)[(i) ] << 24 ) \
127 | ( (uint32_t) (b)[(i) + 1] << 16 ) \
128 | ( (uint32_t) (b)[(i) + 2] << 8 ) \
129 | ( (uint32_t) (b)[(i) + 3] ); \
130 }
131 #endif
132
133 #ifndef PUT_UINT32_BE
134 #define PUT_UINT32_BE(n,b,i) \
135 { \
136 (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
137 (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
138 (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
139 (b)[(i) + 3] = (unsigned char) ( (n) ); \
140 }
141 #endif
142
143 /* Based on MbedTLS's implemenation
144 *
145 * Precompute small multiples of H, that is set
146 * HH[i] || HL[i] = H times i,
147 * where i is seen as a field element as in [MGV], ie high-order bits
148 * correspond to low powers of P. The result is stored in the same way, that
149 * is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
150 * corresponds to P^127.
151 */
gcm_gen_table(esp_gcm_context * ctx)152 static int gcm_gen_table( esp_gcm_context *ctx )
153 {
154 int i, j;
155 uint64_t hi, lo;
156 uint64_t vl, vh;
157 unsigned char *h;
158
159 h = ctx->H;
160
161 /* pack h as two 64-bits ints, big-endian */
162 GET_UINT32_BE( hi, h, 0 );
163 GET_UINT32_BE( lo, h, 4 );
164 vh = (uint64_t) hi << 32 | lo;
165
166 GET_UINT32_BE( hi, h, 8 );
167 GET_UINT32_BE( lo, h, 12 );
168 vl = (uint64_t) hi << 32 | lo;
169
170 /* 8 = 1000 corresponds to 1 in GF(2^128) */
171 ctx->HL[8] = vl;
172 ctx->HH[8] = vh;
173
174 /* 0 corresponds to 0 in GF(2^128) */
175 ctx->HH[0] = 0;
176 ctx->HL[0] = 0;
177
178 for ( i = 4; i > 0; i >>= 1 ) {
179 uint32_t T = ( vl & 1 ) * 0xe1000000U;
180 vl = ( vh << 63 ) | ( vl >> 1 );
181 vh = ( vh >> 1 ) ^ ( (uint64_t) T << 32);
182
183 ctx->HL[i] = vl;
184 ctx->HH[i] = vh;
185 }
186
187 for ( i = 2; i <= 8; i *= 2 ) {
188 uint64_t *HiL = ctx->HL + i, *HiH = ctx->HH + i;
189 vh = *HiH;
190 vl = *HiL;
191 for ( j = 1; j < i; j++ ) {
192 HiH[j] = vh ^ ctx->HH[j];
193 HiL[j] = vl ^ ctx->HL[j];
194 }
195 }
196
197 return ( 0 );
198 }
199 /*
200 * Shoup's method for multiplication use this table with
201 * last4[x] = x times P^128
202 * where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
203 */
204 static const uint64_t last4[16] = {
205 0x0000, 0x1c20, 0x3840, 0x2460,
206 0x7080, 0x6ca0, 0x48c0, 0x54e0,
207 0xe100, 0xfd20, 0xd940, 0xc560,
208 0x9180, 0x8da0, 0xa9c0, 0xb5e0
209 };
210 /* Based on MbedTLS's implemenation
211 *
212 * Sets output to x times H using the precomputed tables.
213 * x and output are seen as elements of GF(2^128) as in [MGV].
214 */
gcm_mult(esp_gcm_context * ctx,const unsigned char x[16],unsigned char output[16])215 static void gcm_mult( esp_gcm_context *ctx, const unsigned char x[16],
216 unsigned char output[16] )
217 {
218 int i = 0;
219 unsigned char lo, hi, rem;
220 uint64_t zh, zl;
221
222 lo = x[15] & 0xf;
223
224 zh = ctx->HH[lo];
225 zl = ctx->HL[lo];
226
227 for ( i = 15; i >= 0; i-- ) {
228 lo = x[i] & 0xf;
229 hi = x[i] >> 4;
230
231 if ( i != 15 ) {
232 rem = (unsigned char) zl & 0xf;
233 zl = ( zh << 60 ) | ( zl >> 4 );
234 zh = ( zh >> 4 );
235 zh ^= (uint64_t) last4[rem] << 48;
236 zh ^= ctx->HH[lo];
237 zl ^= ctx->HL[lo];
238
239 }
240
241 rem = (unsigned char) zl & 0xf;
242 zl = ( zh << 60 ) | ( zl >> 4 );
243 zh = ( zh >> 4 );
244 zh ^= (uint64_t) last4[rem] << 48;
245 zh ^= ctx->HH[hi];
246 zl ^= ctx->HL[hi];
247 }
248
249 PUT_UINT32_BE( zh >> 32, output, 0 );
250 PUT_UINT32_BE( zh, output, 4 );
251 PUT_UINT32_BE( zl >> 32, output, 8 );
252 PUT_UINT32_BE( zl, output, 12 );
253 }
254
255
256
257 /* Update the key value in gcm context */
esp_aes_gcm_setkey(esp_gcm_context * ctx,mbedtls_cipher_id_t cipher,const unsigned char * key,unsigned int keybits)258 int esp_aes_gcm_setkey( esp_gcm_context *ctx,
259 mbedtls_cipher_id_t cipher,
260 const unsigned char *key,
261 unsigned int keybits )
262 {
263 if (keybits != 128 && keybits != 192 && keybits != 256) {
264 return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
265 }
266
267
268 ctx->aes_ctx.key_bytes = keybits / 8;
269
270 memcpy(ctx->aes_ctx.key, key, ctx->aes_ctx.key_bytes);
271
272 return ( 0 );
273 }
274
275
276 /* AES-GCM GHASH calculation z = GHASH(x) using h0 hash key
277 */
esp_gcm_ghash(esp_gcm_context * ctx,const unsigned char * x,size_t x_len,uint8_t * z)278 static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z)
279 {
280
281 uint8_t tmp[AES_BLOCK_BYTES];
282
283 memset(tmp, 0, AES_BLOCK_BYTES);
284 /* GHASH(X) is calculated on input string which is multiple of 128 bits
285 * If input string bit length is not multiple of 128 bits it needs to
286 * be padded by 0
287 *
288 * Steps:
289 * 1. Let X1, X2, ... , Xm-1, Xm denote the unique sequence of blocks such
290 * that X = X1 || X2 || ... || Xm-1 || Xm.
291 * 2. Let Y0 be the “zero block,” 0128.
292 * 3. Fori=1,...,m,letYi =(Yi-1 ^ Xi)•H.
293 * 4. Return Ym
294 */
295
296 /* If input bit string is >= 128 bits, process full 128 bit blocks */
297 while (x_len >= AES_BLOCK_BYTES) {
298
299 xor_data(z, x);
300 gcm_mult(ctx, z, z);
301
302 x += AES_BLOCK_BYTES;
303 x_len -= AES_BLOCK_BYTES;
304 }
305
306 /* If input bit string is not multiple of 128 create last 128 bit
307 * block by padding necessary 0s
308 */
309 if (x_len) {
310 memcpy(tmp, x, x_len);
311 xor_data(z, tmp);
312 gcm_mult(ctx, z, z);
313 }
314 }
315
316
317 /* Function to init AES GCM context to zero */
esp_aes_gcm_init(esp_gcm_context * ctx)318 void esp_aes_gcm_init( esp_gcm_context *ctx)
319 {
320 if (ctx == NULL) {
321 return;
322 }
323
324 bzero(ctx, sizeof(esp_gcm_context));
325
326 ctx->gcm_state = ESP_AES_GCM_STATE_INIT;
327 }
328
329 /* Function to clear AES-GCM context */
esp_aes_gcm_free(esp_gcm_context * ctx)330 void esp_aes_gcm_free( esp_gcm_context *ctx)
331 {
332 if (ctx == NULL) {
333 return;
334 }
335 bzero(ctx, sizeof(esp_gcm_context));
336 }
337
338 /* Setup AES-GCM */
esp_aes_gcm_starts(esp_gcm_context * ctx,int mode,const unsigned char * iv,size_t iv_len,const unsigned char * aad,size_t aad_len)339 int esp_aes_gcm_starts( esp_gcm_context *ctx,
340 int mode,
341 const unsigned char *iv,
342 size_t iv_len,
343 const unsigned char *aad,
344 size_t aad_len )
345 {
346 /* IV and AD are limited to 2^32 bits, so 2^29 bytes */
347 /* IV is not allowed to be zero length */
348 if ( iv_len == 0 ||
349 ( (uint32_t) iv_len ) >> 29 != 0 ||
350 ( (uint32_t) aad_len ) >> 29 != 0 ) {
351 return ( MBEDTLS_ERR_GCM_BAD_INPUT );
352 }
353
354 if (!ctx) {
355 ESP_LOGE(TAG, "No AES context supplied");
356 return -1;
357 }
358
359 if (!iv) {
360 ESP_LOGE(TAG, "No IV supplied");
361 return -1;
362 }
363
364 if ( (aad_len > 0) && !aad) {
365 ESP_LOGE(TAG, "No aad supplied");
366 return -1;
367 }
368
369 /* Initialize AES-GCM context */
370 memset(ctx->ghash, 0, sizeof(ctx->ghash));
371 ctx->data_len = 0;
372
373 ctx->iv = iv;
374 ctx->iv_len = iv_len;
375 ctx->aad = aad;
376 ctx->aad_len = aad_len;
377 ctx->mode = mode;
378
379 /* H and the lookup table are only generated once per ctx */
380 if (ctx->gcm_state == ESP_AES_GCM_STATE_INIT) {
381 /* Lock the AES engine to calculate ghash key H in hardware */
382 esp_aes_acquire_hardware();
383 ctx->aes_ctx.key_in_hardware = aes_hal_setkey(ctx->aes_ctx.key, ctx->aes_ctx.key_bytes, mode);
384 aes_hal_mode_init(ESP_AES_BLOCK_MODE_GCM);
385
386 aes_hal_gcm_calc_hash(ctx->H);
387
388 esp_aes_release_hardware();
389
390 gcm_gen_table(ctx);
391 }
392
393 ctx->gcm_state = ESP_AES_GCM_STATE_START;
394
395 /* Once H is obtained we need to derive J0 (Initial Counter Block) */
396 esp_gcm_derive_J0(ctx);
397
398 /* The initial counter block keeps updating during the esp_gcm_update call
399 * however to calculate final authentication tag T we need original J0
400 * so we make a copy here
401 */
402 memcpy(ctx->ori_j0, ctx->J0, 16);
403
404 esp_gcm_ghash(ctx, ctx->aad, ctx->aad_len, ctx->ghash);
405
406 return ( 0 );
407 }
408
409 /* Perform AES-GCM operation */
esp_aes_gcm_update(esp_gcm_context * ctx,size_t length,const unsigned char * input,unsigned char * output)410 int esp_aes_gcm_update( esp_gcm_context *ctx,
411 size_t length,
412 const unsigned char *input,
413 unsigned char *output )
414 {
415 size_t nc_off = 0;
416 uint8_t nonce_counter[AES_BLOCK_BYTES] = {0};
417 uint8_t stream[AES_BLOCK_BYTES] = {0};
418
419 if (!ctx) {
420 ESP_LOGE(TAG, "No GCM context supplied");
421 return -1;
422 }
423 if (!input) {
424 ESP_LOGE(TAG, "No input supplied");
425 return -1;
426 }
427 if (!output) {
428 ESP_LOGE(TAG, "No output supplied");
429 return -1;
430 }
431
432 if ( output > input && (size_t) ( output - input ) < length ) {
433 return ( MBEDTLS_ERR_GCM_BAD_INPUT );
434 }
435 /* If this is the first time esp_gcm_update is getting called
436 * calculate GHASH on aad and preincrement the ICB
437 */
438 if (ctx->gcm_state == ESP_AES_GCM_STATE_START) {
439 /* Jo needs to be incremented first time, later the CTR
440 * operation will auto update it
441 */
442 increment32_j0(ctx, nonce_counter);
443 ctx->gcm_state = ESP_AES_GCM_STATE_UPDATE;
444 } else if (ctx->gcm_state == ESP_AES_GCM_STATE_UPDATE) {
445 memcpy(nonce_counter, ctx->J0, AES_BLOCK_BYTES);
446 }
447
448 /* Perform intermediate GHASH on "encrypted" data during decryption */
449 if (ctx->mode == ESP_AES_DECRYPT) {
450 esp_gcm_ghash(ctx, input, length, ctx->ghash);
451 }
452
453 /* Output = GCTR(J0, Input): Encrypt/Decrypt the input */
454 esp_aes_crypt_ctr(&ctx->aes_ctx, length, &nc_off, nonce_counter, stream, input, output);
455
456 /* ICB gets auto incremented after GCTR operation here so update the context */
457 memcpy(ctx->J0, nonce_counter, AES_BLOCK_BYTES);
458
459 /* Keep updating the length counter for final tag calculation */
460 ctx->data_len += length;
461
462 /* Perform intermediate GHASH on "encrypted" data during encryption*/
463 if (ctx->mode == ESP_AES_ENCRYPT) {
464 esp_gcm_ghash(ctx, output, length, ctx->ghash);
465 }
466
467 return 0;
468 }
469
470 /* Function to read the tag value */
esp_aes_gcm_finish(esp_gcm_context * ctx,unsigned char * tag,size_t tag_len)471 int esp_aes_gcm_finish( esp_gcm_context *ctx,
472 unsigned char *tag,
473 size_t tag_len )
474 {
475 size_t nc_off = 0;
476 uint8_t len_block[AES_BLOCK_BYTES] = {0};
477
478 if ( tag_len > 16 || tag_len < 4 ) {
479 return ( MBEDTLS_ERR_GCM_BAD_INPUT );
480 }
481
482 /* Calculate final GHASH on aad_len, data length */
483 ESP_PUT_BE64(len_block, ctx->aad_len * 8);
484 ESP_PUT_BE64(len_block + 8, ctx->data_len * 8);
485 esp_gcm_ghash(ctx, len_block, AES_BLOCK_BYTES, ctx->ghash);
486
487 /* Tag T = GCTR(J0, ) where T is truncated to tag_len */
488 esp_aes_crypt_ctr(&ctx->aes_ctx, tag_len, &nc_off, ctx->ori_j0, 0, ctx->ghash, tag);
489
490 return 0;
491 }
492
493 /* Due to restrictions in the hardware (e.g. need to do the whole conversion in one go),
494 some combinations of inputs are not supported */
esp_aes_gcm_input_support_hw_accel(size_t length,const unsigned char * aad,size_t aad_len,const unsigned char * input,unsigned char * output)495 static bool esp_aes_gcm_input_support_hw_accel(size_t length, const unsigned char *aad, size_t aad_len,
496 const unsigned char *input, unsigned char *output)
497 {
498 bool support_hw_accel = true;
499
500 if (aad_len > ESP_AES_GCM_AAD_MAX_BYTES) {
501 support_hw_accel = false;
502 } else if (!esp_ptr_dma_capable(aad) && aad_len > 0) {
503 /* aad in non internal DMA memory */
504 support_hw_accel = false;
505 } else if (!esp_ptr_dma_capable(input) && length > 0) {
506 /* input in non internal DMA memory */
507 support_hw_accel = false;
508 } else if (!esp_ptr_dma_capable(output) && length > 0) {
509 /* output in non internal DMA memory */
510 support_hw_accel = false;
511 } else if (length == 0) {
512 support_hw_accel = false;
513 }
514
515 return support_hw_accel;
516 }
517
esp_aes_gcm_crypt_and_tag_partial_hw(esp_gcm_context * ctx,int mode,size_t length,const unsigned char * iv,size_t iv_len,const unsigned char * aad,size_t aad_len,const unsigned char * input,unsigned char * output,size_t tag_len,unsigned char * tag)518 static int esp_aes_gcm_crypt_and_tag_partial_hw( esp_gcm_context *ctx,
519 int mode,
520 size_t length,
521 const unsigned char *iv,
522 size_t iv_len,
523 const unsigned char *aad,
524 size_t aad_len,
525 const unsigned char *input,
526 unsigned char *output,
527 size_t tag_len,
528 unsigned char *tag )
529 {
530 int ret = 0;
531
532 if ( ( ret = esp_aes_gcm_starts( ctx, mode, iv, iv_len, aad, aad_len ) ) != 0 ) {
533 return ( ret );
534 }
535
536 if ( ( ret = esp_aes_gcm_update( ctx, length, input, output ) ) != 0 ) {
537 return ( ret );
538 }
539
540 if ( ( ret = esp_aes_gcm_finish( ctx, tag, tag_len ) ) != 0 ) {
541 return ( ret );
542 }
543
544 return ret;
545 }
546
esp_aes_gcm_crypt_and_tag(esp_gcm_context * ctx,int mode,size_t length,const unsigned char * iv,size_t iv_len,const unsigned char * aad,size_t aad_len,const unsigned char * input,unsigned char * output,size_t tag_len,unsigned char * tag)547 int esp_aes_gcm_crypt_and_tag( esp_gcm_context *ctx,
548 int mode,
549 size_t length,
550 const unsigned char *iv,
551 size_t iv_len,
552 const unsigned char *aad,
553 size_t aad_len,
554 const unsigned char *input,
555 unsigned char *output,
556 size_t tag_len,
557 unsigned char *tag )
558 {
559 int ret;
560 lldesc_t aad_desc[2] = {};
561 lldesc_t *aad_head_desc = NULL;
562 size_t remainder_bit;
563 uint8_t stream_in[AES_BLOCK_BYTES] = {};
564 unsigned stream_bytes = aad_len % AES_BLOCK_BYTES; // bytes which aren't in a full block
565 unsigned block_bytes = aad_len - stream_bytes; // bytes which are in a full block
566
567 /* Due to hardware limition only certain cases are fully supported in HW */
568 if (!esp_aes_gcm_input_support_hw_accel(length, aad, aad_len, input, output)) {
569 return esp_aes_gcm_crypt_and_tag_partial_hw(ctx, mode, length, iv, iv_len, aad, aad_len, input, output, tag_len, tag);
570 }
571
572 /* Limit aad len to a single DMA descriptor to simplify DMA handling
573 In practice, e.g. with mbedtls the length of aad will always be short
574 */
575 if (aad_len > LLDESC_MAX_NUM_PER_DESC) {
576 return -1;
577 }
578 /* IV and AD are limited to 2^32 bits, so 2^29 bytes */
579 /* IV is not allowed to be zero length */
580 if ( iv_len == 0 ||
581 ( (uint32_t) iv_len ) >> 29 != 0 ||
582 ( (uint32_t) aad_len ) >> 29 != 0 ) {
583 return ( MBEDTLS_ERR_GCM_BAD_INPUT );
584 }
585
586 if (!ctx) {
587 ESP_LOGE(TAG, "No AES context supplied");
588 return -1;
589 }
590
591 if (!iv) {
592 ESP_LOGE(TAG, "No IV supplied");
593 return -1;
594 }
595
596 if ( (aad_len > 0) && !aad) {
597 ESP_LOGE(TAG, "No aad supplied");
598 return -1;
599 }
600
601 /* Initialize AES-GCM context */
602 memset(ctx->ghash, 0, sizeof(ctx->ghash));
603 ctx->data_len = 0;
604
605 ctx->iv = iv;
606 ctx->iv_len = iv_len;
607 ctx->aad = aad;
608 ctx->aad_len = aad_len;
609 ctx->mode = mode;
610
611 esp_aes_acquire_hardware();
612 ctx->aes_ctx.key_in_hardware = 0;
613 ctx->aes_ctx.key_in_hardware = aes_hal_setkey(ctx->aes_ctx.key, ctx->aes_ctx.key_bytes, mode);
614
615 if (block_bytes > 0) {
616 aad_desc[0].length = block_bytes;
617 aad_desc[0].size = block_bytes;
618 aad_desc[0].owner = 1;
619 aad_desc[0].buf = aad;
620 }
621
622 if (stream_bytes > 0) {
623 memcpy(stream_in, aad + block_bytes, stream_bytes);
624
625 aad_desc[0].empty = (uint32_t)&aad_desc[1];
626 aad_desc[1].length = AES_BLOCK_BYTES;
627 aad_desc[1].size = AES_BLOCK_BYTES;
628 aad_desc[1].owner = 1;
629 aad_desc[1].buf = stream_in;
630 }
631
632 if (block_bytes > 0) {
633 aad_head_desc = &aad_desc[0];
634 } else if (stream_bytes > 0) {
635 aad_head_desc = &aad_desc[1];
636 }
637
638 aes_hal_mode_init(ESP_AES_BLOCK_MODE_GCM);
639
640 /* See TRM GCM chapter for description of this calculation */
641 remainder_bit = (8 * length) % 128;
642 aes_hal_gcm_init( (aad_len + AES_BLOCK_BYTES - 1) / AES_BLOCK_BYTES, remainder_bit);
643 aes_hal_gcm_calc_hash(ctx->H);
644
645 gcm_gen_table(ctx);
646 esp_gcm_derive_J0(ctx);
647
648 aes_hal_gcm_set_j0(ctx->J0);
649
650 ret = esp_aes_process_dma_gcm(&ctx->aes_ctx, input, output, length, aad_head_desc, aad_len);
651
652 aes_hal_gcm_read_tag(tag, tag_len);
653
654 esp_aes_release_hardware();
655
656 return ( ret );
657 }
658
659
esp_aes_gcm_auth_decrypt(esp_gcm_context * ctx,size_t length,const unsigned char * iv,size_t iv_len,const unsigned char * aad,size_t aad_len,const unsigned char * tag,size_t tag_len,const unsigned char * input,unsigned char * output)660 int esp_aes_gcm_auth_decrypt( esp_gcm_context *ctx,
661 size_t length,
662 const unsigned char *iv,
663 size_t iv_len,
664 const unsigned char *aad,
665 size_t aad_len,
666 const unsigned char *tag,
667 size_t tag_len,
668 const unsigned char *input,
669 unsigned char *output )
670 {
671 int ret;
672 unsigned char check_tag[16];
673 size_t i;
674 int diff;
675
676 if ( ( ret = esp_aes_gcm_crypt_and_tag( ctx, ESP_AES_DECRYPT, length,
677 iv, iv_len, aad, aad_len,
678 input, output, tag_len, check_tag ) ) != 0 ) {
679 return ( ret );
680 }
681
682 /* Check tag in "constant-time" */
683 for ( diff = 0, i = 0; i < tag_len; i++ ) {
684 diff |= tag[i] ^ check_tag[i];
685 }
686
687 if ( diff != 0 ) {
688 bzero( output, length );
689 return ( MBEDTLS_ERR_GCM_AUTH_FAILED );
690 }
691
692 return ( 0 );
693 }
694
695 #endif //SOC_AES_SUPPORT_GCM
696