1 /**
2 ******************************************************************************
3 * @file stm32l0xx_hal_rcc.c
4 * @author MCD Application Team
5 * @brief RCC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Reset and Clock Control (RCC) peripheral:
8 * + Initialization and de-initialization functions
9 * + Peripheral Control functions
10 *
11 @verbatim
12 ==============================================================================
13 ##### RCC specific features #####
14 ==============================================================================
15 [..]
16 After reset the device is running from multispeed internal oscillator clock
17 (MSI 2.097MHz) with Flash 0 wait state and Flash prefetch buffer is disabled,
18 and all peripherals are off except internal SRAM, Flash and JTAG.
19 (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
20 all peripherals mapped on these buses are running at MSI speed.
21 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
22 (+) All GPIOs are in input floating state, except the JTAG pins which
23 are assigned to be used for debug purpose.
24 [..] Once the device started from reset, the user application has to:
25 (+) Configure the clock source to be used to drive the System clock
26 (if the application needs higher frequency/performance)
27 (+) Configure the System clock frequency and Flash settings
28 (+) Configure the AHB and APB buses prescalers
29 (+) Enable the clock for the peripheral(s) to be used
30 (+) Configure the clock source(s) for peripherals whose clocks are not
31 derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
32 (*) SDIO only for STM32L0xxxD devices
33
34 ##### RCC Limitations #####
35 ==============================================================================
36 [..]
37 A delay between an RCC peripheral clock enable and the effective peripheral
38 enabling should be taken into account in order to manage the peripheral read/write
39 from/to registers.
40 (+) This delay depends on the peripheral mapping.
41 (++) AHB & APB peripherals, 1 dummy read is necessary
42
43 [..]
44 Workarounds:
45 (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
46 inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
47
48 @endverbatim
49 ******************************************************************************
50 * @attention
51 *
52 * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
53 *
54 * Redistribution and use in source and binary forms, with or without modification,
55 * are permitted provided that the following conditions are met:
56 * 1. Redistributions of source code must retain the above copyright notice,
57 * this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright notice,
59 * this list of conditions and the following disclaimer in the documentation
60 * and/or other materials provided with the distribution.
61 * 3. Neither the name of STMicroelectronics nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
68 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
71 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
72 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
73 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
74 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
75 *
76 ******************************************************************************
77 */
78
79 /* Includes ------------------------------------------------------------------*/
80 #include "stm32l0xx_hal.h"
81
82 /** @addtogroup STM32L0xx_HAL_Driver
83 * @{
84 */
85
86 /** @defgroup RCC RCC
87 * @brief RCC HAL module driver
88 * @{
89 */
90
91 #ifdef HAL_RCC_MODULE_ENABLED
92
93 /* Private typedef -----------------------------------------------------------*/
94 /* Private define ------------------------------------------------------------*/
95 /** @defgroup RCC_Private_Constants RCC Private Constants
96 * @{
97 */
98 /* Bits position in in the CFGR register */
99 #define RCC_CFGR_PLLMUL_BITNUMBER RCC_CFGR_PLLMUL_Pos
100 #define RCC_CFGR_PLLDIV_BITNUMBER RCC_CFGR_PLLDIV_Pos
101 #define RCC_CFGR_HPRE_BITNUMBER RCC_CFGR_HPRE_Pos
102 #define RCC_CFGR_PPRE1_BITNUMBER RCC_CFGR_PPRE1_Pos
103 #define RCC_CFGR_PPRE2_BITNUMBER RCC_CFGR_PPRE2_Pos
104 /* Bits position in in the ICSCR register */
105 #define RCC_ICSCR_MSIRANGE_BITNUMBER RCC_ICSCR_MSIRANGE_Pos
106 #define RCC_ICSCR_MSITRIM_BITNUMBER RCC_ICSCR_MSITRIM_Pos
107 /**
108 * @}
109 */
110 /* Private macro -------------------------------------------------------------*/
111 /** @defgroup RCC_Private_Macros RCC Private Macros
112 * @{
113 */
114
115 #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
116 #define MCO1_GPIO_PORT GPIOA
117 #define MCO1_PIN GPIO_PIN_8
118
119 #define MCO2_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
120 #define MCO2_GPIO_PORT GPIOA
121 #define MCO2_PIN GPIO_PIN_9
122
123 #if defined(STM32L031xx) || defined(STM32L041xx) || defined(STM32L073xx) || defined(STM32L083xx) \
124 || defined(STM32L072xx) || defined(STM32L082xx) || defined(STM32L071xx) || defined(STM32L081xx)
125 #define MCO3_CLK_ENABLE() __HAL_RCC_GPIOB_CLK_ENABLE()
126 #define MCO3_GPIO_PORT GPIOB
127 #define MCO3_PIN GPIO_PIN_13
128 #endif
129
130 /**
131 * @}
132 */
133
134 /* Private variables ---------------------------------------------------------*/
135 /** @defgroup RCC_Private_Variables RCC Private Variables
136 * @{
137 */
138 extern const uint8_t PLLMulTable[]; /* Defined in CMSIS (system_stm32l0xx.c)*/
139 /**
140 * @}
141 */
142
143 /* Private function prototypes -----------------------------------------------*/
144 /** @defgroup RCC_Private_Functions RCC Private Functions
145 * @{
146 */
147 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange);
148 /**
149 * @}
150 */
151
152 /* Exported functions ---------------------------------------------------------*/
153
154 /** @defgroup RCC_Exported_Functions RCC Exported Functions
155 * @{
156 */
157
158 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
159 * @brief Initialization and Configuration functions
160 *
161 @verbatim
162 ===============================================================================
163 ##### Initialization and de-initialization functions #####
164 ===============================================================================
165 [..]
166 This section provides functions allowing to configure the internal/external oscillators
167 (MSI, HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
168 and APB2).
169
170 [..] Internal/external clock and PLL configuration
171 (#) MSI (Multispeed internal), Seven frequency ranges are available: 65.536 kHz,
172 131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz, 2.097 MHz (default value) and 4.194 MHz.
173
174 (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
175 the PLL as System clock source.
176 (#) LSI (low-speed internal), ~37 KHz low consumption RC used as IWDG and/or RTC
177 clock source.
178
179 (#) HSE (high-speed external), 1 to 24 MHz crystal oscillator used directly or
180 through the PLL as System clock source. Can be used also as RTC clock source.
181
182 (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
183
184 (#) PLL (clocked by HSI or HSE), featuring different output clocks:
185 (++) The first output is used to generate the high speed system clock (up to 32 MHz)
186 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
187
188 (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
189 and if a HSE clock failure occurs(HSE used directly or through PLL as System
190 clock source), the System clocks automatically switched to MSI and an interrupt
191 is generated if enabled. The interrupt is linked to the Cortex-M0+ NMI
192 (Non-Maskable Interrupt) exception vector.
193
194 (#) MCO1/MCO2/MCO3 (microcontroller clock output), used to output SYSCLK, HSI, LSI, MSI, LSE,
195 HSE, HSI48 or PLL clock (through a configurable prescaler) on PA8/PA9/PB13 pins.
196
197 [..] System, AHB and APB buses clocks configuration
198 (#) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
199 HSE and PLL.
200 The AHB clock (HCLK) is derived from System clock through configurable
201 prescaler and used to clock the CPU, memory and peripherals mapped
202 on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
203 from AHB clock through configurable prescalers and used to clock
204 the peripherals mapped on these buses. You can use
205 "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
206
207 -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
208 (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
209 divided by 2 to 16. You have to use @ref __HAL_RCC_RTC_CONFIG() and @ref __HAL_RCC_RTC_ENABLE()
210 macros to configure this clock.
211 (+@) LCD: LCD clock can be derived either from the LSI, LSE or HSE clock
212 divided by 2 to 16. You have to use @ref __HAL_RCC_LCD_CONFIG()
213 macros to configure this clock.
214 (+@) USB FS and RNG: USB FS require a frequency equal to 48 MHz to work correctly.
215 This clock is derived of the main PLL through PLL Multiplier or HSI48 RC oscillator.
216
217 (+@) IWDG clock which is always the LSI clock.
218
219 (#) The maximum frequency of the SYSCLK and HCLK is 32 MHz, PCLK2 32 MHz
220 and PCLK1 32 MHz. Depending on the device voltage range, the maximum
221 frequency should be adapted accordingly.
222 @endverbatim
223 * @{
224 */
225
226 /*
227 Additional consideration on the HCLK based on Latency settings:
228 +----------------------------------------------------------------------+
229 | Latency | HCLK clock frequency (MHz) |
230 | |------------------------------------------------------|
231 | | voltage range 1 | voltage range 2 | voltage range 3 |
232 | | 1.8 V | 1.5 V | 1.2 V |
233 |---------------|------------------|-----------------|-----------------|
234 |0WS(1CPU cycle)| 0 < HCLK <= 16 | 0 < HCLK <= 8 | 0 < HCLK <= 2 |
235 |---------------|------------------|-----------------|-----------------|
236 |1WS(2CPU cycle)| 16 < HCLK <= 32 | 8 < HCLK <= 16 | 2 < HCLK <= 4 |
237 +----------------------------------------------------------------------+
238
239 The following table gives the different clock source frequencies depending on the product
240 voltage range:
241 +------------------------------------------------------------------------------------------+
242 | Product voltage | Clock frequency |
243 | |------------------|-----------------------------|-----------------------|
244 | range | MSI | HSI | HSE | PLL |
245 |-----------------|---------|--------|-----------------------------|-----------------------|
246 | Range 1 (1.8 V) | 4.2 MHz | 16 MHz | HSE 32 MHz (external clock) | 32 MHz |
247 | | | | or 24 MHz (crystal) | (PLLVCO max = 96 MHz) |
248 |-----------------|---------|--------|-----------------------------|-----------------------|
249 | Range 2 (1.5 V) | 4.2 MHz | 16 MHz | 16 MHz | 16 MHz |
250 | | | | | (PLLVCO max = 48 MHz) |
251 |-----------------|---------|--------|-----------------------------|-----------------------|
252 | Range 3 (1.2 V) | 4.2 MHz | NA | 8 MHz | 4 MHz |
253 | | | | | (PLLVCO max = 24 MHz) |
254 +------------------------------------------------------------------------------------------+
255 */
256
257 /**
258 * @brief Resets the RCC clock configuration to the default reset state.
259 * @note The default reset state of the clock configuration is given below:
260 * - MSI ON and used as system clock source
261 * - HSI, HSE and PLL OFF
262 * - AHB, APB1 and APB2 prescaler set to 1.
263 * - CSS and MCO1/MCO2/MCO3 OFF
264 * - All interrupts disabled
265 * @note This function does not modify the configuration of the
266 * - Peripheral clocks
267 * - LSI, LSE and RTC clocks
268 * - HSI48 clock
269 * @retval None
270 */
HAL_RCC_DeInit(void)271 void HAL_RCC_DeInit(void)
272 {
273 __IO uint32_t tmpreg;
274
275 /* Set MSION bit */
276 SET_BIT(RCC->CR, RCC_CR_MSION);
277
278 /* Switch SYSCLK to MSI*/
279 CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW);
280
281 /* Reset HSE, HSI, CSS, PLL */
282 #if defined(RCC_CR_CSSHSEON) && defined(RCC_CR_HSIOUTEN)
283 CLEAR_BIT(RCC->CR, RCC_CR_HSION| RCC_CR_HSIKERON| RCC_CR_HSIDIVEN | RCC_CR_HSIOUTEN | \
284 RCC_CR_HSEON | RCC_CR_CSSHSEON | RCC_CR_PLLON);
285 #elif !defined(RCC_CR_CSSHSEON) && defined(RCC_CR_HSIOUTEN)
286 CLEAR_BIT(RCC->CR, RCC_CR_HSION| RCC_CR_HSIKERON| RCC_CR_HSIDIVEN | RCC_CR_HSIOUTEN | \
287 RCC_CR_HSEON | RCC_CR_PLLON);
288 #elif defined(RCC_CR_CSSHSEON) && !defined(RCC_CR_HSIOUTEN)
289 CLEAR_BIT(RCC->CR, RCC_CR_HSION| RCC_CR_HSIKERON| RCC_CR_HSIDIVEN | \
290 RCC_CR_HSEON | RCC_CR_CSSHSEON | RCC_CR_PLLON);
291 #endif
292
293 /* Delay after an RCC peripheral clock */ \
294 tmpreg = READ_BIT(RCC->CR, RCC_CR_HSEON); \
295 UNUSED(tmpreg);
296
297 /* Reset HSEBYP bit */
298 CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
299
300 /* Reset CFGR register */
301 CLEAR_REG(RCC->CFGR);
302
303 /* Set MSIClockRange & MSITRIM[4:0] bits to the reset value */
304 MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_MSIRANGE | RCC_ICSCR_MSITRIM), (((uint32_t)0 << RCC_ICSCR_MSITRIM_BITNUMBER) | RCC_ICSCR_MSIRANGE_5));
305
306 /* Set HSITRIM bits to the reset value */
307 MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, ((uint32_t)0x10 << 8));
308
309 /* Disable all interrupts */
310 CLEAR_REG(RCC->CIER);
311
312 /* Update the SystemCoreClock global variable */
313 SystemCoreClock = MSI_VALUE;
314 }
315
316 /**
317 * @brief Initializes the RCC Oscillators according to the specified parameters in the
318 * RCC_OscInitTypeDef.
319 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
320 * contains the configuration information for the RCC Oscillators.
321 * @note The PLL is not disabled when used as system clock.
322 * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
323 * supported by this macro. User should request a transition to LSE Off
324 * first and then LSE On or LSE Bypass.
325 * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
326 * supported by this macro. User should request a transition to HSE Off
327 * first and then HSE On or HSE Bypass.
328 * @retval HAL status
329 */
HAL_RCC_OscConfig(RCC_OscInitTypeDef * RCC_OscInitStruct)330 HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
331 {
332 uint32_t tickstart = 0U;
333
334 /* Check the parameters */
335 assert_param(RCC_OscInitStruct != NULL);
336 assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
337
338 /*------------------------------- HSE Configuration ------------------------*/
339 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
340 {
341 /* Check the parameters */
342 assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
343
344 /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
345 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
346 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
347 {
348 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
349 {
350 return HAL_ERROR;
351 }
352 }
353 else
354 {
355 /* Set the new HSE configuration ---------------------------------------*/
356 __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
357
358
359 /* Check the HSE State */
360 if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
361 {
362 /* Get Start Tick */
363 tickstart = HAL_GetTick();
364
365 /* Wait till HSE is ready */
366 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
367 {
368 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
369 {
370 return HAL_TIMEOUT;
371 }
372 }
373 }
374 else
375 {
376 /* Get Start Tick */
377 tickstart = HAL_GetTick();
378
379 /* Wait till HSE is disabled */
380 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
381 {
382 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
383 {
384 return HAL_TIMEOUT;
385 }
386 }
387 }
388 }
389 }
390 /*----------------------------- HSI Configuration --------------------------*/
391 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
392 {
393 /* Check the parameters */
394 assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
395 assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
396
397 /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
398 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
399 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
400 {
401 /* When HSI is used as system clock it will not disabled */
402 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
403 {
404 return HAL_ERROR;
405 }
406 /* Otherwise, just the calibration is allowed */
407 else
408 {
409 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
410 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
411 }
412 }
413 else
414 {
415 /* Check the HSI State */
416 if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
417 {
418 /* Enable the Internal High Speed oscillator (HSI or HSIdiv4) */
419 __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
420
421 /* Get Start Tick */
422 tickstart = HAL_GetTick();
423
424 /* Wait till HSI is ready */
425 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
426 {
427 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
428 {
429 return HAL_TIMEOUT;
430 }
431 }
432
433 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
434 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
435 }
436 else
437 {
438 /* Disable the Internal High Speed oscillator (HSI). */
439 __HAL_RCC_HSI_DISABLE();
440
441 /* Get Start Tick */
442 tickstart = HAL_GetTick();
443
444 /* Wait till HSI is disabled */
445 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
446 {
447 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
448 {
449 return HAL_TIMEOUT;
450 }
451 }
452 }
453 }
454 }
455 /*----------------------------- MSI Configuration --------------------------*/
456 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
457 {
458 /* When the MSI is used as system clock it will not be disabled */
459 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) )
460 {
461 if((__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
462 {
463 return HAL_ERROR;
464 }
465 /* Otherwise, just the calibration and MSI range change are allowed */
466 else
467 {
468 /* Check MSICalibrationValue and MSIClockRange input parameters */
469 assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
470 assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
471
472 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
473 must be correctly programmed according to the frequency of the CPU clock
474 (HCLK) and the supply voltage of the device. */
475 if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
476 {
477 /* First increase number of wait states update if necessary */
478 if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
479 {
480 return HAL_ERROR;
481 }
482
483 /* Selects the Multiple Speed oscillator (MSI) clock range .*/
484 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
485 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
486 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
487 }
488 else
489 {
490 /* Else, keep current flash latency while decreasing applies */
491 /* Selects the Multiple Speed oscillator (MSI) clock range .*/
492 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
493 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
494 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
495
496 /* Decrease number of wait states update if necessary */
497 if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
498 {
499 return HAL_ERROR;
500 }
501 }
502
503 /* Update the SystemCoreClock global variable */
504 SystemCoreClock = (32768U * (1U << ((RCC_OscInitStruct->MSIClockRange >> RCC_ICSCR_MSIRANGE_BITNUMBER) + 1U)))
505 >> AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_BITNUMBER)];
506
507 /* Configure the source of time base considering new system clocks settings*/
508 HAL_InitTick (TICK_INT_PRIORITY);
509 }
510 }
511 else
512 {
513 /* Check MSI State */
514 assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
515
516 /* Check the MSI State */
517 if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
518 {
519 /* Enable the Multi Speed oscillator (MSI). */
520 __HAL_RCC_MSI_ENABLE();
521
522 /* Get Start Tick */
523 tickstart = HAL_GetTick();
524
525 /* Wait till MSI is ready */
526 while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == RESET)
527 {
528 if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
529 {
530 return HAL_TIMEOUT;
531 }
532 }
533 /* Check MSICalibrationValue and MSIClockRange input parameters */
534 assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
535 assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
536
537 /* Selects the Multiple Speed oscillator (MSI) clock range .*/
538 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
539 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
540 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
541
542 }
543 else
544 {
545 /* Disable the Multi Speed oscillator (MSI). */
546 __HAL_RCC_MSI_DISABLE();
547
548 /* Get Start Tick */
549 tickstart = HAL_GetTick();
550
551 /* Wait till MSI is ready */
552 while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET)
553 {
554 if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
555 {
556 return HAL_TIMEOUT;
557 }
558 }
559 }
560 }
561 }
562 /*------------------------------ LSI Configuration -------------------------*/
563 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
564 {
565 /* Check the parameters */
566 assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
567
568 /* Check the LSI State */
569 if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
570 {
571 /* Enable the Internal Low Speed oscillator (LSI). */
572 __HAL_RCC_LSI_ENABLE();
573
574 /* Get Start Tick */
575 tickstart = HAL_GetTick();
576
577 /* Wait till LSI is ready */
578 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
579 {
580 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
581 {
582 return HAL_TIMEOUT;
583 }
584 }
585 }
586 else
587 {
588 /* Disable the Internal Low Speed oscillator (LSI). */
589 __HAL_RCC_LSI_DISABLE();
590
591 /* Get Start Tick */
592 tickstart = HAL_GetTick();
593
594 /* Wait till LSI is disabled */
595 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
596 {
597 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
598 {
599 return HAL_TIMEOUT;
600 }
601 }
602 }
603 }
604 /*------------------------------ LSE Configuration -------------------------*/
605 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
606 {
607 FlagStatus pwrclkchanged = RESET;
608
609 /* Check the parameters */
610 assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
611
612 /* Update LSE configuration in Backup Domain control register */
613 /* Requires to enable write access to Backup Domain of necessary */
614 if(__HAL_RCC_PWR_IS_CLK_DISABLED())
615 {
616 __HAL_RCC_PWR_CLK_ENABLE();
617 pwrclkchanged = SET;
618 }
619
620 if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
621 {
622 /* Enable write access to Backup domain */
623 SET_BIT(PWR->CR, PWR_CR_DBP);
624
625 /* Wait for Backup domain Write protection disable */
626 tickstart = HAL_GetTick();
627
628 while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
629 {
630 if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
631 {
632 return HAL_TIMEOUT;
633 }
634 }
635 }
636
637 /* Set the new LSE configuration -----------------------------------------*/
638 __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
639 /* Check the LSE State */
640 if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
641 {
642 /* Get Start Tick */
643 tickstart = HAL_GetTick();
644
645 /* Wait till LSE is ready */
646 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
647 {
648 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
649 {
650 return HAL_TIMEOUT;
651 }
652 }
653 }
654 else
655 {
656 /* Get Start Tick */
657 tickstart = HAL_GetTick();
658
659 /* Wait till LSE is disabled */
660 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
661 {
662 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
663 {
664 return HAL_TIMEOUT;
665 }
666 }
667 }
668
669 /* Require to disable power clock if necessary */
670 if(pwrclkchanged == SET)
671 {
672 __HAL_RCC_PWR_CLK_DISABLE();
673 }
674 }
675
676 #if defined(RCC_HSI48_SUPPORT)
677 /*----------------------------- HSI48 Configuration --------------------------*/
678 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
679 {
680 /* Check the parameters */
681 assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
682
683 /* Check the HSI48 State */
684 if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
685 {
686 /* Enable the Internal High Speed oscillator (HSI48). */
687 __HAL_RCC_HSI48_ENABLE();
688
689 /* Get Start Tick */
690 tickstart = HAL_GetTick();
691
692 /* Wait till HSI48 is ready */
693 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
694 {
695 if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
696 {
697 return HAL_TIMEOUT;
698 }
699 }
700 }
701 else
702 {
703 /* Disable the Internal High Speed oscillator (HSI48). */
704 __HAL_RCC_HSI48_DISABLE();
705
706 /* Get Start Tick */
707 tickstart = HAL_GetTick();
708
709 /* Wait till HSI48 is ready */
710 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
711 {
712 if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
713 {
714 return HAL_TIMEOUT;
715 }
716 }
717 }
718 }
719 #endif /* RCC_HSI48_SUPPORT */
720
721 /*-------------------------------- PLL Configuration -----------------------*/
722 /* Check the parameters */
723 assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
724 if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
725 {
726 /* Check if the PLL is used as system clock or not */
727 if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
728 {
729 if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
730 {
731 /* Check the parameters */
732 assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
733 assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
734 assert_param(IS_RCC_PLL_DIV(RCC_OscInitStruct->PLL.PLLDIV));
735
736 /* Disable the main PLL. */
737 __HAL_RCC_PLL_DISABLE();
738
739 /* Get Start Tick */
740 tickstart = HAL_GetTick();
741
742 /* Wait till PLL is disabled */
743 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
744 {
745 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
746 {
747 return HAL_TIMEOUT;
748 }
749 }
750
751 /* Configure the main PLL clock source, multiplication and division factors. */
752 __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
753 RCC_OscInitStruct->PLL.PLLMUL,
754 RCC_OscInitStruct->PLL.PLLDIV);
755 /* Enable the main PLL. */
756 __HAL_RCC_PLL_ENABLE();
757
758 /* Get Start Tick */
759 tickstart = HAL_GetTick();
760
761 /* Wait till PLL is ready */
762 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
763 {
764 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
765 {
766 return HAL_TIMEOUT;
767 }
768 }
769 }
770 else
771 {
772 /* Disable the main PLL. */
773 __HAL_RCC_PLL_DISABLE();
774
775 /* Get Start Tick */
776 tickstart = HAL_GetTick();
777
778 /* Wait till PLL is disabled */
779 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
780 {
781 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
782 {
783 return HAL_TIMEOUT;
784 }
785 }
786 }
787 }
788 else
789 {
790 return HAL_ERROR;
791 }
792 }
793
794 return HAL_OK;
795 }
796
797 /**
798 * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
799 * parameters in the RCC_ClkInitStruct.
800 * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
801 * contains the configuration information for the RCC peripheral.
802 * @param FLatency FLASH Latency
803 * The value of this parameter depend on device used within the same series
804 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
805 * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
806 *
807 * @note The MSI is used (enabled by hardware) as system clock source after
808 * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
809 * of failure of the HSE used directly or indirectly as system clock
810 * (if the Clock Security System CSS is enabled).
811 *
812 * @note A switch from one clock source to another occurs only if the target
813 * clock source is ready (clock stable after start-up delay or PLL locked).
814 * If a clock source which is not yet ready is selected, the switch will
815 * occur when the clock source will be ready.
816 * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
817 * currently used as system clock source.
818 * @note Depending on the device voltage range, the software has to set correctly
819 * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
820 * (for more details refer to section above "Initialization/de-initialization functions")
821 * @retval HAL status
822 */
HAL_RCC_ClockConfig(RCC_ClkInitTypeDef * RCC_ClkInitStruct,uint32_t FLatency)823 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
824 {
825 uint32_t tickstart = 0U;
826
827 /* Check the parameters */
828 assert_param(RCC_ClkInitStruct != NULL);
829 assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
830 assert_param(IS_FLASH_LATENCY(FLatency));
831
832 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
833 must be correctly programmed according to the frequency of the CPU clock
834 (HCLK) and the supply voltage of the device. */
835
836 /* Increasing the number of wait states because of higher CPU frequency */
837 if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
838 {
839 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
840 __HAL_FLASH_SET_LATENCY(FLatency);
841
842 /* Check that the new number of wait states is taken into account to access the Flash
843 memory by reading the FLASH_ACR register */
844 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
845 {
846 return HAL_ERROR;
847 }
848 }
849
850 /*-------------------------- HCLK Configuration --------------------------*/
851 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
852 {
853 assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
854 MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
855 }
856
857 /*------------------------- SYSCLK Configuration ---------------------------*/
858 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
859 {
860 assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
861
862 /* HSE is selected as System Clock Source */
863 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
864 {
865 /* Check the HSE ready flag */
866 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
867 {
868 return HAL_ERROR;
869 }
870 }
871 /* PLL is selected as System Clock Source */
872 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
873 {
874 /* Check the PLL ready flag */
875 if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
876 {
877 return HAL_ERROR;
878 }
879 }
880 /* HSI is selected as System Clock Source */
881 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI)
882 {
883 /* Check the HSI ready flag */
884 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
885 {
886 return HAL_ERROR;
887 }
888 }
889 /* MSI is selected as System Clock Source */
890 else
891 {
892 /* Check the MSI ready flag */
893 if(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == RESET)
894 {
895 return HAL_ERROR;
896 }
897 }
898 __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
899
900 /* Get Start Tick */
901 tickstart = HAL_GetTick();
902
903 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
904 {
905 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
906 {
907 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
908 {
909 return HAL_TIMEOUT;
910 }
911 }
912 }
913 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
914 {
915 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
916 {
917 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
918 {
919 return HAL_TIMEOUT;
920 }
921 }
922 }
923 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI)
924 {
925 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
926 {
927 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
928 {
929 return HAL_TIMEOUT;
930 }
931 }
932 }
933 else
934 {
935 while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_MSI)
936 {
937 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
938 {
939 return HAL_TIMEOUT;
940 }
941 }
942 }
943 }
944 /* Decreasing the number of wait states because of lower CPU frequency */
945 if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
946 {
947 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
948 __HAL_FLASH_SET_LATENCY(FLatency);
949
950 /* Check that the new number of wait states is taken into account to access the Flash
951 memory by reading the FLASH_ACR register */
952 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
953 {
954 return HAL_ERROR;
955 }
956 }
957
958 /*-------------------------- PCLK1 Configuration ---------------------------*/
959 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
960 {
961 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
962 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
963 }
964
965 /*-------------------------- PCLK2 Configuration ---------------------------*/
966 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
967 {
968 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
969 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
970 }
971
972 /* Update the SystemCoreClock global variable */
973 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
974
975 /* Configure the source of time base considering new system clocks settings*/
976 HAL_InitTick (TICK_INT_PRIORITY);
977
978 return HAL_OK;
979 }
980
981 /**
982 * @}
983 */
984
985 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
986 * @brief RCC clocks control functions
987 *
988 @verbatim
989 ===============================================================================
990 ##### Peripheral Control functions #####
991 ===============================================================================
992 [..]
993 This subsection provides a set of functions allowing to control the RCC Clocks
994 frequencies.
995
996 @endverbatim
997 * @{
998 */
999
1000 /**
1001 * @brief Selects the clock source to output on MCO pin.
1002 * @note MCO pin should be configured in alternate function mode.
1003 * @param RCC_MCOx specifies the output direction for the clock source.
1004 * This parameter can be one of the following values:
1005 * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
1006 * @arg @ref RCC_MCO2 Clock source to output on MCO2 pin(PA9).
1007 @if STM32L031xx
1008 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1009 @elseif STM32L041xx
1010 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1011 @elseif STM32L073xx
1012 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1013 @elseif STM32L083xx
1014 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1015 @elseif STM32L072xx
1016 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1017 @elseif STM32L082xx
1018 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1019 @elseif STM32L071xx
1020 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1021 @elseif STM32L081xx
1022 * @arg @ref RCC_MCO3 Clock source to output on MCO3 pin(PB13)
1023 @endif
1024 * @param RCC_MCOSource specifies the clock source to output.
1025 * This parameter can be one of the following values:
1026 * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
1027 * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
1028 * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
1029 * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
1030 * @arg @ref RCC_MCO1SOURCE_MSI MSI oscillator clock selected as MCO clock
1031 * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock selected as MCO clock
1032 * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO clock
1033 * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO clock
1034 @if STM32L052xx
1035 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1036 @elseif STM32L053xx
1037 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1038 @elseif STM32L062xx
1039 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1040 @elseif STM32L063xx
1041 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1042 @elseif STM32L072xx
1043 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1044 @elseif STM32L073xx
1045 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1046 @elseif STM32L082xx
1047 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1048 @elseif STM32L083xx
1049 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO clock
1050 @endif
1051 * @param RCC_MCODiv specifies the MCO DIV.
1052 * This parameter can be one of the following values:
1053 * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
1054 * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
1055 * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
1056 * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
1057 * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
1058 * @retval None
1059 */
HAL_RCC_MCOConfig(uint32_t RCC_MCOx,uint32_t RCC_MCOSource,uint32_t RCC_MCODiv)1060 void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
1061 {
1062 GPIO_InitTypeDef gpio = {0};
1063
1064 /* Check the parameters */
1065 assert_param(IS_RCC_MCO(RCC_MCOx));
1066 assert_param(IS_RCC_MCODIV(RCC_MCODiv));
1067 assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
1068
1069 /* Configure the MCO1 pin in alternate function mode */
1070 gpio.Mode = GPIO_MODE_AF_PP;
1071 gpio.Speed = GPIO_SPEED_FREQ_HIGH;
1072 gpio.Pull = GPIO_NOPULL;
1073 if(RCC_MCOx == RCC_MCO1)
1074 {
1075 gpio.Pin = MCO1_PIN;
1076 gpio.Alternate = GPIO_AF0_MCO;
1077
1078 /* MCO1 Clock Enable */
1079 MCO1_CLK_ENABLE();
1080 HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
1081 }
1082 #if defined(STM32L031xx) || defined(STM32L041xx) || defined(STM32L073xx) || defined(STM32L083xx) \
1083 || defined(STM32L072xx) || defined(STM32L082xx) || defined(STM32L071xx) || defined(STM32L081xx)
1084 else if (RCC_MCOx == RCC_MCO3)
1085 {
1086 gpio.Pin = MCO3_PIN;
1087 gpio.Alternate = GPIO_AF2_MCO;
1088
1089 /* MCO3 Clock Enable */
1090 MCO3_CLK_ENABLE();
1091 HAL_GPIO_Init(MCO3_GPIO_PORT, &gpio);
1092 }
1093 #endif
1094 else
1095 {
1096 gpio.Pin = MCO2_PIN;
1097 gpio.Alternate = GPIO_AF0_MCO;
1098
1099 /* MCO2 Clock Enable */
1100 MCO2_CLK_ENABLE();
1101 HAL_GPIO_Init(MCO2_GPIO_PORT, &gpio);
1102 }
1103
1104 /* Configure the MCO clock source */
1105 __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
1106 }
1107
1108 #if defined(RCC_HSECSS_SUPPORT)
1109 /**
1110 * @brief Enables the Clock Security System.
1111 * @note If a failure is detected on the HSE oscillator clock, this oscillator
1112 * is automatically disabled and an interrupt is generated to inform the
1113 * software about the failure (Clock Security System Interrupt, CSSI),
1114 * allowing the MCU to perform rescue operations. The CSSI is linked to
1115 * the Cortex-M0+ NMI (Non-Maskable Interrupt) exception vector.
1116 * @retval None
1117 */
HAL_RCC_EnableCSS(void)1118 void HAL_RCC_EnableCSS(void)
1119 {
1120 SET_BIT(RCC->CR, RCC_CR_CSSON) ;
1121 }
1122
1123 #endif /* RCC_HSECSS_SUPPORT */
1124 /**
1125 * @brief Returns the SYSCLK frequency
1126 * @note The system frequency computed by this function is not the real
1127 * frequency in the chip. It is calculated based on the predefined
1128 * constant and the selected clock source:
1129 * @note If SYSCLK source is MSI, function returns a value based on MSI
1130 * Value as defined by the MSI range.
1131 * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
1132 * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE(**)
1133 * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE(**)
1134 * or HSI_VALUE(*) multiplied/divided by the PLL factors.
1135 * @note (*) HSI_VALUE is a constant defined in stm32l0xx_hal_conf.h file (default value
1136 * 16 MHz) but the real value may vary depending on the variations
1137 * in voltage and temperature.
1138 * @note (**) HSE_VALUE is a constant defined in stm32l0xx_hal_conf.h file (default value
1139 * 8 MHz), user has to ensure that HSE_VALUE is same as the real
1140 * frequency of the crystal used. Otherwise, this function may
1141 * have wrong result.
1142 *
1143 * @note The result of this function could be not correct when using fractional
1144 * value for HSE crystal.
1145 *
1146 * @note This function can be used by the user application to compute the
1147 * baud-rate for the communication peripherals or configure other parameters.
1148 *
1149 * @note Each time SYSCLK changes, this function must be called to update the
1150 * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
1151 *
1152 * @retval SYSCLK frequency
1153 */
HAL_RCC_GetSysClockFreq(void)1154 uint32_t HAL_RCC_GetSysClockFreq(void)
1155 {
1156 uint32_t tmpreg = 0, pllm = 0, plld = 0, pllvco = 0, msiclkrange = 0;
1157 uint32_t sysclockfreq = 0;
1158
1159 tmpreg = RCC->CFGR;
1160
1161 /* Get SYSCLK source -------------------------------------------------------*/
1162 switch (tmpreg & RCC_CFGR_SWS)
1163 {
1164 case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
1165 {
1166 if ((RCC->CR & RCC_CR_HSIDIVF) != 0)
1167 {
1168 sysclockfreq = (HSI_VALUE >> 2);
1169 }
1170 else
1171 {
1172 sysclockfreq = HSI_VALUE;
1173 }
1174 break;
1175 }
1176 case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
1177 {
1178 sysclockfreq = HSE_VALUE;
1179 break;
1180 }
1181 case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
1182 {
1183 pllm = PLLMulTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_BITNUMBER];
1184 plld = ((uint32_t)(tmpreg & RCC_CFGR_PLLDIV) >> RCC_CFGR_PLLDIV_BITNUMBER) + 1;
1185 if (__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI)
1186 {
1187 /* HSE used as PLL clock source */
1188 pllvco = (HSE_VALUE * pllm) / plld;
1189 }
1190 else
1191 {
1192 if ((RCC->CR & RCC_CR_HSIDIVF) != 0)
1193 {
1194 pllvco = ((HSI_VALUE >> 2) * pllm) / plld;
1195 }
1196 else
1197 {
1198 pllvco = (HSI_VALUE * pllm) / plld;
1199 }
1200 }
1201 sysclockfreq = pllvco;
1202 break;
1203 }
1204 case RCC_SYSCLKSOURCE_STATUS_MSI: /* MSI used as system clock source */
1205 default: /* MSI used as system clock */
1206 {
1207 msiclkrange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> RCC_ICSCR_MSIRANGE_BITNUMBER;
1208 sysclockfreq = (32768 * (1 << (msiclkrange + 1)));
1209 break;
1210 }
1211 }
1212 return sysclockfreq;
1213 }
1214
1215 /**
1216 * @brief Returns the HCLK frequency
1217 * @note Each time HCLK changes, this function must be called to update the
1218 * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
1219 *
1220 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
1221 * and updated within this function
1222 * @retval HCLK frequency
1223 */
HAL_RCC_GetHCLKFreq(void)1224 uint32_t HAL_RCC_GetHCLKFreq(void)
1225 {
1226 return SystemCoreClock;
1227 }
1228
1229 /**
1230 * @brief Returns the PCLK1 frequency
1231 * @note Each time PCLK1 changes, this function must be called to update the
1232 * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
1233 * @retval PCLK1 frequency
1234 */
HAL_RCC_GetPCLK1Freq(void)1235 uint32_t HAL_RCC_GetPCLK1Freq(void)
1236 {
1237 /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
1238 return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_BITNUMBER]);
1239 }
1240
1241 /**
1242 * @brief Returns the PCLK2 frequency
1243 * @note Each time PCLK2 changes, this function must be called to update the
1244 * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
1245 * @retval PCLK2 frequency
1246 */
HAL_RCC_GetPCLK2Freq(void)1247 uint32_t HAL_RCC_GetPCLK2Freq(void)
1248 {
1249 /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
1250 return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_BITNUMBER]);
1251 }
1252
1253 /**
1254 * @brief Configures the RCC_OscInitStruct according to the internal
1255 * RCC configuration registers.
1256 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
1257 * will be configured.
1258 * @retval None
1259 */
HAL_RCC_GetOscConfig(RCC_OscInitTypeDef * RCC_OscInitStruct)1260 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
1261 {
1262 /* Check the parameters */
1263 assert_param(RCC_OscInitStruct != NULL);
1264
1265 /* Set all possible values for the Oscillator type parameter ---------------*/
1266 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \
1267 | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_MSI;
1268 #if defined(RCC_HSI48_SUPPORT)
1269 RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48;
1270 #endif /* RCC_HSI48_SUPPORT */
1271
1272
1273 /* Get the HSE configuration -----------------------------------------------*/
1274 if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
1275 {
1276 RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
1277 }
1278 else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
1279 {
1280 RCC_OscInitStruct->HSEState = RCC_HSE_ON;
1281 }
1282 else
1283 {
1284 RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
1285 }
1286
1287 /* Get the HSI configuration -----------------------------------------------*/
1288 if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
1289 {
1290 RCC_OscInitStruct->HSIState = RCC_HSI_ON;
1291 }
1292 else
1293 {
1294 RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
1295 }
1296
1297 RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> 8);
1298
1299 /* Get the MSI configuration -----------------------------------------------*/
1300 if((RCC->CR &RCC_CR_MSION) == RCC_CR_MSION)
1301 {
1302 RCC_OscInitStruct->MSIState = RCC_MSI_ON;
1303 }
1304 else
1305 {
1306 RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
1307 }
1308
1309 RCC_OscInitStruct->MSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_BITNUMBER);
1310 RCC_OscInitStruct->MSIClockRange = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSIRANGE));
1311
1312 /* Get the LSE configuration -----------------------------------------------*/
1313 if((RCC->CSR &RCC_CSR_LSEBYP) == RCC_CSR_LSEBYP)
1314 {
1315 RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
1316 }
1317 else if((RCC->CSR &RCC_CSR_LSEON) == RCC_CSR_LSEON)
1318 {
1319 RCC_OscInitStruct->LSEState = RCC_LSE_ON;
1320 }
1321 else
1322 {
1323 RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
1324 }
1325
1326 /* Get the LSI configuration -----------------------------------------------*/
1327 if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
1328 {
1329 RCC_OscInitStruct->LSIState = RCC_LSI_ON;
1330 }
1331 else
1332 {
1333 RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
1334 }
1335
1336 #if defined(RCC_HSI48_SUPPORT)
1337 /* Get the HSI48 configuration if any-----------------------------------------*/
1338 RCC_OscInitStruct->HSI48State = __HAL_RCC_GET_HSI48_STATE();
1339 #endif /* RCC_HSI48_SUPPORT */
1340
1341 /* Get the PLL configuration -----------------------------------------------*/
1342 if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
1343 {
1344 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
1345 }
1346 else
1347 {
1348 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
1349 }
1350 RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
1351 RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL);
1352 RCC_OscInitStruct->PLL.PLLDIV = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLDIV);
1353 }
1354
1355 /**
1356 * @brief Get the RCC_ClkInitStruct according to the internal
1357 * RCC configuration registers.
1358 * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
1359 * contains the current clock configuration.
1360 * @param pFLatency Pointer on the Flash Latency.
1361 * @retval None
1362 */
HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef * RCC_ClkInitStruct,uint32_t * pFLatency)1363 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
1364 {
1365 /* Check the parameters */
1366 assert_param(RCC_ClkInitStruct != NULL);
1367 assert_param(pFLatency != NULL);
1368
1369 /* Set all possible values for the Clock type parameter --------------------*/
1370 RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
1371
1372 /* Get the SYSCLK configuration --------------------------------------------*/
1373 RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
1374
1375 /* Get the HCLK configuration ----------------------------------------------*/
1376 RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
1377
1378 /* Get the APB1 configuration ----------------------------------------------*/
1379 RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
1380
1381 /* Get the APB2 configuration ----------------------------------------------*/
1382 RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
1383
1384 /* Get the Flash Wait State (Latency) configuration ------------------------*/
1385 *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
1386 }
1387
1388 #if defined(RCC_HSECSS_SUPPORT)
1389 /**
1390 * @brief This function handles the RCC CSS interrupt request.
1391 * @note This API should be called under the NMI_Handler().
1392 * @retval None
1393 */
HAL_RCC_NMI_IRQHandler(void)1394 void HAL_RCC_NMI_IRQHandler(void)
1395 {
1396 /* Check RCC CSSF flag */
1397 if(__HAL_RCC_GET_IT(RCC_IT_CSS))
1398 {
1399 /* RCC Clock Security System interrupt user callback */
1400 HAL_RCC_CSSCallback();
1401
1402 /* Clear RCC CSS pending bit */
1403 __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
1404 }
1405 }
1406
1407 /**
1408 * @brief RCC Clock Security System interrupt callback
1409 * @retval none
1410 */
HAL_RCC_CSSCallback(void)1411 __weak void HAL_RCC_CSSCallback(void)
1412 {
1413 /* NOTE : This function Should not be modified, when the callback is needed,
1414 the HAL_RCC_CSSCallback could be implemented in the user file
1415 */
1416 }
1417
1418 #endif /* RCC_HSECSS_SUPPORT */
1419 /**
1420 * @}
1421 */
1422
1423 /**
1424 * @}
1425 */
1426
1427 /* Private function prototypes -----------------------------------------------*/
1428 /** @addtogroup RCC_Private_Functions
1429 * @{
1430 */
1431 /**
1432 * @brief Update number of Flash wait states in line with MSI range and current
1433 voltage range
1434 * @param MSIrange MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_6
1435 * @retval HAL status
1436 */
RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange)1437 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange)
1438 {
1439 uint32_t vos = 0;
1440 uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */
1441
1442 /* HCLK can reach 4 MHz only if AHB prescaler = 1 */
1443 if (READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1)
1444 {
1445 if(__HAL_RCC_PWR_IS_CLK_ENABLED())
1446 {
1447 vos = READ_BIT(PWR->CR, PWR_CR_VOS);
1448 }
1449 else
1450 {
1451 __HAL_RCC_PWR_CLK_ENABLE();
1452 vos = READ_BIT(PWR->CR, PWR_CR_VOS);
1453 __HAL_RCC_PWR_CLK_DISABLE();
1454 }
1455
1456 /* Check if need to set latency 1 only for Range 3 & HCLK = 4MHz */
1457 if((vos == PWR_REGULATOR_VOLTAGE_SCALE3) && (MSIrange == RCC_MSIRANGE_6))
1458 {
1459 latency = FLASH_LATENCY_1; /* 1WS */
1460 }
1461 }
1462
1463 __HAL_FLASH_SET_LATENCY(latency);
1464
1465 /* Check that the new number of wait states is taken into account to access the Flash
1466 memory by reading the FLASH_ACR register */
1467 if((FLASH->ACR & FLASH_ACR_LATENCY) != latency)
1468 {
1469 return HAL_ERROR;
1470 }
1471
1472 return HAL_OK;
1473 }
1474
1475 /**
1476 * @}
1477 */
1478
1479 #endif /* HAL_RCC_MODULE_ENABLED */
1480 /**
1481 * @}
1482 */
1483
1484 /**
1485 * @}
1486 */
1487
1488 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
1489