1 /*
2 * Copyright (c) 2020 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #ifndef ZEPHYR_INCLUDE_SYS_KOBJECT_H
7 #define ZEPHYR_INCLUDE_SYS_KOBJECT_H
8
9 #include <stdint.h>
10 #include <stddef.h>
11
12 #include <zephyr/sys/iterable_sections.h>
13
14 #ifdef __cplusplus
15 extern "C" {
16 #endif
17
18 struct k_thread;
19 struct k_mutex;
20 struct z_futex_data;
21
22 /**
23 * @brief Kernel Object Types
24 *
25 * This enumeration needs to be kept in sync with the lists of kernel objects
26 * and subsystems in scripts/build/gen_kobject_list.py, as well as the otype_to_str()
27 * function in kernel/userspace.c
28 */
29 enum k_objects {
30 K_OBJ_ANY,
31
32 /** @cond
33 * Doxygen should ignore this build-time generated include file
34 * when generating API documentation. Enumeration values are
35 * generated during build by gen_kobject_list.py. It includes
36 * basic kernel objects (e.g. pipes and mutexes) and driver types.
37 */
38 #include <kobj-types-enum.h>
39 /** @endcond
40 */
41
42 K_OBJ_LAST
43 };
44 /**
45 * @defgroup usermode_apis User Mode APIs
46 * @ingroup kernel_apis
47 * @{
48 */
49
50 #ifdef CONFIG_USERSPACE
51 #ifdef CONFIG_GEN_PRIV_STACKS
52 /* Metadata struct for K_OBJ_THREAD_STACK_ELEMENT */
53 struct z_stack_data {
54 /* Size of the entire stack object, including reserved areas */
55 size_t size;
56
57 /* Stack buffer for privilege mode elevations */
58 uint8_t *priv;
59 };
60 #endif /* CONFIG_GEN_PRIV_STACKS */
61
62 /* Object extra data. Only some objects use this, determined by object type */
63 union z_object_data {
64 /* Backing mutex for K_OBJ_SYS_MUTEX */
65 struct k_mutex *mutex;
66
67 /* Numerical thread ID for K_OBJ_THREAD */
68 unsigned int thread_id;
69
70 #ifdef CONFIG_GEN_PRIV_STACKS
71 /* Metadata for K_OBJ_THREAD_STACK_ELEMENT */
72 const struct z_stack_data *stack_data;
73 #else
74 /* Stack buffer size for K_OBJ_THREAD_STACK_ELEMENT */
75 size_t stack_size;
76 #endif /* CONFIG_GEN_PRIV_STACKS */
77
78 /* Futex wait queue and spinlock for K_OBJ_FUTEX */
79 struct z_futex_data *futex_data;
80
81 /* All other objects */
82 int unused;
83 };
84
85 /* Table generated by gperf, these objects are retrieved via
86 * z_object_find() */
87 struct z_object {
88 void *name;
89 uint8_t perms[CONFIG_MAX_THREAD_BYTES];
90 uint8_t type;
91 uint8_t flags;
92 union z_object_data data;
93 } __packed __aligned(4);
94
95 struct z_object_assignment {
96 struct k_thread *thread;
97 void * const *objects;
98 };
99
100 /**
101 * @brief Grant a static thread access to a list of kernel objects
102 *
103 * For threads declared with K_THREAD_DEFINE(), grant the thread access to
104 * a set of kernel objects. These objects do not need to be in an initialized
105 * state. The permissions will be granted when the threads are initialized
106 * in the early boot sequence.
107 *
108 * All arguments beyond the first must be pointers to kernel objects.
109 *
110 * @param name_ Name of the thread, as passed to K_THREAD_DEFINE()
111 */
112 #define K_THREAD_ACCESS_GRANT(name_, ...) \
113 static void * const _CONCAT(_object_list_, name_)[] = \
114 { __VA_ARGS__, NULL }; \
115 static const STRUCT_SECTION_ITERABLE(z_object_assignment, \
116 _CONCAT(_object_access_, name_)) = \
117 { (&_k_thread_obj_ ## name_), \
118 (_CONCAT(_object_list_, name_)) }
119
120 /** Object initialized */
121 #define K_OBJ_FLAG_INITIALIZED BIT(0)
122 /** Object is Public */
123 #define K_OBJ_FLAG_PUBLIC BIT(1)
124 /** Object allocated */
125 #define K_OBJ_FLAG_ALLOC BIT(2)
126 /** Driver Object */
127 #define K_OBJ_FLAG_DRIVER BIT(3)
128
129 /**
130 * Lookup a kernel object and init its metadata if it exists
131 *
132 * Calling this on an object will make it usable from userspace.
133 * Intended to be called as the last statement in kernel object init
134 * functions.
135 *
136 * @param obj Address of the kernel object
137 */
138 void z_object_init(const void *obj);
139
140 /**
141 * Grant a thread access to a kernel object
142 *
143 * The thread will be granted access to the object if the caller is from
144 * supervisor mode, or the caller is from user mode AND has permissions
145 * on both the object and the thread whose access is being granted.
146 *
147 * @param object Address of kernel object
148 * @param thread Thread to grant access to the object
149 */
150 __syscall void k_object_access_grant(const void *object,
151 struct k_thread *thread);
152
153 /**
154 * Revoke a thread's access to a kernel object
155 *
156 * The thread will lose access to the object if the caller is from
157 * supervisor mode, or the caller is from user mode AND has permissions
158 * on both the object and the thread whose access is being revoked.
159 *
160 * @param object Address of kernel object
161 * @param thread Thread to remove access to the object
162 */
163 void k_object_access_revoke(const void *object, struct k_thread *thread);
164
165 /**
166 * @brief Release an object
167 *
168 * Allows user threads to drop their own permission on an object
169 * Their permissions are automatically cleared when a thread terminates.
170 *
171 * @param object The object to be released
172 *
173 */
174 __syscall void k_object_release(const void *object);
175
176 /**
177 * Grant all present and future threads access to an object
178 *
179 * If the caller is from supervisor mode, or the caller is from user mode and
180 * have sufficient permissions on the object, then that object will have
181 * permissions granted to it for *all* current and future threads running in
182 * the system, effectively becoming a public kernel object.
183 *
184 * Use of this API should be avoided on systems that are running untrusted code
185 * as it is possible for such code to derive the addresses of kernel objects
186 * and perform unwanted operations on them.
187 *
188 * It is not possible to revoke permissions on public objects; once public,
189 * any thread may use it.
190 *
191 * @param object Address of kernel object
192 */
193 void k_object_access_all_grant(const void *object);
194
195 /**
196 * Check if a kernel object is of certain type and is valid.
197 *
198 * This checks if the kernel object exists, of certain type,
199 * and has been initialized.
200 *
201 * @param obj Address of the kernel object
202 * @param otype Object type (use K_OBJ_ANY for ignoring type checking)
203 * @return True if kernel object (@a obj) exists, of certain type, and
204 * has been initialized. False otherwise.
205 */
206 bool k_object_is_valid(const void *obj, enum k_objects otype);
207
208 #else
209 /* LCOV_EXCL_START */
210 #define K_THREAD_ACCESS_GRANT(thread, ...)
211
212 /**
213 * @internal
214 */
z_object_init(const void * obj)215 static inline void z_object_init(const void *obj)
216 {
217 ARG_UNUSED(obj);
218 }
219
220 /**
221 * @internal
222 */
z_impl_k_object_access_grant(const void * object,struct k_thread * thread)223 static inline void z_impl_k_object_access_grant(const void *object,
224 struct k_thread *thread)
225 {
226 ARG_UNUSED(object);
227 ARG_UNUSED(thread);
228 }
229
230 /**
231 * @internal
232 */
k_object_access_revoke(const void * object,struct k_thread * thread)233 static inline void k_object_access_revoke(const void *object,
234 struct k_thread *thread)
235 {
236 ARG_UNUSED(object);
237 ARG_UNUSED(thread);
238 }
239
240 /**
241 * @internal
242 */
z_impl_k_object_release(const void * object)243 static inline void z_impl_k_object_release(const void *object)
244 {
245 ARG_UNUSED(object);
246 }
247
k_object_access_all_grant(const void * object)248 static inline void k_object_access_all_grant(const void *object)
249 {
250 ARG_UNUSED(object);
251 }
252
k_object_is_valid(const void * obj,enum k_objects otype)253 static inline bool k_object_is_valid(const void *obj, enum k_objects otype)
254 {
255 ARG_UNUSED(obj);
256 ARG_UNUSED(otype);
257
258 return true;
259 }
260
261 /* LCOV_EXCL_STOP */
262 #endif /* !CONFIG_USERSPACE */
263
264 #ifdef CONFIG_DYNAMIC_OBJECTS
265 /**
266 * Allocate a kernel object of a designated type
267 *
268 * This will instantiate at runtime a kernel object of the specified type,
269 * returning a pointer to it. The object will be returned in an uninitialized
270 * state, with the calling thread being granted permission on it. The memory
271 * for the object will be allocated out of the calling thread's resource pool.
272 *
273 * @note Thread stack object has to use k_object_alloc_size() since stacks may
274 * have different sizes.
275 *
276 * @param otype Requested kernel object type
277 * @return A pointer to the allocated kernel object, or NULL if memory wasn't
278 * available
279 */
280 __syscall void *k_object_alloc(enum k_objects otype);
281
282 /**
283 * Allocate a kernel object of a designated type and a given size
284 *
285 * This will instantiate at runtime a kernel object of the specified type,
286 * returning a pointer to it. The object will be returned in an uninitialized
287 * state, with the calling thread being granted permission on it. The memory
288 * for the object will be allocated out of the calling thread's resource pool.
289 *
290 * This function is specially helpful for thread stack objects because
291 * their sizes can vary. Other objects should probably look k_object_alloc().
292 *
293 * @param otype Requested kernel object type
294 * @param size Requested kernel object size
295 * @return A pointer to the allocated kernel object, or NULL if memory wasn't
296 * available
297 */
298 __syscall void *k_object_alloc_size(enum k_objects otype, size_t size);
299
300 /**
301 * Allocate memory and install as a generic kernel object
302 *
303 * This is a low-level function to allocate some memory, and register that
304 * allocated memory in the kernel object lookup tables with type K_OBJ_ANY.
305 * Initialization state and thread permissions will be cleared. The
306 * returned z_object's data value will be uninitialized.
307 *
308 * Most users will want to use k_object_alloc() instead.
309 *
310 * Memory allocated will be drawn from the calling thread's reasource pool
311 * and may be freed later by passing the actual object pointer (found
312 * in the returned z_object's 'name' member) to k_object_free().
313 *
314 * @param align Required memory alignment for the allocated object
315 * @param size Size of the allocated object
316 * @return NULL on insufficient memory
317 * @return A pointer to the associated z_object that is installed in the
318 * kernel object tables
319 */
320 struct z_object *z_dynamic_object_aligned_create(size_t align, size_t size);
321
322 /**
323 * Allocate memory and install as a generic kernel object
324 *
325 * This is a low-level function to allocate some memory, and register that
326 * allocated memory in the kernel object lookup tables with type K_OBJ_ANY.
327 * Initialization state and thread permissions will be cleared. The
328 * returned z_object's data value will be uninitialized.
329 *
330 * Most users will want to use k_object_alloc() instead.
331 *
332 * Memory allocated will be drawn from the calling thread's reasource pool
333 * and may be freed later by passing the actual object pointer (found
334 * in the returned z_object's 'name' member) to k_object_free().
335 *
336 * @param size Size of the allocated object
337 * @return NULL on insufficient memory
338 * @return A pointer to the associated z_object that is installed in the
339 * kernel object tables
340 */
z_dynamic_object_create(size_t size)341 static inline struct z_object *z_dynamic_object_create(size_t size)
342 {
343 return z_dynamic_object_aligned_create(0, size);
344 }
345
346 /**
347 * Free a kernel object previously allocated with k_object_alloc()
348 *
349 * This will return memory for a kernel object back to resource pool it was
350 * allocated from. Care must be exercised that the object will not be used
351 * during or after when this call is made.
352 *
353 * @param obj Pointer to the kernel object memory address.
354 */
355 void k_object_free(void *obj);
356 #else
357
358 /* LCOV_EXCL_START */
z_impl_k_object_alloc(enum k_objects otype)359 static inline void *z_impl_k_object_alloc(enum k_objects otype)
360 {
361 ARG_UNUSED(otype);
362
363 return NULL;
364 }
365
z_impl_k_object_alloc_size(enum k_objects otype,size_t size)366 static inline void *z_impl_k_object_alloc_size(enum k_objects otype,
367 size_t size)
368 {
369 ARG_UNUSED(otype);
370 ARG_UNUSED(size);
371
372 return NULL;
373 }
374
z_dynamic_object_aligned_create(size_t align,size_t size)375 static inline struct z_object *z_dynamic_object_aligned_create(size_t align,
376 size_t size)
377 {
378 ARG_UNUSED(align);
379 ARG_UNUSED(size);
380
381 return NULL;
382 }
383
z_dynamic_object_create(size_t size)384 static inline struct z_object *z_dynamic_object_create(size_t size)
385 {
386 ARG_UNUSED(size);
387
388 return NULL;
389 }
390
391 /**
392 * @brief Free an object
393 *
394 * @param obj
395 */
k_object_free(void * obj)396 static inline void k_object_free(void *obj)
397 {
398 ARG_UNUSED(obj);
399 }
400 /* LCOV_EXCL_STOP */
401 #endif /* CONFIG_DYNAMIC_OBJECTS */
402
403 /** @} */
404
405 #include <syscalls/kobject.h>
406 #ifdef __cplusplus
407 }
408 #endif
409
410 #endif
411