1 /**
2   ******************************************************************************
3   * @file    stm32u5xx_hal_uart_ex.c
4   * @author  MCD Application Team
5   * @brief   Extended UART HAL module driver.
6   *          This file provides firmware functions to manage the following extended
7   *          functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8   *           + Initialization and de-initialization functions
9   *           + Peripheral Control functions
10   *
11   *
12   ******************************************************************************
13   * @attention
14   *
15   * Copyright (c) 2021 STMicroelectronics.
16   * All rights reserved.
17   *
18   * This software component is licensed by ST under BSD 3-Clause license,
19   * the "License"; You may not use this file except in compliance with the
20   * License. You may obtain a copy of the License at:
21   *                        opensource.org/licenses/BSD-3-Clause
22   *
23   ******************************************************************************
24   @verbatim
25   ==============================================================================
26                ##### UART peripheral extended features  #####
27   ==============================================================================
28 
29     (#) Declare a UART_HandleTypeDef handle structure.
30 
31     (#) For the UART RS485 Driver Enable mode, initialize the UART registers
32         by calling the HAL_RS485Ex_Init() API.
33 
34     (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming.
35 
36         -@- When UART operates in FIFO mode, FIFO mode must be enabled prior
37             starting RX/TX transfers. Also RX/TX FIFO thresholds must be
38             configured prior starting RX/TX transfers.
39 
40   @endverbatim
41   */
42 
43 /* Includes ------------------------------------------------------------------*/
44 #include "stm32u5xx_hal.h"
45 
46 /** @addtogroup STM32U5xx_HAL_Driver
47   * @{
48   */
49 
50 /** @defgroup UARTEx UARTEx
51   * @brief UART Extended HAL module driver
52   * @{
53   */
54 
55 #ifdef HAL_UART_MODULE_ENABLED
56 
57 /* Private typedef -----------------------------------------------------------*/
58 /* Private define ------------------------------------------------------------*/
59 /** @defgroup UARTEX_Private_Constants UARTEx Private Constants
60   * @{
61   */
62 /* UART RX FIFO depth */
63 #define RX_FIFO_DEPTH 8U
64 
65 /* UART TX FIFO depth */
66 #define TX_FIFO_DEPTH 8U
67 /**
68   * @}
69   */
70 
71 /* Private macros ------------------------------------------------------------*/
72 /* Private variables ---------------------------------------------------------*/
73 /* Private function prototypes -----------------------------------------------*/
74 /** @defgroup UARTEx_Private_Functions UARTEx Private Functions
75   * @{
76   */
77 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
78 static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart);
79 /**
80   * @}
81   */
82 
83 /* Exported functions --------------------------------------------------------*/
84 
85 /** @defgroup UARTEx_Exported_Functions  UARTEx Exported Functions
86   * @{
87   */
88 
89 /** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
90   * @brief    Extended Initialization and Configuration Functions
91   *
92 @verbatim
93 ===============================================================================
94             ##### Initialization and Configuration functions #####
95  ===============================================================================
96     [..]
97     This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
98     in asynchronous mode.
99       (+) For the asynchronous mode the parameters below can be configured:
100         (++) Baud Rate
101         (++) Word Length
102         (++) Stop Bit
103         (++) Parity: If the parity is enabled, then the MSB bit of the data written
104              in the data register is transmitted but is changed by the parity bit.
105         (++) Hardware flow control
106         (++) Receiver/transmitter modes
107         (++) Over Sampling Method
108         (++) One-Bit Sampling Method
109       (+) For the asynchronous mode, the following advanced features can be configured as well:
110         (++) TX and/or RX pin level inversion
111         (++) data logical level inversion
112         (++) RX and TX pins swap
113         (++) RX overrun detection disabling
114         (++) DMA disabling on RX error
115         (++) MSB first on communication line
116         (++) auto Baud rate detection
117     [..]
118     The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
119      procedures (details for the procedures are available in reference manual).
120 
121 @endverbatim
122 
123   Depending on the frame length defined by the M1 and M0 bits (7-bit,
124   8-bit or 9-bit), the possible UART formats are listed in the
125   following table.
126 
127     Table 1. UART frame format.
128     +-----------------------------------------------------------------------+
129     |  M1 bit |  M0 bit |  PCE bit  |             UART frame                |
130     |---------|---------|-----------|---------------------------------------|
131     |    0    |    0    |    0      |    | SB |    8 bit data   | STB |     |
132     |---------|---------|-----------|---------------------------------------|
133     |    0    |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
134     |---------|---------|-----------|---------------------------------------|
135     |    0    |    1    |    0      |    | SB |    9 bit data   | STB |     |
136     |---------|---------|-----------|---------------------------------------|
137     |    0    |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
138     |---------|---------|-----------|---------------------------------------|
139     |    1    |    0    |    0      |    | SB |    7 bit data   | STB |     |
140     |---------|---------|-----------|---------------------------------------|
141     |    1    |    0    |    1      |    | SB | 6 bit data | PB | STB |     |
142     +-----------------------------------------------------------------------+
143 
144   * @{
145   */
146 
147 /**
148   * @brief Initialize the RS485 Driver enable feature according to the specified
149   *         parameters in the UART_InitTypeDef and creates the associated handle.
150   * @param huart            UART handle.
151   * @param Polarity         Select the driver enable polarity.
152   *          This parameter can be one of the following values:
153   *          @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
154   *          @arg @ref UART_DE_POLARITY_LOW  DE signal is active low
155   * @param AssertionTime    Driver Enable assertion time:
156   *       5-bit value defining the time between the activation of the DE (Driver Enable)
157   *       signal and the beginning of the start bit. It is expressed in sample time
158   *       units (1/8 or 1/16 bit time, depending on the oversampling rate)
159   * @param DeassertionTime  Driver Enable deassertion time:
160   *       5-bit value defining the time between the end of the last stop bit, in a
161   *       transmitted message, and the de-activation of the DE (Driver Enable) signal.
162   *       It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
163   *       oversampling rate).
164   * @retval HAL status
165   */
HAL_RS485Ex_Init(UART_HandleTypeDef * huart,uint32_t Polarity,uint32_t AssertionTime,uint32_t DeassertionTime)166 HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
167                                    uint32_t DeassertionTime)
168 {
169   uint32_t temp;
170 
171   /* Check the UART handle allocation */
172   if (huart == NULL)
173   {
174     return HAL_ERROR;
175   }
176   /* Check the Driver Enable UART instance */
177   assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
178 
179   /* Check the Driver Enable polarity */
180   assert_param(IS_UART_DE_POLARITY(Polarity));
181 
182   /* Check the Driver Enable assertion time */
183   assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
184 
185   /* Check the Driver Enable deassertion time */
186   assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
187 
188   if (huart->gState == HAL_UART_STATE_RESET)
189   {
190     /* Allocate lock resource and initialize it */
191     huart->Lock = HAL_UNLOCKED;
192 
193 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
194     UART_InitCallbacksToDefault(huart);
195 
196     if (huart->MspInitCallback == NULL)
197     {
198       huart->MspInitCallback = HAL_UART_MspInit;
199     }
200 
201     /* Init the low level hardware */
202     huart->MspInitCallback(huart);
203 #else
204     /* Init the low level hardware : GPIO, CLOCK, CORTEX */
205     HAL_UART_MspInit(huart);
206 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
207   }
208 
209   huart->gState = HAL_UART_STATE_BUSY;
210 
211   /* Disable the Peripheral */
212   __HAL_UART_DISABLE(huart);
213 
214   /* Set the UART Communication parameters */
215   if (UART_SetConfig(huart) == HAL_ERROR)
216   {
217     return HAL_ERROR;
218   }
219 
220   if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
221   {
222     UART_AdvFeatureConfig(huart);
223   }
224 
225   /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
226   SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
227 
228   /* Set the Driver Enable polarity */
229   MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
230 
231   /* Set the Driver Enable assertion and deassertion times */
232   temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
233   temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
234   MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
235 
236   /* Enable the Peripheral */
237   __HAL_UART_ENABLE(huart);
238 
239   /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
240   return (UART_CheckIdleState(huart));
241 }
242 
243 /**
244   * @}
245   */
246 
247 /** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
248   *  @brief Extended functions
249   *
250 @verbatim
251  ===============================================================================
252                       ##### IO operation functions #####
253  ===============================================================================
254     This subsection provides a set of Wakeup and FIFO mode related callback functions.
255 
256     (#) TX/RX Fifos Callbacks:
257         (+) HAL_UARTEx_RxFifoFullCallback()
258         (+) HAL_UARTEx_TxFifoEmptyCallback()
259 
260 @endverbatim
261   * @{
262   */
263 
264 /**
265   * @brief  UART RX Fifo full callback.
266   * @param  huart UART handle.
267   * @retval None
268   */
HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef * huart)269 __weak void HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef *huart)
270 {
271   /* Prevent unused argument(s) compilation warning */
272   UNUSED(huart);
273 
274   /* NOTE : This function should not be modified, when the callback is needed,
275             the HAL_UARTEx_RxFifoFullCallback can be implemented in the user file.
276    */
277 }
278 
279 /**
280   * @brief  UART TX Fifo empty callback.
281   * @param  huart UART handle.
282   * @retval None
283   */
HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef * huart)284 __weak void HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef *huart)
285 {
286   /* Prevent unused argument(s) compilation warning */
287   UNUSED(huart);
288 
289   /* NOTE : This function should not be modified, when the callback is needed,
290             the HAL_UARTEx_TxFifoEmptyCallback can be implemented in the user file.
291    */
292 }
293 
294 /**
295   * @}
296   */
297 
298 /** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
299   * @brief    Extended Peripheral Control functions
300   *
301 @verbatim
302  ===============================================================================
303                       ##### Peripheral Control functions #####
304  ===============================================================================
305     [..] This section provides the following functions:
306      (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
307          detection length to more than 4 bits for multiprocessor address mark wake up.
308      (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
309          trigger: address match, Start Bit detection or RXNE bit status.
310      (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
311      (+) HAL_UARTEx_DisableStopMode() API disables the above functionality
312      (+) HAL_UARTEx_EnableFifoMode() API enables the FIFO mode
313      (+) HAL_UARTEx_DisableFifoMode() API disables the FIFO mode
314      (+) HAL_UARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold
315      (+) HAL_UARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold
316 
317     [..] This subsection also provides a set of additional functions providing enhanced reception
318     services to user. (For example, these functions allow application to handle use cases
319     where number of data to be received is unknown).
320 
321     (#) Compared to standard reception services which only consider number of received
322         data elements as reception completion criteria, these functions also consider additional events
323         as triggers for updating reception status to caller :
324        (+) Detection of inactivity period (RX line has not been active for a given period).
325           (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
326                for 1 frame time, after last received byte.
327           (++) RX inactivity detected by RTO, i.e. line has been in idle state
328                for a programmable time, after last received byte.
329        (+) Detection that a specific character has been received.
330 
331     (#) There are two mode of transfer:
332        (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
333            or till IDLE event occurs. Reception is handled only during function execution.
334            When function exits, no data reception could occur. HAL status and number of actually received data elements,
335            are returned by function after finishing transfer.
336        (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
337            These API's return the HAL status.
338            The end of the data processing will be indicated through the
339            dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
340            The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
341            The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
342 
343     (#) Blocking mode API:
344         (+) HAL_UARTEx_ReceiveToIdle()
345 
346     (#) Non-Blocking mode API with Interrupt:
347         (+) HAL_UARTEx_ReceiveToIdle_IT()
348 
349     (#) Non-Blocking mode API with DMA:
350         (+) HAL_UARTEx_ReceiveToIdle_DMA()
351 
352 @endverbatim
353   * @{
354   */
355 
356 /**
357   * @brief By default in multiprocessor mode, when the wake up method is set
358   *        to address mark, the UART handles only 4-bit long addresses detection;
359   *        this API allows to enable longer addresses detection (6-, 7- or 8-bit
360   *        long).
361   * @note  Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
362   *        7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
363   * @param huart         UART handle.
364   * @param AddressLength This parameter can be one of the following values:
365   *          @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
366   *          @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
367   * @retval HAL status
368   */
HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef * huart,uint32_t AddressLength)369 HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
370 {
371   /* Check the UART handle allocation */
372   if (huart == NULL)
373   {
374     return HAL_ERROR;
375   }
376 
377   /* Check the address length parameter */
378   assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
379 
380   huart->gState = HAL_UART_STATE_BUSY;
381 
382   /* Disable the Peripheral */
383   __HAL_UART_DISABLE(huart);
384 
385   /* Set the address length */
386   MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
387 
388   /* Enable the Peripheral */
389   __HAL_UART_ENABLE(huart);
390 
391   /* TEACK and/or REACK to check before moving huart->gState to Ready */
392   return (UART_CheckIdleState(huart));
393 }
394 
395 /**
396   * @brief Set Wakeup from Stop mode interrupt flag selection.
397   * @note It is the application responsibility to enable the interrupt used as
398   *       usart_wkup interrupt source before entering low-power mode.
399   * @param huart           UART handle.
400   * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
401   *          This parameter can be one of the following values:
402   *          @arg @ref UART_WAKEUP_ON_ADDRESS
403   *          @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
404   * @retval HAL status
405   */
HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)406 HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
407 {
408   HAL_StatusTypeDef status = HAL_OK;
409   uint32_t tickstart;
410 
411   /* check the wake-up from stop mode UART instance */
412   assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
413   /* check the wake-up selection parameter */
414   assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
415 
416   /* Process Locked */
417   __HAL_LOCK(huart);
418 
419   huart->gState = HAL_UART_STATE_BUSY;
420 
421   /* Disable the Peripheral */
422   __HAL_UART_DISABLE(huart);
423 
424 
425   if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
426   {
427     UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
428   }
429 
430   /* Enable the Peripheral */
431   __HAL_UART_ENABLE(huart);
432 
433   /* Init tickstart for timeout management */
434   tickstart = HAL_GetTick();
435 
436   /* Wait until REACK flag is set */
437   if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
438   {
439     status = HAL_TIMEOUT;
440   }
441   else
442   {
443     /* Initialize the UART State */
444     huart->gState = HAL_UART_STATE_READY;
445   }
446 
447   /* Process Unlocked */
448   __HAL_UNLOCK(huart);
449 
450   return status;
451 }
452 
453 /**
454   * @brief Enable UART Stop Mode.
455   * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
456   * @param huart UART handle.
457   * @retval HAL status
458   */
HAL_UARTEx_EnableStopMode(UART_HandleTypeDef * huart)459 HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
460 {
461   /* Process Locked */
462   __HAL_LOCK(huart);
463 
464   /* Set UESM bit */
465   ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
466 
467   /* Process Unlocked */
468   __HAL_UNLOCK(huart);
469 
470   return HAL_OK;
471 }
472 
473 /**
474   * @brief Disable UART Stop Mode.
475   * @param huart UART handle.
476   * @retval HAL status
477   */
HAL_UARTEx_DisableStopMode(UART_HandleTypeDef * huart)478 HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
479 {
480   /* Process Locked */
481   __HAL_LOCK(huart);
482 
483   /* Clear UESM bit */
484   ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
485 
486   /* Process Unlocked */
487   __HAL_UNLOCK(huart);
488 
489   return HAL_OK;
490 }
491 
492 /**
493   * @brief  Enable the FIFO mode.
494   * @param huart      UART handle.
495   * @retval HAL status
496   */
HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef * huart)497 HAL_StatusTypeDef HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef *huart)
498 {
499   uint32_t tmpcr1;
500 
501   /* Check parameters */
502   assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
503 
504   /* Process Locked */
505   __HAL_LOCK(huart);
506 
507   huart->gState = HAL_UART_STATE_BUSY;
508 
509   /* Save actual UART configuration */
510   tmpcr1 = READ_REG(huart->Instance->CR1);
511 
512   /* Disable UART */
513   __HAL_UART_DISABLE(huart);
514 
515   /* Enable FIFO mode */
516   SET_BIT(tmpcr1, USART_CR1_FIFOEN);
517   huart->FifoMode = UART_FIFOMODE_ENABLE;
518 
519   /* Restore UART configuration */
520   WRITE_REG(huart->Instance->CR1, tmpcr1);
521 
522   /* Determine the number of data to process during RX/TX ISR execution */
523   UARTEx_SetNbDataToProcess(huart);
524 
525   huart->gState = HAL_UART_STATE_READY;
526 
527   /* Process Unlocked */
528   __HAL_UNLOCK(huart);
529 
530   return HAL_OK;
531 }
532 
533 /**
534   * @brief  Disable the FIFO mode.
535   * @param huart      UART handle.
536   * @retval HAL status
537   */
HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef * huart)538 HAL_StatusTypeDef HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef *huart)
539 {
540   uint32_t tmpcr1;
541 
542   /* Check parameters */
543   assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
544 
545   /* Process Locked */
546   __HAL_LOCK(huart);
547 
548   huart->gState = HAL_UART_STATE_BUSY;
549 
550   /* Save actual UART configuration */
551   tmpcr1 = READ_REG(huart->Instance->CR1);
552 
553   /* Disable UART */
554   __HAL_UART_DISABLE(huart);
555 
556   /* Enable FIFO mode */
557   CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN);
558   huart->FifoMode = UART_FIFOMODE_DISABLE;
559 
560   /* Restore UART configuration */
561   WRITE_REG(huart->Instance->CR1, tmpcr1);
562 
563   huart->gState = HAL_UART_STATE_READY;
564 
565   /* Process Unlocked */
566   __HAL_UNLOCK(huart);
567 
568   return HAL_OK;
569 }
570 
571 /**
572   * @brief  Set the TXFIFO threshold.
573   * @param huart      UART handle.
574   * @param Threshold  TX FIFO threshold value
575   *          This parameter can be one of the following values:
576   *            @arg @ref UART_TXFIFO_THRESHOLD_1_8
577   *            @arg @ref UART_TXFIFO_THRESHOLD_1_4
578   *            @arg @ref UART_TXFIFO_THRESHOLD_1_2
579   *            @arg @ref UART_TXFIFO_THRESHOLD_3_4
580   *            @arg @ref UART_TXFIFO_THRESHOLD_7_8
581   *            @arg @ref UART_TXFIFO_THRESHOLD_8_8
582   * @retval HAL status
583   */
HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef * huart,uint32_t Threshold)584 HAL_StatusTypeDef HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
585 {
586   uint32_t tmpcr1;
587 
588   /* Check parameters */
589   assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
590   assert_param(IS_UART_TXFIFO_THRESHOLD(Threshold));
591 
592   /* Process Locked */
593   __HAL_LOCK(huart);
594 
595   huart->gState = HAL_UART_STATE_BUSY;
596 
597   /* Save actual UART configuration */
598   tmpcr1 = READ_REG(huart->Instance->CR1);
599 
600   /* Disable UART */
601   __HAL_UART_DISABLE(huart);
602 
603   /* Update TX threshold configuration */
604   MODIFY_REG(huart->Instance->CR3, USART_CR3_TXFTCFG, Threshold);
605 
606   /* Determine the number of data to process during RX/TX ISR execution */
607   UARTEx_SetNbDataToProcess(huart);
608 
609   /* Restore UART configuration */
610   WRITE_REG(huart->Instance->CR1, tmpcr1);
611 
612   huart->gState = HAL_UART_STATE_READY;
613 
614   /* Process Unlocked */
615   __HAL_UNLOCK(huart);
616 
617   return HAL_OK;
618 }
619 
620 /**
621   * @brief  Set the RXFIFO threshold.
622   * @param huart      UART handle.
623   * @param Threshold  RX FIFO threshold value
624   *          This parameter can be one of the following values:
625   *            @arg @ref UART_RXFIFO_THRESHOLD_1_8
626   *            @arg @ref UART_RXFIFO_THRESHOLD_1_4
627   *            @arg @ref UART_RXFIFO_THRESHOLD_1_2
628   *            @arg @ref UART_RXFIFO_THRESHOLD_3_4
629   *            @arg @ref UART_RXFIFO_THRESHOLD_7_8
630   *            @arg @ref UART_RXFIFO_THRESHOLD_8_8
631   * @retval HAL status
632   */
HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef * huart,uint32_t Threshold)633 HAL_StatusTypeDef HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
634 {
635   uint32_t tmpcr1;
636 
637   /* Check the parameters */
638   assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
639   assert_param(IS_UART_RXFIFO_THRESHOLD(Threshold));
640 
641   /* Process Locked */
642   __HAL_LOCK(huart);
643 
644   huart->gState = HAL_UART_STATE_BUSY;
645 
646   /* Save actual UART configuration */
647   tmpcr1 = READ_REG(huart->Instance->CR1);
648 
649   /* Disable UART */
650   __HAL_UART_DISABLE(huart);
651 
652   /* Update RX threshold configuration */
653   MODIFY_REG(huart->Instance->CR3, USART_CR3_RXFTCFG, Threshold);
654 
655   /* Determine the number of data to process during RX/TX ISR execution */
656   UARTEx_SetNbDataToProcess(huart);
657 
658   /* Restore UART configuration */
659   WRITE_REG(huart->Instance->CR1, tmpcr1);
660 
661   huart->gState = HAL_UART_STATE_READY;
662 
663   /* Process Unlocked */
664   __HAL_UNLOCK(huart);
665 
666   return HAL_OK;
667 }
668 
669 /**
670   * @brief Receive an amount of data in blocking mode till either the expected number of data
671   *        is received or an IDLE event occurs.
672   * @note  HAL_OK is returned if reception is completed (expected number of data has been received)
673   *        or if reception is stopped after IDLE event (less than the expected number of data has been received)
674   *        In this case, RxLen output parameter indicates number of data available in reception buffer.
675   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
676   *        the received data is handled as a set of uint16_t. In this case, Size must indicate the number
677   *        of uint16_t available through pData.
678   * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
679   *       is not empty. Read operations from the RDR register are performed when
680   *       RXFNE flag is set. From hardware perspective, RXFNE flag and
681   *       RXNE are mapped on the same bit-field.
682   * @param huart   UART handle.
683   * @param pData   Pointer to data buffer (uint8_t or uint16_t data elements).
684   * @param Size    Amount of data elements (uint8_t or uint16_t) to be received.
685   * @param RxLen   Number of data elements finally received
686   *                (could be lower than Size, in case reception ends on IDLE event)
687   * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
688   * @retval HAL status
689   */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)690 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
691                                            uint32_t Timeout)
692 {
693   uint8_t  *pdata8bits;
694   uint16_t *pdata16bits;
695   uint16_t uhMask;
696   uint32_t tickstart;
697 
698   /* Check that a Rx process is not already ongoing */
699   if (huart->RxState == HAL_UART_STATE_READY)
700   {
701     if ((pData == NULL) || (Size == 0U))
702     {
703       return  HAL_ERROR;
704     }
705 
706     __HAL_LOCK(huart);
707 
708     huart->ErrorCode = HAL_UART_ERROR_NONE;
709     huart->RxState = HAL_UART_STATE_BUSY_RX;
710     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
711 
712     /* Init tickstart for timeout management */
713     tickstart = HAL_GetTick();
714 
715     huart->RxXferSize  = Size;
716     huart->RxXferCount = Size;
717 
718     /* Computation of UART mask to apply to RDR register */
719     UART_MASK_COMPUTATION(huart);
720     uhMask = huart->Mask;
721 
722     /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
723     if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
724     {
725       pdata8bits  = NULL;
726       pdata16bits = (uint16_t *) pData;
727     }
728     else
729     {
730       pdata8bits  = pData;
731       pdata16bits = NULL;
732     }
733 
734     __HAL_UNLOCK(huart);
735 
736     /* Initialize output number of received elements */
737     *RxLen = 0U;
738 
739     /* as long as data have to be received */
740     while (huart->RxXferCount > 0U)
741     {
742       /* Check if IDLE flag is set */
743       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
744       {
745         /* Clear IDLE flag in ISR */
746         __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
747 
748         /* If Set, but no data ever received, clear flag without exiting loop */
749         /* If Set, and data has already been received, this means Idle Event is valid : End reception */
750         if (*RxLen > 0U)
751         {
752           huart->RxState = HAL_UART_STATE_READY;
753 
754           return HAL_OK;
755         }
756       }
757 
758       /* Check if RXNE flag is set */
759       if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
760       {
761         if (pdata8bits == NULL)
762         {
763           *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
764           pdata16bits++;
765         }
766         else
767         {
768           *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
769           pdata8bits++;
770         }
771         /* Increment number of received elements */
772         *RxLen += 1U;
773         huart->RxXferCount--;
774       }
775 
776       /* Check for the Timeout */
777       if (Timeout != HAL_MAX_DELAY)
778       {
779         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
780         {
781           huart->RxState = HAL_UART_STATE_READY;
782 
783           return HAL_TIMEOUT;
784         }
785       }
786     }
787 
788     /* Set number of received elements in output parameter : RxLen */
789     *RxLen = huart->RxXferSize - huart->RxXferCount;
790     /* At end of Rx process, restore huart->RxState to Ready */
791     huart->RxState = HAL_UART_STATE_READY;
792 
793     return HAL_OK;
794   }
795   else
796   {
797     return HAL_BUSY;
798   }
799 }
800 
801 /**
802   * @brief Receive an amount of data in interrupt mode till either the expected number of data
803   *        is received or an IDLE event occurs.
804   * @note  Reception is initiated by this function call. Further progress of reception is achieved thanks
805   *        to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
806   *        number of received data elements.
807   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
808   *        the received data is handled as a set of uint16_t. In this case, Size must indicate the number
809   *        of uint16_t available through pData.
810   * @param huart UART handle.
811   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
812   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
813   * @retval HAL status
814   */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)815 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
816 {
817   HAL_StatusTypeDef status;
818 
819   /* Check that a Rx process is not already ongoing */
820   if (huart->RxState == HAL_UART_STATE_READY)
821   {
822     if ((pData == NULL) || (Size == 0U))
823     {
824       return HAL_ERROR;
825     }
826 
827     __HAL_LOCK(huart);
828 
829     /* Set Reception type to reception till IDLE Event*/
830     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
831 
832     status =  UART_Start_Receive_IT(huart, pData, Size);
833 
834     /* Check Rx process has been successfully started */
835     if (status == HAL_OK)
836     {
837       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
838       {
839         __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
840         ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
841       }
842       else
843       {
844         /* In case of errors already pending when reception is started,
845            Interrupts may have already been raised and lead to reception abortion.
846            (Overrun error for instance).
847            In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
848         status = HAL_ERROR;
849       }
850     }
851 
852     return status;
853   }
854   else
855   {
856     return HAL_BUSY;
857   }
858 }
859 
860 /**
861   * @brief Receive an amount of data in DMA mode till either the expected number
862   *        of data is received or an IDLE event occurs.
863   * @note  Reception is initiated by this function call. Further progress of reception is achieved thanks
864   *        to DMA services, transferring automatically received data elements in user reception buffer and
865   *        calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
866   *        reception phase as ended. In all cases, callback execution will indicate number of received data elements.
867   * @note  When the UART parity is enabled (PCE = 1), the received data contain
868   *        the parity bit (MSB position).
869   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
870   *        the received data is handled as a set of uint16_t. In this case, Size must indicate the number
871   *        of uint16_t available through pData.
872   * @param huart UART handle.
873   * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
874   * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
875   * @retval HAL status
876   */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)877 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
878 {
879   HAL_StatusTypeDef status;
880 
881   /* Check that a Rx process is not already ongoing */
882   if (huart->RxState == HAL_UART_STATE_READY)
883   {
884     if ((pData == NULL) || (Size == 0U))
885     {
886       return HAL_ERROR;
887     }
888 
889     __HAL_LOCK(huart);
890 
891     /* Set Reception type to reception till IDLE Event*/
892     huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
893 
894     status =  UART_Start_Receive_DMA(huart, pData, Size);
895 
896     /* Check Rx process has been successfully started */
897     if (status == HAL_OK)
898     {
899       if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
900       {
901         __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
902         ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
903       }
904       else
905       {
906         /* In case of errors already pending when reception is started,
907            Interrupts may have already been raised and lead to reception abortion.
908            (Overrun error for instance).
909            In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
910         status = HAL_ERROR;
911       }
912     }
913 
914     return status;
915   }
916   else
917   {
918     return HAL_BUSY;
919   }
920 }
921 
922 /**
923   * @brief Set autonomous mode Configuration.
924   * @param huart     UART handle.
925   * @param sConfig   Autonomous mode structure parameters.
926   * @retval HAL status
927   */
HAL_UARTEx_SetConfigAutonomousMode(UART_HandleTypeDef * huart,UART_AutonomousModeConfTypeDef * sConfig)928 HAL_StatusTypeDef HAL_UARTEx_SetConfigAutonomousMode(UART_HandleTypeDef *huart, UART_AutonomousModeConfTypeDef *sConfig)
929 {
930   uint32_t tmpreg;
931 
932   if (huart->gState == HAL_UART_STATE_READY)
933   {
934     /* Check the parameters */
935     assert_param(IS_UART_TRIGGER_POLARITY(sConfig->TriggerPolarity));
936     assert_param(IS_UART_IDLE_FRAME_TRANSMIT(sConfig->IdleFrame));
937     assert_param(IS_UART_TX_DATA_SIZE(sConfig->DataSize));
938     if (IS_LPUART_INSTANCE(huart->Instance))
939     {
940       assert_param(IS_LPUART_TRIGGER_SELECTION(sConfig->TriggerSelection));
941     }
942     else
943     {
944       assert_param(IS_UART_TRIGGER_SELECTION(sConfig->TriggerSelection));
945     }
946 
947     /* Process Locked */
948     __HAL_LOCK(huart);
949 
950     huart->gState = HAL_UART_STATE_BUSY;
951 
952     /* Disable UART */
953     __HAL_UART_DISABLE(huart);
954 
955     /* Disable Transmitter */
956     CLEAR_BIT(huart->Instance->CR1, USART_CR1_TE);
957 
958     /* Clear AUTOCR register */
959     CLEAR_REG(huart->Instance->AUTOCR);
960 
961     /* UART AUTOCR Configuration */
962     tmpreg = ((sConfig->DataSize << USART_AUTOCR_TDN_Pos) | (sConfig->TriggerPolarity) | \
963               (sConfig->AutonomousModeState) | (sConfig->IdleFrame) | \
964               (sConfig->TriggerSelection << USART_AUTOCR_TRIGSEL_Pos));
965 
966     WRITE_REG(huart->Instance->AUTOCR, tmpreg);
967 
968     /* Enable UART */
969     __HAL_UART_ENABLE(huart);
970 
971     huart->gState = HAL_UART_STATE_READY;
972 
973     /* Process Unlocked */
974     __HAL_UNLOCK(huart);
975 
976     return HAL_OK;
977   }
978   else
979   {
980     return HAL_BUSY;
981   }
982 }
983 
984 /**
985   * @brief Get autonomous mode Configuration.
986   * @param huart     UART handle.
987   * @param sConfig   Autonomous mode structure parameters.
988   * @retval HAL status
989   */
HAL_UARTEx_GetConfigAutonomousMode(UART_HandleTypeDef * huart,UART_AutonomousModeConfTypeDef * sConfig)990 HAL_StatusTypeDef HAL_UARTEx_GetConfigAutonomousMode(UART_HandleTypeDef *huart, UART_AutonomousModeConfTypeDef *sConfig)
991 {
992   uint32_t tmpreg;
993 
994   /* Read AUTOCR register */
995   tmpreg = READ_REG(huart->Instance->AUTOCR);
996 
997   /* Fill Autonomous structure parameter */
998   sConfig->AutonomousModeState = (tmpreg & USART_AUTOCR_TRIGEN);
999   sConfig->TriggerSelection = ((tmpreg & USART_AUTOCR_TRIGSEL) >> USART_AUTOCR_TRIGSEL_Pos);
1000   sConfig->TriggerPolarity = (tmpreg & USART_AUTOCR_TRIGPOL);
1001   sConfig->IdleFrame = (tmpreg & USART_AUTOCR_IDLEDIS);
1002   sConfig->DataSize = (tmpreg & USART_AUTOCR_TDN);
1003 
1004   return HAL_OK;
1005 }
1006 
1007 /**
1008   * @brief Clear autonomous mode Configuration.
1009   * @param huart  UART handle.
1010   * @retval HAL status
1011   */
HAL_UARTEx_ClearConfigAutonomousMode(UART_HandleTypeDef * huart)1012 HAL_StatusTypeDef HAL_UARTEx_ClearConfigAutonomousMode(UART_HandleTypeDef *huart)
1013 {
1014   if (huart->gState == HAL_UART_STATE_READY)
1015   {
1016     /* Process Locked */
1017     __HAL_LOCK(huart);
1018 
1019     huart->gState = HAL_UART_STATE_BUSY;
1020 
1021     /* Disable UART */
1022     __HAL_UART_DISABLE(huart);
1023 
1024     /* Clear AUTOCR register */
1025     CLEAR_REG(huart->Instance->AUTOCR);
1026 
1027     /* Enable UART */
1028     __HAL_UART_ENABLE(huart);
1029 
1030     huart->gState = HAL_UART_STATE_READY;
1031 
1032     /* Process Unlocked */
1033     __HAL_UNLOCK(huart);
1034 
1035     return HAL_OK;
1036   }
1037   else
1038   {
1039     return HAL_BUSY;
1040   }
1041 }
1042 /**
1043   * @}
1044   */
1045 
1046 /**
1047   * @}
1048   */
1049 
1050 /** @addtogroup UARTEx_Private_Functions
1051   * @{
1052   */
1053 
1054 /**
1055   * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
1056   * @param huart           UART handle.
1057   * @param WakeUpSelection UART wake up from stop mode parameters.
1058   * @retval None
1059   */
UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)1060 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
1061 {
1062   assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
1063 
1064   /* Set the USART address length */
1065   MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
1066 
1067   /* Set the USART address node */
1068   MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
1069 }
1070 
1071 /**
1072   * @brief Calculate the number of data to process in RX/TX ISR.
1073   * @note The RX FIFO depth and the TX FIFO depth is extracted from
1074   *       the UART configuration registers.
1075   * @param huart UART handle.
1076   * @retval None
1077   */
UARTEx_SetNbDataToProcess(UART_HandleTypeDef * huart)1078 static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart)
1079 {
1080   uint8_t rx_fifo_depth;
1081   uint8_t tx_fifo_depth;
1082   uint8_t rx_fifo_threshold;
1083   uint8_t tx_fifo_threshold;
1084   static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U};
1085   static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U};
1086 
1087   if (huart->FifoMode == UART_FIFOMODE_DISABLE)
1088   {
1089     huart->NbTxDataToProcess = 1U;
1090     huart->NbRxDataToProcess = 1U;
1091   }
1092   else
1093   {
1094     rx_fifo_depth = RX_FIFO_DEPTH;
1095     tx_fifo_depth = TX_FIFO_DEPTH;
1096     rx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos);
1097     tx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos);
1098     huart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) /
1099                                (uint16_t)denominator[tx_fifo_threshold];
1100     huart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) /
1101                                (uint16_t)denominator[rx_fifo_threshold];
1102   }
1103 }
1104 /**
1105   * @}
1106   */
1107 
1108 #endif /* HAL_UART_MODULE_ENABLED */
1109 
1110 /**
1111   * @}
1112   */
1113 
1114 /**
1115   * @}
1116   */
1117