1 /**
2 ******************************************************************************
3 * @file stm32h5xx_hal_rtc.c
4 * @author MCD Application Team
5 * @brief RTC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Real-Time Clock (RTC) peripheral:
8 * + Initialization/de-initialization functions
9 * + Calendar (Time and Date) configuration
10 * + Alarms (Alarm A and Alarm B) configuration
11 * + WakeUp Timer configuration
12 * + TimeStamp configuration
13 * + Tampers configuration
14 * + Backup Data Registers configuration
15 * + RTC Tamper and TimeStamp Pins Selection
16 * + Interrupts and flags management
17 *
18 ******************************************************************************
19 * @attention
20 *
21 * Copyright (c) 2022 STMicroelectronics.
22 * All rights reserved.
23 *
24 * This software is licensed under terms that can be found in the LICENSE file
25 * in the root directory of this software component.
26 * If no LICENSE file comes with this software, it is provided AS-IS.
27 *
28 ******************************************************************************
29 @verbatim
30 ===============================================================================
31 ##### RTC Operating Condition #####
32 ===============================================================================
33 [..] The real-time clock (RTC) and the RTC backup registers can be powered
34 from the VBAT voltage when the main VDD supply is powered off.
35 To retain the content of the RTC backup registers and supply the RTC
36 when VDD is turned off, VBAT pin can be connected to an optional
37 standby voltage supplied by a battery or by another source.
38
39 ##### Backup Domain Reset #####
40 ===============================================================================
41 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
42 to their reset values.
43 A backup domain reset is generated when one of the following events occurs:
44 (#) Software reset, triggered by setting the BDRST bit in the
45 RCC Backup domain control register (RCC_BDCR).
46 (#) VDD or VBAT power on, if both supplies have previously been powered off.
47 (#) Tamper detection event resets all data backup registers.
48
49 ##### Backup Domain Access #####
50 ==================================================================
51 [..] After reset, the backup domain (RTC registers and RTC backup data registers)
52 is protected against possible unwanted write accesses.
53 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
54 (+) Enable the Power Controller (PWR) APB1 interface clock using the
55 __HAL_RCC_PWR_CLK_ENABLE() function.
56 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
57 (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
58 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
59
60 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
61 (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
62 PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
63 (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
64
65 ##### How to use RTC Driver #####
66 ===================================================================
67 [..]
68 (+) Enable the RTC domain access (see description in the section above).
69 (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
70 format using the HAL_RTC_Init() function.
71
72 *** Time and Date configuration ***
73 ===================================
74 [..]
75 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
76 and HAL_RTC_SetDate() functions.
77 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
78
79 *** Alarm configuration ***
80 ===========================
81 [..]
82 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
83 You can also configure the RTC Alarm with interrupt mode using the
84 HAL_RTC_SetAlarm_IT() function.
85 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
86
87 ##### RTC and low power modes #####
88 ==================================================================
89 [..] The MCU can be woken up from a low power mode by an RTC alternate
90 function.
91 [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
92 RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
93 These RTC alternate functions can wake up the system from the Stop and
94 Standby low power modes.
95 [..] The system can also wake up from low power modes without depending
96 on an external interrupt (Auto-wakeup mode), by using the RTC alarm
97 or the RTC wakeup events.
98 [..] The RTC provides a programmable time base for waking up from the
99 Stop or Standby mode at regular intervals.
100 Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
101 is LSE or LSI.
102
103 *** Callback registration ***
104 =============================================
105 When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
106 not defined, the callback registration feature is not available and all callbacks
107 are set to the corresponding weak functions. This is the recommended configuration
108 in order to optimize memory/code consumption footprint/performances.
109
110 The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1
111 allows the user to configure dynamically the driver callbacks.
112 Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback.
113
114 Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks:
115 (+) AlarmAEventCallback : RTC Alarm A Event callback.
116 (+) AlarmBEventCallback : RTC Alarm B Event callback.
117 (+) TimeStampEventCallback : RTC TimeStamp Event callback.
118 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
119 (+) SSRUEventCallback : RTC SSRU Event callback.
120 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
121 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
122 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
123 (+) Tamper4EventCallback : RTC Tamper 4 Event callback.
124 (+) Tamper5EventCallback : RTC Tamper 5 Event callback.
125 (+) Tamper6EventCallback : RTC Tamper 6 Event callback.
126 (+) Tamper7EventCallback : RTC Tamper 7 Event callback.
127 (+) Tamper8EventCallback : RTC Tamper 8 Event callback.
128 (+) InternalTamper1EventCallback : RTC InternalTamper 1 Event callback.
129 (+) InternalTamper2EventCallback : RTC InternalTamper 2 Event callback.
130 (+) InternalTamper3EventCallback : RTC InternalTamper 3 Event callback.
131 (+) InternalTamper4EventCallback : RTC InternalTamper 4 Event callback.
132 (+) InternalTamper5EventCallback : RTC InternalTamper 5 Event callback.
133 (+) InternalTamper6EventCallback : RTC InternalTamper 6 Event callback.
134 (+) InternalTamper7EventCallback : RTC InternalTamper 7 Event callback.
135 (+) InternalTamper8EventCallback : RTC InternalTamper 8 Event callback.
136 (+) InternalTamper9EventCallback : RTC InternalTamper 9 Event callback.
137 (+) InternalTamper11EventCallback : RTC InternalTamper 11 Event callback.
138 (+) InternalTamper12EventCallback : RTC InternalTamper 12 Event callback.
139 (+) InternalTamper13EventCallback : RTC InternalTamper 13 Event callback.
140 (+) InternalTamper15EventCallback : RTC InternalTamper 15 Event callback.
141 (+) MspInitCallback : RTC MspInit callback.
142 (+) MspDeInitCallback : RTC MspDeInit callback.
143 This function takes as parameters the HAL peripheral handle, the Callback ID
144 and a pointer to the user callback function.
145
146 Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default
147 weak function.
148 @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
149 and the Callback ID.
150 This function allows to reset following callbacks:
151 (+) AlarmAEventCallback : RTC Alarm A Event callback.
152 (+) AlarmBEventCallback : RTC Alarm B Event callback.
153 (+) TimeStampEventCallback : RTC TimeStamp Event callback.
154 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
155 (+) SSRUEventCallback : RTC SSRU Event callback.
156 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
157 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
158 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
159 (+) Tamper4EventCallback : RTC Tamper 4 Event callback.
160 (+) Tamper5EventCallback : RTC Tamper 5 Event callback.
161 (+) Tamper6EventCallback : RTC Tamper 6 Event callback.
162 (+) Tamper7EventCallback : RTC Tamper 7 Event callback.
163 (+) Tamper8EventCallback : RTC Tamper 8 Event callback.
164 (+) InternalTamper1EventCallback : RTC InternalTamper 1 Event callback.
165 (+) InternalTamper2EventCallback : RTC InternalTamper 2 Event callback.
166 (+) InternalTamper3EventCallback : RTC InternalTamper 3 Event callback.
167 (+) InternalTamper4EventCallback : RTC InternalTamper 4 Event callback.
168 (+) InternalTamper5EventCallback : RTC InternalTamper 5 Event callback.
169 (+) InternalTamper6EventCallback : RTC InternalTamper 6 Event callback.
170 (+) InternalTamper7EventCallback : RTC InternalTamper 7 Event callback.
171 (+) InternalTamper8EventCallback : RTC InternalTamper 8 Event callback.
172 (+) InternalTamper9EventCallback : RTC InternalTamper 9 Event callback.
173 (+) InternalTamper11EventCallback : RTC InternalTamper 11 Event callback.
174 (+) InternalTamper12EventCallback : RTC InternalTamper 12 Event callback.
175 (+) InternalTamper13EventCallback : RTC InternalTamper 13 Event callback.
176 (+) InternalTamper15EventCallback : RTC InternalTamper 15 Event callback.
177 (+) MspInitCallback : RTC MspInit callback.
178 (+) MspDeInitCallback : RTC MspDeInit callback.
179
180 By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
181 all callbacks are set to the corresponding weak functions :
182 examples @ref AlarmAEventCallback(), @ref TimeStampEventCallback().
183 Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
184 in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null
185 (not registered beforehand).
186 If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit()
187 keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
188
189 Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
190 Exception done MspInit/MspDeInit that can be registered/unregistered
191 in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
192 thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
193 In that case first register the MspInit/MspDeInit user callbacks
194 using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit()
195 or @ref HAL_RTC_Init() function.
196
197 When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
198 not defined, the callback registration feature is not available and all callbacks
199 are set to the corresponding weak functions.
200
201 @endverbatim
202 */
203
204 /* Includes ------------------------------------------------------------------*/
205 #include "stm32h5xx_hal.h"
206
207 /** @addtogroup STM32H5xx_HAL_Driver
208 * @{
209 */
210
211
212 /** @addtogroup RTC
213 * @brief RTC HAL module driver
214 * @{
215 */
216
217 #ifdef HAL_RTC_MODULE_ENABLED
218
219 /* Private typedef -----------------------------------------------------------*/
220 /* Private define ------------------------------------------------------------*/
221 /* Private macro -------------------------------------------------------------*/
222 /* Private variables ---------------------------------------------------------*/
223 /* Private function prototypes -----------------------------------------------*/
224 /* Exported functions --------------------------------------------------------*/
225
226 /** @addtogroup RTC_Exported_Functions
227 * @{
228 */
229
230 /** @addtogroup RTC_Exported_Functions_Group1
231 * @brief Initialization and Configuration functions
232 *
233 @verbatim
234 ===============================================================================
235 ##### Initialization and de-initialization functions #####
236 ===============================================================================
237 [..] This section provides functions allowing to initialize and configure the
238 RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
239 RTC registers Write protection, enter and exit the RTC initialization mode,
240 RTC registers synchronization check and reference clock detection enable.
241 (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
242 It is split into 2 programmable prescalers to minimize power consumption.
243 (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
244 (++) When both prescalers are used, it is recommended to configure the
245 asynchronous prescaler to a high value to minimize power consumption.
246 (#) All RTC registers are Write protected. Writing to the RTC registers
247 is enabled by writing a key into the Write Protection register, RTC_WPR.
248 (#) To configure the RTC Calendar, user application should enter
249 initialization mode. In this mode, the calendar counter is stopped
250 and its value can be updated. When the initialization sequence is
251 complete, the calendar restarts counting after 4 RTCCLK cycles.
252 (#) To read the calendar through the shadow registers after Calendar
253 initialization, calendar update or after wakeup from low power modes
254 the software must first clear the RSF flag. The software must then
255 wait until it is set again before reading the calendar, which means
256 that the calendar registers have been correctly copied into the
257 RTC_TR and RTC_DR shadow registers. The HAL_RTC_WaitForSynchro() function
258 implements the above software sequence (RSF clear and RSF check).
259
260 @endverbatim
261 * @{
262 */
263
264 /**
265 * @brief Initialize the RTC peripheral
266 * @param hrtc RTC handle
267 * @retval HAL status
268 */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)269 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
270 {
271 HAL_StatusTypeDef status = HAL_ERROR;
272
273 /* Check the RTC peripheral state */
274 if (hrtc != NULL)
275 {
276 /* Check the parameters */
277 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
278 assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
279 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
280 assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
281 #if defined(RTC_CR_OSEL)
282 assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
283 assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
284 assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
285 assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
286 #endif /* RTC_CR_OSEL */
287 #if defined(RTC_CR_OUT2EN)
288 assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
289 #endif /* RTC_CR_OUT2EN */
290 assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
291 assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
292
293 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
294 if (hrtc->State == HAL_RTC_STATE_RESET)
295 {
296 /* Allocate lock resource and initialize it */
297 hrtc->Lock = HAL_UNLOCKED;
298
299 /* Legacy weak AlarmAEventCallback */
300 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;
301 /* Legacy weak AlarmBEventCallback */
302 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;
303 /* Legacy weak TimeStampEventCallback */
304 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;
305 /* Legacy weak WakeUpTimerEventCallback */
306 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback;
307 /* Legacy weak SSRUEventCallback */
308 hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;
309 /* Legacy weak Tamper1EventCallback */
310 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;
311 /* Legacy weak Tamper2EventCallback */
312 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;
313 /* Legacy weak Tamper3EventCallback */
314 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;
315 /* Legacy weak Tamper4EventCallback */
316 hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback;
317 /* Legacy weak Tamper5EventCallback */
318 hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback;
319 /* Legacy weak Tamper6EventCallback */
320 hrtc->Tamper6EventCallback = HAL_RTCEx_Tamper6EventCallback;
321 /* Legacy weak Tamper7EventCallback */
322 hrtc->Tamper7EventCallback = HAL_RTCEx_Tamper7EventCallback;
323 /* Legacy weak Tamper8EventCallback */
324 hrtc->Tamper8EventCallback = HAL_RTCEx_Tamper8EventCallback;
325 /* Legacy weak InternalTamper1EventCallback */
326 hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback;
327 /* Legacy weak InternalTamper2EventCallback */
328 hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback;
329 /* Legacy weak InternalTamper3EventCallback */
330 hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback;
331 /* Legacy weak InternalTamper4EventCallback */
332 hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback;
333 /* Legacy weak InternalTamper5EventCallback */
334 hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback;
335 /* Legacy weak InternalTamper6EventCallback */
336 hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback;
337 /* Legacy weak InternalTamper7EventCallback */
338 hrtc->InternalTamper7EventCallback = HAL_RTCEx_InternalTamper7EventCallback;
339 /* Legacy weak InternalTamper8EventCallback */
340 hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback;
341 /* Legacy weak InternalTamper9EventCallback */
342 hrtc->InternalTamper9EventCallback = HAL_RTCEx_InternalTamper9EventCallback;
343 /* Legacy weak InternalTamper11EventCallback */
344 hrtc->InternalTamper11EventCallback = HAL_RTCEx_InternalTamper11EventCallback;
345 /* Legacy weak InternalTamper12EventCallback */
346 hrtc->InternalTamper12EventCallback = HAL_RTCEx_InternalTamper12EventCallback;
347 /* Legacy weak InternalTamper13EventCallback */
348 hrtc->InternalTamper13EventCallback = HAL_RTCEx_InternalTamper13EventCallback;
349 /* Legacy weak InternalTamper15EventCallback */
350 hrtc->InternalTamper15EventCallback = HAL_RTCEx_InternalTamper15EventCallback;
351
352 if (hrtc->MspInitCallback == NULL)
353 {
354 hrtc->MspInitCallback = HAL_RTC_MspInit;
355 }
356 /* Init the low level hardware */
357 hrtc->MspInitCallback(hrtc);
358
359 if (hrtc->MspDeInitCallback == NULL)
360 {
361 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
362 }
363 }
364 #else
365 if (hrtc->State == HAL_RTC_STATE_RESET)
366 {
367 /* Allocate lock resource and initialize it */
368 hrtc->Lock = HAL_UNLOCKED;
369
370 /* Initialize RTC MSP */
371 HAL_RTC_MspInit(hrtc);
372 }
373 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
374
375 /* Set RTC state */
376 hrtc->State = HAL_RTC_STATE_BUSY;
377
378 /* Check if the calendar has been not initialized */
379 if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
380 {
381 /* Disable the write protection for RTC registers */
382 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
383
384 /* Enter Initialization mode */
385 status = RTC_EnterInitMode(hrtc);
386 if (status == HAL_OK)
387 {
388 #if defined(RTC_CR_OSEL)
389 /* Clear RTC_CR FMT, OSEL and POL Bits */
390 CLEAR_BIT(RTC->CR, (RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE));
391
392 /* Set RTC_CR register */
393 SET_BIT(RTC->CR, (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity));
394 #else
395 /* Clear RTC_CR FMT Bits */
396 CLEAR_BIT(RTC->CR, RTC_CR_FMT);
397
398 /* Set RTC_CR register */
399 SET_BIT(RTC->CR, hrtc->Init.HourFormat);
400 #endif /* RTC_CR_OSEL */
401
402 /* Configure the RTC PRER */
403 WRITE_REG(RTC->PRER, ((hrtc->Init.SynchPrediv) | (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos)));
404
405 /* Configure the Binary mode */
406 MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
407
408 /* Exit Initialization mode */
409 status = RTC_ExitInitMode(hrtc);
410
411 #if defined(RTC_CR_OSEL)
412 if (status == HAL_OK)
413 {
414 #if defined(RTC_CR_OUT2EN)
415 MODIFY_REG(RTC->CR, \
416 RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN, \
417 hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
418 #else
419 MODIFY_REG(RTC->CR, \
420 RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE, \
421 hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType);
422 #endif /* RTC_CR_OUT2EN */
423 }
424 #endif /* RTC_CR_OSEL */
425 }
426
427 /* Enable the write protection for RTC registers */
428 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
429
430 }
431 else
432 {
433 /* Calendar is already initialized */
434 /* Set flag to OK */
435 status = HAL_OK;
436 }
437
438 if (status == HAL_OK)
439 {
440 /* Change RTC state */
441 hrtc->State = HAL_RTC_STATE_READY;
442 }
443 }
444
445 return status;
446 }
447
448 /**
449 * @brief DeInitialize the RTC peripheral.
450 * @note This function does not reset the RTC Backup Data registers.
451 * @param hrtc RTC handle
452 * @retval HAL status
453 */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)454 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
455 {
456 HAL_StatusTypeDef status;
457
458 /* Set RTC state */
459 hrtc->State = HAL_RTC_STATE_BUSY;
460
461 /* Disable the write protection for RTC registers */
462 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
463
464 /* Enter Initialization mode */
465 status = RTC_EnterInitMode(hrtc);
466 if (status == HAL_OK)
467 {
468 /* Reset all RTC CR register bits */
469 CLEAR_REG(RTC->CR);
470 WRITE_REG(RTC->DR, (uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
471 CLEAR_REG(RTC->TR);
472 WRITE_REG(RTC->WUTR, RTC_WUTR_WUT);
473 WRITE_REG(RTC->PRER, ((uint32_t)(RTC_PRER_PREDIV_A | 0xFFU)));
474 CLEAR_REG(RTC->ALRMAR);
475 CLEAR_REG(RTC->ALRMBR);
476 CLEAR_REG(RTC->SHIFTR);
477 CLEAR_REG(RTC->CALR);
478 CLEAR_REG(RTC->ALRMASSR);
479 CLEAR_REG(RTC->ALRMBSSR);
480 CLEAR_BIT(RTC->ICSR, (RTC_ICSR_BCDU_Msk | RTC_ICSR_BIN_Msk));
481 WRITE_REG(RTC->SCR, RTC_SCR_CITSF | RTC_SCR_CTSOVF | RTC_SCR_CTSF | RTC_SCR_CWUTF | RTC_SCR_CALRBF | \
482 RTC_SCR_CALRAF);
483 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
484 CLEAR_REG(RTC->SECCFGR);
485 #endif /* (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
486 #if defined (RTC_PRIVCFGR_ALRAPRIV)
487 CLEAR_REG(RTC->PRIVCFGR);
488 #endif /* RTC_PRIVCFGR_ALRAPRIV */
489
490 /* Exit initialization mode */
491 status = RTC_ExitInitMode(hrtc);
492 if (status == HAL_OK)
493 {
494 /* Reset TAMP registers */
495 CLEAR_REG(TAMP->CR1);
496 CLEAR_REG(TAMP->CR2);
497 CLEAR_REG(TAMP->CR3);
498 CLEAR_REG(TAMP->FLTCR);
499 WRITE_REG(TAMP->ATCR1, TAMP_ATCR1_ATCKSEL);
500 CLEAR_REG(TAMP->ATOR);
501 CLEAR_REG(TAMP->ATCR2);
502 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
503 CLEAR_REG(TAMP->SECCFGR);
504 #endif /* (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
505 #if defined (TAMP_PRIVCFGR_TAMPPRIV)
506 CLEAR_REG(TAMP->PRIVCFGR);
507 #endif /* TAMP_PRIVCFGR_TAMPPRIV */
508 }
509 }
510
511 /* Enable the write protection for RTC registers */
512 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
513
514 if (status == HAL_OK)
515 {
516 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
517 if (hrtc->MspDeInitCallback == NULL)
518 {
519 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
520 }
521
522 /* DeInit the low level hardware: CLOCK, NVIC.*/
523 hrtc->MspDeInitCallback(hrtc);
524
525 #else
526 /* De-Initialize RTC MSP */
527 HAL_RTC_MspDeInit(hrtc);
528 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
529
530 /* Change RTC state */
531 hrtc->State = HAL_RTC_STATE_RESET;
532 }
533
534 /* Release Lock */
535 __HAL_UNLOCK(hrtc);
536
537 return status;
538 }
539
540 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
541 /**
542 * @brief Register a User RTC Callback
543 * To be used instead of the weak predefined callback
544 * @param hrtc RTC handle
545 * @param CallbackID ID of the callback to be registered
546 * This parameter can be one of the following values:
547 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
548 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
549 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
550 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
551 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
552 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
553 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
554 * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID
555 * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID
556 * @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID Tamper 6 Callback ID
557 * @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID Tamper 7 Callback ID
558 * @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID Tamper 8 Callback ID
559 * @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
560 * @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
561 * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
562 * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
563 * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
564 * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
565 * @arg @ref HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID Internal Tamper 7 Callback ID
566 * @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
567 * @arg @ref HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID Internal Tamper 9 Callback ID
568 * @arg @ref HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID Internal Tamper 11 Callback ID
569 * @arg @ref HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID Internal Tamper 12 Callback ID
570 * @arg @ref HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID Internal Tamper 13 Callback ID
571 * @arg @ref HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID Internal Tamper 15 Callback ID
572 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
573 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
574 * @param pCallback pointer to the Callback function
575 * @note The HAL_RTC_RegisterCallback() may be called before HAL_RTC_Init() in HAL_RTC_STATE_RESET
576 * to register callbacks for HAL_RTC_MSPINIT_CB_ID and HAL_RTC_MSPDEINIT_CB_ID.
577 * @retval HAL status
578 */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)579 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID,
580 pRTC_CallbackTypeDef pCallback)
581 {
582 HAL_StatusTypeDef status = HAL_OK;
583
584 if (pCallback == NULL)
585 {
586 return HAL_ERROR;
587 }
588
589 if (HAL_RTC_STATE_READY == hrtc->State)
590 {
591 switch (CallbackID)
592 {
593 case HAL_RTC_ALARM_A_EVENT_CB_ID :
594 hrtc->AlarmAEventCallback = pCallback;
595 break;
596
597 case HAL_RTC_ALARM_B_EVENT_CB_ID :
598 hrtc->AlarmBEventCallback = pCallback;
599 break;
600
601 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
602 hrtc->TimeStampEventCallback = pCallback;
603 break;
604
605 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
606 hrtc->WakeUpTimerEventCallback = pCallback;
607 break;
608
609 case HAL_RTC_SSRU_EVENT_CB_ID :
610 hrtc->SSRUEventCallback = pCallback;
611 break;
612
613 case HAL_RTC_TAMPER1_EVENT_CB_ID :
614 hrtc->Tamper1EventCallback = pCallback;
615 break;
616
617 case HAL_RTC_TAMPER2_EVENT_CB_ID :
618 hrtc->Tamper2EventCallback = pCallback;
619 break;
620
621 case HAL_RTC_TAMPER3_EVENT_CB_ID :
622 hrtc->Tamper3EventCallback = pCallback;
623 break;
624
625 case HAL_RTC_TAMPER4_EVENT_CB_ID :
626 hrtc->Tamper4EventCallback = pCallback;
627 break;
628
629 case HAL_RTC_TAMPER5_EVENT_CB_ID :
630 hrtc->Tamper5EventCallback = pCallback;
631 break;
632
633 case HAL_RTC_TAMPER6_EVENT_CB_ID :
634 hrtc->Tamper6EventCallback = pCallback;
635 break;
636
637 case HAL_RTC_TAMPER7_EVENT_CB_ID :
638 hrtc->Tamper7EventCallback = pCallback;
639 break;
640
641 case HAL_RTC_TAMPER8_EVENT_CB_ID :
642 hrtc->Tamper8EventCallback = pCallback;
643 break;
644
645 case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
646 hrtc->InternalTamper1EventCallback = pCallback;
647 break;
648
649 case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
650 hrtc->InternalTamper2EventCallback = pCallback;
651 break;
652
653 case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
654 hrtc->InternalTamper3EventCallback = pCallback;
655 break;
656
657 case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
658 hrtc->InternalTamper4EventCallback = pCallback;
659 break;
660
661 case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
662 hrtc->InternalTamper5EventCallback = pCallback;
663 break;
664
665 case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
666 hrtc->InternalTamper6EventCallback = pCallback;
667 break;
668
669 case HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID :
670 hrtc->InternalTamper7EventCallback = pCallback;
671 break;
672
673 case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
674 hrtc->InternalTamper8EventCallback = pCallback;
675 break;
676
677 case HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID :
678 hrtc->InternalTamper9EventCallback = pCallback;
679 break;
680
681 case HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID :
682 hrtc->InternalTamper11EventCallback = pCallback;
683 break;
684
685 case HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID :
686 hrtc->InternalTamper12EventCallback = pCallback;
687 break;
688
689 case HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID :
690 hrtc->InternalTamper13EventCallback = pCallback;
691 break;
692
693 case HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID :
694 hrtc->InternalTamper15EventCallback = pCallback;
695 break;
696
697 case HAL_RTC_MSPINIT_CB_ID :
698 hrtc->MspInitCallback = pCallback;
699 break;
700
701 case HAL_RTC_MSPDEINIT_CB_ID :
702 hrtc->MspDeInitCallback = pCallback;
703 break;
704
705 default :
706 /* Return error status */
707 status = HAL_ERROR;
708 break;
709 }
710 }
711 else if (HAL_RTC_STATE_RESET == hrtc->State)
712 {
713 switch (CallbackID)
714 {
715 case HAL_RTC_MSPINIT_CB_ID :
716 hrtc->MspInitCallback = pCallback;
717 break;
718
719 case HAL_RTC_MSPDEINIT_CB_ID :
720 hrtc->MspDeInitCallback = pCallback;
721 break;
722
723 default :
724 /* Return error status */
725 status = HAL_ERROR;
726 break;
727 }
728 }
729 else
730 {
731 /* Return error status */
732 status = HAL_ERROR;
733 }
734
735 return status;
736 }
737
738 /**
739 * @brief Unregister an RTC Callback
740 * RTC callback is redirected to the weak predefined callback
741 * @param hrtc RTC handle
742 * @param CallbackID ID of the callback to be unregistered
743 * This parameter can be one of the following values:
744 * This parameter can be one of the following values:
745 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
746 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
747 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
748 * @arg @ref HAL_RTC_SSRU_EVENT_CB_ID SSRU Callback ID
749 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
750 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
751 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
752 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
753 * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID
754 * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID
755 * @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID Tamper 6 Callback ID
756 * @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID Tamper 7 Callback ID
757 * @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID Tamper 8 Callback ID
758 * @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
759 * @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
760 * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
761 * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
762 * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
763 * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
764 * @arg @ref HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID Internal Tamper 7 Callback ID
765 * @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
766 * @arg @ref HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID Internal Tamper 9 Callback ID
767 * @arg @ref HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID Internal Tamper 11 Callback ID
768 * @arg @ref HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID Internal Tamper 12 Callback ID
769 * @arg @ref HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID Internal Tamper 13 Callback ID
770 * @arg @ref HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID Internal Tamper 15 Callback ID
771 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
772 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
773 * @note The HAL_RTC_UnRegisterCallback() may be called before HAL_RTC_Init() in HAL_RTC_STATE_RESET
774 * to un-register callbacks for HAL_RTC_MSPINIT_CB_ID and HAL_RTC_MSPDEINIT_CB_ID.
775 * @retval HAL status
776 */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)777 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
778 {
779 HAL_StatusTypeDef status = HAL_OK;
780
781 if (HAL_RTC_STATE_READY == hrtc->State)
782 {
783 switch (CallbackID)
784 {
785 case HAL_RTC_ALARM_A_EVENT_CB_ID :
786 /* Legacy weak AlarmAEventCallback */
787 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;
788 break;
789
790 case HAL_RTC_ALARM_B_EVENT_CB_ID :
791 /* Legacy weak AlarmBEventCallback */
792 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;
793 break;
794
795 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
796 /* Legacy weak TimeStampEventCallback */
797 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;
798 break;
799
800 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
801 /* Legacy weak WakeUpTimerEventCallback */
802 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback;
803 break;
804
805 case HAL_RTC_SSRU_EVENT_CB_ID :
806 /* Legacy weak SSRUEventCallback */
807 hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;
808 break;
809
810 case HAL_RTC_TAMPER1_EVENT_CB_ID :
811 /* Legacy weak Tamper1EventCallback */
812 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;
813 break;
814
815 case HAL_RTC_TAMPER2_EVENT_CB_ID :
816 /* Legacy weak Tamper2EventCallback */
817 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;
818 break;
819
820 case HAL_RTC_TAMPER3_EVENT_CB_ID :
821 /* Legacy weak Tamper3EventCallback */
822 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;
823 break;
824
825 case HAL_RTC_TAMPER4_EVENT_CB_ID :
826 /* Legacy weak Tamper4EventCallback */
827 hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback;
828 break;
829
830 case HAL_RTC_TAMPER5_EVENT_CB_ID :
831 /* Legacy weak Tamper5EventCallback */
832 hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback;
833 break;
834
835 case HAL_RTC_TAMPER6_EVENT_CB_ID :
836 /* Legacy weak Tamper6EventCallback */
837 hrtc->Tamper6EventCallback = HAL_RTCEx_Tamper6EventCallback;
838 break;
839
840 case HAL_RTC_TAMPER7_EVENT_CB_ID :
841 /* Legacy weak Tamper7EventCallback */
842 hrtc->Tamper7EventCallback = HAL_RTCEx_Tamper7EventCallback;
843 break;
844
845 case HAL_RTC_TAMPER8_EVENT_CB_ID :
846 /* Legacy weak Tamper8EventCallback */
847 hrtc->Tamper8EventCallback = HAL_RTCEx_Tamper8EventCallback;
848 break;
849
850 case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
851 /* Legacy weak InternalTamper1EventCallback */
852 hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback;
853 break;
854
855 case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
856 /* Legacy weak InternalTamper2EventCallback */
857 hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback;
858 break;
859
860 case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
861 /* Legacy weak InternalTamper3EventCallback */
862 hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback;
863 break;
864
865 case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
866 /* Legacy weak InternalTamper4EventCallback */
867 hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback;
868 break;
869
870 case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
871 /* Legacy weak InternalTamper5EventCallback */
872 hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback;
873 break;
874
875 case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
876 /* Legacy weak InternalTamper6EventCallback */
877 hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback;
878 break;
879
880 case HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID :
881 /* Legacy weak InternalTamper7EventCallback */
882 hrtc->InternalTamper7EventCallback = HAL_RTCEx_InternalTamper7EventCallback;
883 break;
884
885 case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
886 /* Legacy weak InternalTamper8EventCallback */
887 hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback;
888 break;
889
890 case HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID :
891 /* Legacy weak InternalTamper9EventCallback */
892 hrtc->InternalTamper9EventCallback = HAL_RTCEx_InternalTamper9EventCallback;
893 break;
894
895 case HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID :
896 /* Legacy weak InternalTamper11EventCallback */
897 hrtc->InternalTamper11EventCallback = HAL_RTCEx_InternalTamper11EventCallback;
898 break;
899
900 case HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID :
901 /* Legacy weak InternalTamper12EventCallback */
902 hrtc->InternalTamper12EventCallback = HAL_RTCEx_InternalTamper12EventCallback;
903 break;
904
905 case HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID :
906 /* Legacy weak InternalTamper13EventCallback */
907 hrtc->InternalTamper13EventCallback = HAL_RTCEx_InternalTamper13EventCallback;
908 break;
909
910 case HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID :
911 /* Legacy weak InternalTamper15EventCallback */
912 hrtc->InternalTamper15EventCallback = HAL_RTCEx_InternalTamper15EventCallback;
913 break;
914
915 case HAL_RTC_MSPINIT_CB_ID :
916 hrtc->MspInitCallback = HAL_RTC_MspInit;
917 break;
918
919 case HAL_RTC_MSPDEINIT_CB_ID :
920 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
921 break;
922
923 default :
924 /* Return error status */
925 status = HAL_ERROR;
926 break;
927 }
928 }
929 else if (HAL_RTC_STATE_RESET == hrtc->State)
930 {
931 switch (CallbackID)
932 {
933 case HAL_RTC_MSPINIT_CB_ID :
934 hrtc->MspInitCallback = HAL_RTC_MspInit;
935 break;
936
937 case HAL_RTC_MSPDEINIT_CB_ID :
938 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
939 break;
940
941 default :
942 /* Return error status */
943 status = HAL_ERROR;
944 break;
945 }
946 }
947 else
948 {
949 /* Return error status */
950 status = HAL_ERROR;
951 }
952
953 return status;
954 }
955 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
956
957 /**
958 * @brief Initialize the RTC MSP.
959 * @param hrtc RTC handle
960 * @retval None
961 */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)962 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
963 {
964 /* Prevent unused argument(s) compilation warning */
965 UNUSED(hrtc);
966
967 /* NOTE : This function should not be modified, when the callback is needed,
968 the HAL_RTC_MspInit could be implemented in the user file
969 */
970 }
971
972 /**
973 * @brief DeInitialize the RTC MSP.
974 * @param hrtc RTC handle
975 * @retval None
976 */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)977 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
978 {
979 /* Prevent unused argument(s) compilation warning */
980 UNUSED(hrtc);
981
982 /* NOTE : This function should not be modified, when the callback is needed,
983 the HAL_RTC_MspDeInit could be implemented in the user file
984 */
985 }
986
987 /**
988 * @}
989 */
990
991 /** @addtogroup RTC_Exported_Functions_Group2
992 * @brief RTC Time and Date functions
993 *
994 @verbatim
995 ===============================================================================
996 ##### RTC Time and Date functions #####
997 ===============================================================================
998
999 [..] This section provides functions allowing to configure Time and Date features
1000
1001 @endverbatim
1002 * @{
1003 */
1004
1005 /**
1006 * @brief Set RTC current time.
1007 * @param hrtc RTC handle
1008 * @param sTime Pointer to Time structure
1009 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically
1010 * reset to 0xFFFFFFFF
1011 * else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to the
1012 * A 7-bit async prescaler (RTC_PRER_PREDIV_A)
1013 * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
1014 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1015 * else this parameter can be one of the following values
1016 * @arg RTC_FORMAT_BIN: Binary format
1017 * @arg RTC_FORMAT_BCD: BCD format
1018 * @retval HAL status
1019 */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1020 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1021 {
1022 uint32_t tmpreg;
1023 HAL_StatusTypeDef status;
1024
1025 #ifdef USE_FULL_ASSERT
1026 /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration */
1027 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1028 {
1029 /* Check the parameters */
1030 assert_param(IS_RTC_FORMAT(Format));
1031 }
1032 #endif /* USE_FULL_ASSERT */
1033
1034 /* Process Locked */
1035 __HAL_LOCK(hrtc);
1036
1037 /* Change RTC state */
1038 hrtc->State = HAL_RTC_STATE_BUSY;
1039
1040 /* Disable the write protection for RTC registers */
1041 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1042
1043 /* Enter Initialization mode */
1044 status = RTC_EnterInitMode(hrtc);
1045 if (status == HAL_OK)
1046 {
1047 /* Check Binary mode ((32-bit free-running counter) */
1048 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
1049 {
1050 if (Format == RTC_FORMAT_BIN)
1051 {
1052 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1053 {
1054 assert_param(IS_RTC_HOUR12(sTime->Hours));
1055 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1056 }
1057 else
1058 {
1059 sTime->TimeFormat = 0x00U;
1060 assert_param(IS_RTC_HOUR24(sTime->Hours));
1061 }
1062 assert_param(IS_RTC_MINUTES(sTime->Minutes));
1063 assert_param(IS_RTC_SECONDS(sTime->Seconds));
1064
1065 tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
1066 ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1067 ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
1068 (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
1069 }
1070 else
1071 {
1072 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1073 {
1074 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
1075 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1076 }
1077 else
1078 {
1079 sTime->TimeFormat = 0x00U;
1080 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
1081 }
1082 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
1083 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
1084 tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
1085 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1086 ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
1087 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
1088 }
1089
1090 /* Set the RTC_TR register */
1091 WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
1092
1093 /* Clear the bits to be configured */
1094 CLEAR_BIT(RTC->CR, RTC_CR_BKP);
1095 }
1096
1097 /* Exit Initialization mode */
1098 status = RTC_ExitInitMode(hrtc);
1099 }
1100
1101 /* Enable the write protection for RTC registers */
1102 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1103
1104 if (status == HAL_OK)
1105 {
1106 /* Change RTC state */
1107 hrtc->State = HAL_RTC_STATE_READY;
1108 }
1109
1110 /* Process Unlocked */
1111 __HAL_UNLOCK(hrtc);
1112
1113 return status;
1114 }
1115
1116 /**
1117 * @brief Get RTC current time.
1118 * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
1119 * value in second fraction ratio with time unit following generic formula:
1120 * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
1121 * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
1122 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1123 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1124 * Reading RTC current time locks the values in calendar shadow registers until Current date is read
1125 * to ensure consistency between the time and date values.
1126 * @param hrtc RTC handle
1127 * @param sTime
1128 * if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
1129 * else
1130 * Pointer to Time structure with Hours, Minutes and Seconds fields returned
1131 * with input format (BIN or BCD), also SubSeconds field returning the
1132 * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
1133 * factor to be used for second fraction ratio computation.
1134 * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
1135 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1136 * else this parameter can be one of the following values:
1137 * @arg RTC_FORMAT_BIN: Binary format
1138 * @arg RTC_FORMAT_BCD: BCD format
1139 * @retval HAL status
1140 */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1141 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1142 {
1143 uint32_t tmpreg;
1144
1145 /* Prevent unused argument(s) compilation warning */
1146 UNUSED(hrtc);
1147
1148 /* Get subseconds structure field from the corresponding register */
1149 sTime->SubSeconds = READ_REG(RTC->SSR);
1150
1151 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
1152 {
1153 /* Check the parameters */
1154 assert_param(IS_RTC_FORMAT(Format));
1155
1156 /* Get SecondFraction structure field from the corresponding register field */
1157 sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
1158
1159 /* Get the TR register */
1160 tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
1161
1162 /* Fill the structure fields with the read parameters */
1163 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
1164 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
1165 sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
1166 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
1167
1168 /* Check the input parameters format */
1169 if (Format == RTC_FORMAT_BIN)
1170 {
1171 /* Convert the time structure parameters to Binary format */
1172 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
1173 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
1174 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
1175 }
1176 }
1177
1178 return HAL_OK;
1179 }
1180
1181 /**
1182 * @brief Set RTC current date.
1183 * @param hrtc RTC handle
1184 * @param sDate Pointer to date structure
1185 * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1186 * This parameter can be one of the following values:
1187 * @arg RTC_FORMAT_BIN: Binary format
1188 * @arg RTC_FORMAT_BCD: BCD format
1189 * @retval HAL status
1190 */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1191 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1192 {
1193 uint32_t datetmpreg;
1194 HAL_StatusTypeDef status;
1195
1196 /* Check the parameters */
1197 assert_param(IS_RTC_FORMAT(Format));
1198
1199 /* Process Locked */
1200 __HAL_LOCK(hrtc);
1201
1202 /* Change RTC state */
1203 hrtc->State = HAL_RTC_STATE_BUSY;
1204
1205 if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
1206 {
1207 sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
1208 }
1209
1210 assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
1211
1212 if (Format == RTC_FORMAT_BIN)
1213 {
1214 assert_param(IS_RTC_YEAR(sDate->Year));
1215 assert_param(IS_RTC_MONTH(sDate->Month));
1216 assert_param(IS_RTC_DATE(sDate->Date));
1217
1218 datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
1219 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
1220 ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
1221 ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
1222 }
1223 else
1224 {
1225 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
1226 assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
1227 assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
1228
1229 datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
1230 (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
1231 (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
1232 (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
1233 }
1234
1235 /* Disable the write protection for RTC registers */
1236 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1237
1238 /* Enter Initialization mode */
1239 status = RTC_EnterInitMode(hrtc);
1240 if (status == HAL_OK)
1241 {
1242 /* Set the RTC_DR register */
1243 WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
1244
1245 /* Exit Initialization mode */
1246 status = RTC_ExitInitMode(hrtc);
1247 }
1248
1249 /* Enable the write protection for RTC registers */
1250 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1251
1252 if (status == HAL_OK)
1253 {
1254 /* Change RTC state */
1255 hrtc->State = HAL_RTC_STATE_READY;
1256 }
1257
1258 /* Process Unlocked */
1259 __HAL_UNLOCK(hrtc);
1260
1261 return status;
1262 }
1263
1264 /**
1265 * @brief Get RTC current date.
1266 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1267 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1268 * Reading RTC current time locks the values in calendar shadow registers until Current date is read.
1269 * @param hrtc RTC handle
1270 * @param sDate Pointer to Date structure
1271 * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1272 * This parameter can be one of the following values:
1273 * @arg RTC_FORMAT_BIN: Binary format
1274 * @arg RTC_FORMAT_BCD: BCD format
1275 * @retval HAL status
1276 */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1277 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1278 {
1279 uint32_t datetmpreg;
1280
1281 /* Prevent unused argument(s) compilation warning */
1282 UNUSED(hrtc);
1283
1284 /* Check the parameters */
1285 assert_param(IS_RTC_FORMAT(Format));
1286
1287 /* Get the DR register */
1288 datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
1289
1290 /* Fill the structure fields with the read parameters */
1291 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1292 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1293 sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1294 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1295
1296 /* Check the input parameters format */
1297 if (Format == RTC_FORMAT_BIN)
1298 {
1299 /* Convert the date structure parameters to Binary format */
1300 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1301 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1302 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1303 }
1304 return HAL_OK;
1305 }
1306
1307 /**
1308 * @brief Daylight Saving Time, Add one hour to the calendar in one single operation
1309 * without going through the initialization procedure.
1310 * @param hrtc RTC handle
1311 * @retval None
1312 */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)1313 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
1314 {
1315 /* Prevent unused argument(s) compilation warning */
1316 UNUSED(hrtc);
1317
1318 /* Disable the write protection for RTC registers */
1319 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1320
1321 /* Set RTC_CR_ADD1H Bit */
1322 SET_BIT(RTC->CR, RTC_CR_ADD1H);
1323
1324 /* Enable the write protection for RTC registers */
1325 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1326 }
1327
1328 /**
1329 * @brief Daylight Saving Time, Subtract one hour from the calendar in one
1330 * single operation without going through the initialization procedure.
1331 * @param hrtc RTC handle
1332 * @retval None
1333 */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)1334 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
1335 {
1336 /* Prevent unused argument(s) compilation warning */
1337 UNUSED(hrtc);
1338
1339 /* Disable the write protection for RTC registers */
1340 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1341
1342 /* Set RTC_CR_SUB1H Bit */
1343 SET_BIT(RTC->CR, RTC_CR_SUB1H);
1344
1345 /* Enable the write protection for RTC registers */
1346 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1347 }
1348
1349 /**
1350 * @brief Daylight Saving Time, Set the store operation bit.
1351 * @note It can be used by the software in order to memorize the DST status.
1352 * @param hrtc RTC handle
1353 * @retval None
1354 */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)1355 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
1356 {
1357 /* Prevent unused argument(s) compilation warning */
1358 UNUSED(hrtc);
1359
1360 /* Disable the write protection for RTC registers */
1361 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1362
1363 /* Set RTC_CR_BKP Bit */
1364 SET_BIT(RTC->CR, RTC_CR_BKP);
1365
1366 /* Enable the write protection for RTC registers */
1367 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1368 }
1369
1370 /**
1371 * @brief Daylight Saving Time, Clear the store operation bit.
1372 * @param hrtc RTC handle
1373 * @retval None
1374 */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)1375 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
1376 {
1377 /* Prevent unused argument(s) compilation warning */
1378 UNUSED(hrtc);
1379
1380 /* Disable the write protection for RTC registers */
1381 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1382
1383 /* Clear RTC_CR_BKP Bit */
1384 CLEAR_BIT(RTC->CR, RTC_CR_BKP);
1385
1386 /* Enable the write protection for RTC registers */
1387 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1388 }
1389
1390 /**
1391 * @brief Daylight Saving Time, Read the store operation bit.
1392 * @param hrtc RTC handle
1393 * @retval operation see RTC_StoreOperation_Definitions
1394 */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)1395 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
1396 {
1397 /* Prevent unused argument(s) compilation warning */
1398 UNUSED(hrtc);
1399
1400 /* Get RTC_CR_BKP Bit */
1401 return READ_BIT(RTC->CR, RTC_CR_BKP);
1402 }
1403
1404
1405 /**
1406 * @}
1407 */
1408
1409 /** @addtogroup RTC_Exported_Functions_Group3
1410 * @brief RTC Alarm functions
1411 *
1412 @verbatim
1413 ===============================================================================
1414 ##### RTC Alarm functions #####
1415 ===============================================================================
1416
1417 [..] This section provides functions allowing to configure Alarm feature
1418
1419 @endverbatim
1420 * @{
1421 */
1422 /**
1423 * @brief Set the specified RTC Alarm.
1424 * @param hrtc RTC handle
1425 * @param sAlarm Pointer to Alarm structure
1426 * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1427 * sAlarm->AlarmTime.SubSeconds
1428 * sAlarm->AlarmSubSecondMask
1429 * sAlarm->BinaryAutoClr
1430 * @param Format of the entered parameters.
1431 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1432 * else this parameter can be one of the following values
1433 * @arg RTC_FORMAT_BIN: Binary format
1434 * @arg RTC_FORMAT_BCD: BCD format
1435 * @retval HAL status
1436 */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1437 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1438 {
1439 uint32_t tmpreg = 0;
1440 uint32_t binaryMode;
1441
1442 /* Process Locked */
1443 __HAL_LOCK(hrtc);
1444
1445 /* Change RTC state */
1446 hrtc->State = HAL_RTC_STATE_BUSY;
1447
1448 #ifdef USE_FULL_ASSERT
1449 /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration) */
1450 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1451 {
1452 assert_param(IS_RTC_FORMAT(Format));
1453 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1454 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1455 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1456 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1457 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1458 }
1459 else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1460 {
1461 assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1462 assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1463 }
1464 else /* RTC_BINARY_MIX */
1465 {
1466 assert_param(IS_RTC_FORMAT(Format));
1467 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1468 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1469 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1470 /* In Binary Mix Mode, the RTC can not generate an alarm on a match
1471 involving all calendar items + the upper SSR bits */
1472 assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <=
1473 (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1474 }
1475 #endif /* USE_FULL_ASSERT */
1476
1477 /* Get Binary mode (32-bit free-running counter configuration) */
1478 binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1479
1480 if (binaryMode != RTC_BINARY_ONLY)
1481 {
1482 if (Format == RTC_FORMAT_BIN)
1483 {
1484 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1485 {
1486 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1487 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1488 }
1489 else
1490 {
1491 sAlarm->AlarmTime.TimeFormat = 0x00U;
1492 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1493 }
1494 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1495 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1496
1497 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1498 {
1499 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1500 }
1501 else
1502 {
1503 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1504 }
1505 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1506 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1507 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1508 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1509 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1510 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1511 ((uint32_t)sAlarm->AlarmMask));
1512 }
1513 else /* format BCD */
1514 {
1515 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1516 {
1517 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1518 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1519 }
1520 else
1521 {
1522 sAlarm->AlarmTime.TimeFormat = 0x00U;
1523 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1524 }
1525
1526 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1527 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1528
1529 #ifdef USE_FULL_ASSERT
1530 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1531 {
1532 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1533 }
1534 else
1535 {
1536 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1537 }
1538
1539 #endif /* USE_FULL_ASSERT */
1540 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1541 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1542 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1543 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1544 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1545 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1546 ((uint32_t)sAlarm->AlarmMask));
1547 }
1548 }
1549
1550 /* Disable the write protection for RTC registers */
1551 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1552
1553 /* Configure the Alarm register */
1554 if (sAlarm->Alarm == RTC_ALARM_A)
1555 {
1556 /* Disable the Alarm A interrupt */
1557
1558 /* In case of interrupt mode is used, the interrupt source must disabled */
1559 CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
1560
1561 /* Clear flag alarm A */
1562 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1563
1564 if (binaryMode == RTC_BINARY_ONLY)
1565 {
1566 WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1567 }
1568 else
1569 {
1570 WRITE_REG(RTC->ALRMAR, tmpreg);
1571 WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1572 }
1573
1574 WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1575
1576 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1577 {
1578 /* Configure the Alarm A output clear */
1579 SET_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1580 }
1581 else
1582 {
1583 /* Disable the Alarm A output clear */
1584 CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1585 }
1586 /* Configure the Alarm state: Enable Alarm */
1587 SET_BIT(RTC->CR, RTC_CR_ALRAE);
1588 }
1589 else
1590 {
1591 /* Disable the Alarm B interrupt */
1592
1593 /* In case of interrupt mode is used, the interrupt source must disabled */
1594 CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
1595
1596 /* Clear flag alarm B */
1597 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1598
1599 if (binaryMode == RTC_BINARY_ONLY)
1600 {
1601 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1602 }
1603 else
1604 {
1605 WRITE_REG(RTC->ALRMBR, tmpreg);
1606
1607 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
1608 }
1609
1610 WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1611
1612 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1613 {
1614 /* Configure the Alarm B output clear */
1615 SET_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1616 }
1617 else
1618 {
1619 /* Disable the Alarm B output clear */
1620 CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1621 }
1622
1623 /* Configure the Alarm state: Enable Alarm */
1624 SET_BIT(RTC->CR, RTC_CR_ALRBE);
1625 }
1626
1627 /* Enable the write protection for RTC registers */
1628 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1629
1630 /* Change RTC state */
1631 hrtc->State = HAL_RTC_STATE_READY;
1632
1633 /* Process Unlocked */
1634 __HAL_UNLOCK(hrtc);
1635
1636 return HAL_OK;
1637 }
1638
1639 /**
1640 * @brief Set the specified RTC Alarm with Interrupt.
1641 * @param hrtc RTC handle
1642 * @param sAlarm Pointer to Alarm structure
1643 * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1644 * sAlarm->AlarmTime.SubSeconds
1645 * sAlarm->AlarmSubSecondMask
1646 * sAlarm->BinaryAutoClr
1647 * @param Format Specifies the format of the entered parameters.
1648 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1649 * else this parameter can be one of the following values
1650 * @arg RTC_FORMAT_BIN: Binary format
1651 * @arg RTC_FORMAT_BCD: BCD format
1652 * @retval HAL status
1653 */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1654 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1655 {
1656 uint32_t tmpreg = 0;
1657 uint32_t binaryMode;
1658
1659 /* Process Locked */
1660 __HAL_LOCK(hrtc);
1661
1662 /* Change RTC state */
1663 hrtc->State = HAL_RTC_STATE_BUSY;
1664
1665 #ifdef USE_FULL_ASSERT
1666 /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration) */
1667 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1668 {
1669 assert_param(IS_RTC_FORMAT(Format));
1670 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1671 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1672 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1673 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1674 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1675 }
1676 else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1677 {
1678 assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1679 assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1680 }
1681 else /* RTC_BINARY_MIX */
1682 {
1683 assert_param(IS_RTC_FORMAT(Format));
1684 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1685 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1686 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1687 /* In Binary Mix Mode, the RTC can not generate an alarm on a match
1688 involving all calendar items + the upper SSR bits */
1689 assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <=
1690 (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1691 }
1692 #endif /* USE_FULL_ASSERT */
1693
1694 /* Get Binary mode (32-bit free-running counter configuration) */
1695 binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1696
1697 if (binaryMode != RTC_BINARY_ONLY)
1698 {
1699 if (Format == RTC_FORMAT_BIN)
1700 {
1701 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1702 {
1703 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1704 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1705 }
1706 else
1707 {
1708 sAlarm->AlarmTime.TimeFormat = 0x00U;
1709 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1710 }
1711 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1712 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1713
1714 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1715 {
1716 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1717 }
1718 else
1719 {
1720 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1721 }
1722 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1723 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1724 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1725 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1726 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1727 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1728 ((uint32_t)sAlarm->AlarmMask));
1729 }
1730 else /* Format BCD */
1731 {
1732 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1733 {
1734 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1735 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1736 }
1737 else
1738 {
1739 sAlarm->AlarmTime.TimeFormat = 0x00U;
1740 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1741 }
1742
1743 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1744 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1745
1746 #ifdef USE_FULL_ASSERT
1747 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1748 {
1749 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1750 }
1751 else
1752 {
1753 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1754 }
1755
1756 #endif /* USE_FULL_ASSERT */
1757 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1758 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1759 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1760 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1761 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1762 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1763 ((uint32_t)sAlarm->AlarmMask));
1764
1765 }
1766 }
1767
1768 /* Disable the write protection for RTC registers */
1769 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1770
1771 /* Configure the Alarm registers */
1772 if (sAlarm->Alarm == RTC_ALARM_A)
1773 {
1774 /* Disable the Alarm A interrupt */
1775 CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1776
1777 /* Clear flag alarm A */
1778 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1779
1780 if (binaryMode == RTC_BINARY_ONLY)
1781 {
1782 RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
1783 }
1784 else
1785 {
1786 WRITE_REG(RTC->ALRMAR, tmpreg);
1787
1788 WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1789 }
1790
1791 WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1792
1793 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1794 {
1795 /* Configure the Alarm A output clear */
1796 SET_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1797 }
1798 else
1799 {
1800 /* Disable the Alarm A output clear */
1801 CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1802 }
1803
1804 /* Configure the Alarm interrupt */
1805 SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1806 }
1807 else
1808 {
1809 /* Disable the Alarm B interrupt */
1810 CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1811
1812 /* Clear flag alarm B */
1813 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1814
1815 if (binaryMode == RTC_BINARY_ONLY)
1816 {
1817 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1818 }
1819 else
1820 {
1821 WRITE_REG(RTC->ALRMBR, tmpreg);
1822
1823 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
1824 }
1825
1826 WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1827
1828 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1829 {
1830 /* Configure the Alarm B Output clear */
1831 SET_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1832 }
1833 else
1834 {
1835 /* Disable the Alarm B Output clear */
1836 CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1837 }
1838
1839 /* Configure the Alarm interrupt */
1840 SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1841 }
1842
1843 /* Enable the write protection for RTC registers */
1844 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1845
1846 /* Change RTC state */
1847 hrtc->State = HAL_RTC_STATE_READY;
1848
1849 /* Process Unlocked */
1850 __HAL_UNLOCK(hrtc);
1851
1852 return HAL_OK;
1853 }
1854
1855 /**
1856 * @brief Deactivate the specified RTC Alarm.
1857 * @param hrtc RTC handle
1858 * @param Alarm Specifies the Alarm.
1859 * This parameter can be one of the following values:
1860 * @arg RTC_ALARM_A: AlarmA
1861 * @arg RTC_ALARM_B: AlarmB
1862 * @retval HAL status
1863 */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1864 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1865 {
1866 /* Check the parameters */
1867 assert_param(IS_RTC_ALARM(Alarm));
1868
1869 /* Process Locked */
1870 __HAL_LOCK(hrtc);
1871
1872 /* Change RTC state */
1873 hrtc->State = HAL_RTC_STATE_BUSY;
1874
1875 /* Disable the write protection for RTC registers */
1876 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1877
1878 /* In case of interrupt mode is used, the interrupt source must disabled */
1879 if (Alarm == RTC_ALARM_A)
1880 {
1881 CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1882
1883 /* AlarmA, Clear SSCLR */
1884 CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
1885 }
1886 else
1887 {
1888 CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1889
1890 /* AlarmB, Clear SSCLR */
1891 CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMBSSR_SSCLR);
1892 }
1893
1894 /* Enable the write protection for RTC registers */
1895 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1896
1897 /* Change RTC state */
1898 hrtc->State = HAL_RTC_STATE_READY;
1899
1900 /* Process Unlocked */
1901 __HAL_UNLOCK(hrtc);
1902
1903 return HAL_OK;
1904 }
1905
1906 /**
1907 * @brief Get the RTC Alarm value and masks.
1908 * @param hrtc RTC handle
1909 * @param sAlarm Pointer to Date structure
1910 * @param Alarm Specifies the Alarm.
1911 * This parameter can be one of the following values:
1912 * @arg RTC_ALARM_A: AlarmA
1913 * @arg RTC_ALARM_B: AlarmB
1914 * @param Format Specifies the format of the entered parameters.
1915 * This parameter can be one of the following values:
1916 * @arg RTC_FORMAT_BIN: Binary format
1917 * @arg RTC_FORMAT_BCD: BCD format
1918 * @retval HAL status
1919 */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1920 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1921 {
1922 uint32_t tmpreg;
1923 uint32_t subsecondtmpreg;
1924
1925 /* Prevent unused argument(s) compilation warning */
1926 UNUSED(hrtc);
1927
1928 /* Check the parameters */
1929 assert_param(IS_RTC_FORMAT(Format));
1930 assert_param(IS_RTC_ALARM(Alarm));
1931
1932 if (Alarm == RTC_ALARM_A)
1933 {
1934 /* AlarmA */
1935 sAlarm->Alarm = RTC_ALARM_A;
1936
1937 tmpreg = READ_REG(RTC->ALRMAR);
1938 subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMASSR) & RTC_ALRMASSR_SS);
1939
1940 /* Fill the structure with the read parameters */
1941 sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1942 sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1943 sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
1944 sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
1945 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1946 sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1947 sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
1948 sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1949 }
1950 else
1951 {
1952 sAlarm->Alarm = RTC_ALARM_B;
1953
1954 tmpreg = READ_REG(RTC->ALRMBR);
1955 subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMBSSR) & RTC_ALRMBSSR_SS);
1956
1957 /* Fill the structure with the read parameters */
1958 sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
1959 sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
1960 sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
1961 sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
1962 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1963 sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
1964 sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
1965 sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1966 }
1967
1968 if (Format == RTC_FORMAT_BIN)
1969 {
1970 sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1971 sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1972 sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1973 sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1974 }
1975
1976 return HAL_OK;
1977 }
1978
1979 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
1980 /**
1981 * @brief Handle Alarm secure interrupt request.
1982 * @param hrtc RTC handle
1983 * @retval None
1984 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1985 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1986 {
1987 /* Get interrupt status */
1988 uint32_t tmp = READ_REG(RTC->SMISR);
1989
1990 if ((tmp & RTC_SMISR_ALRAMF) != 0u)
1991 {
1992 /* Clear the AlarmA interrupt pending bit */
1993 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1994
1995 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1996 /* Call Compare Match registered Callback */
1997 hrtc->AlarmAEventCallback(hrtc);
1998 #else
1999 HAL_RTC_AlarmAEventCallback(hrtc);
2000 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
2001 }
2002
2003 if ((tmp & RTC_SMISR_ALRBMF) != 0u)
2004 {
2005 /* Clear the AlarmB interrupt pending bit */
2006 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
2007
2008 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2009 /* Call Compare Match registered Callback */
2010 hrtc->AlarmBEventCallback(hrtc);
2011 #else
2012 HAL_RTCEx_AlarmBEventCallback(hrtc);
2013 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
2014
2015 }
2016
2017 /* Change RTC state */
2018 hrtc->State = HAL_RTC_STATE_READY;
2019 }
2020
2021 #else /* #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
2022
2023 /**
2024 * @brief Handle Alarm non-secure interrupt request.
2025 * @note Alarm non-secure is available in non-secure driver.
2026 * @param hrtc RTC handle
2027 * @retval None
2028 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)2029 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
2030 {
2031 /* Get interrupt status */
2032 uint32_t tmp = READ_REG(RTC->MISR);
2033
2034 if ((tmp & RTC_MISR_ALRAMF) != 0U)
2035 {
2036 /* Clear the AlarmA interrupt pending bit */
2037 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
2038
2039 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2040 /* Call Compare Match registered Callback */
2041 hrtc->AlarmAEventCallback(hrtc);
2042 #else
2043 HAL_RTC_AlarmAEventCallback(hrtc);
2044 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
2045 }
2046
2047 if ((tmp & RTC_MISR_ALRBMF) != 0U)
2048 {
2049 /* Clear the AlarmB interrupt pending bit */
2050 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
2051
2052 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2053 /* Call Compare Match registered Callback */
2054 hrtc->AlarmBEventCallback(hrtc);
2055 #else
2056 HAL_RTCEx_AlarmBEventCallback(hrtc);
2057 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
2058 }
2059
2060 /* Change RTC state */
2061 hrtc->State = HAL_RTC_STATE_READY;
2062 }
2063 #endif /* #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
2064
2065 /**
2066 * @brief Alarm A secure callback.
2067 * @param hrtc RTC handle
2068 * @retval None
2069 */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)2070 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
2071 {
2072 /* Prevent unused argument(s) compilation warning */
2073 UNUSED(hrtc);
2074
2075 /* NOTE : This function should not be modified, when the secure callback is needed,
2076 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
2077 */
2078 }
2079
2080 /**
2081 * @brief Handle Alarm A Polling request.
2082 * @param hrtc RTC handle
2083 * @param Timeout Timeout duration
2084 * @retval HAL status
2085 */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)2086 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
2087 {
2088 uint32_t tickstart = HAL_GetTick();
2089
2090 while (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U)
2091 {
2092 if (Timeout != HAL_MAX_DELAY)
2093 {
2094 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2095 {
2096 /* Change RTC state */
2097 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2098 return HAL_TIMEOUT;
2099 }
2100 }
2101 }
2102
2103 /* Clear the Alarm interrupt pending bit */
2104 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
2105
2106 /* Change RTC state */
2107 hrtc->State = HAL_RTC_STATE_READY;
2108
2109 return HAL_OK;
2110 }
2111
2112 /**
2113 * @}
2114 */
2115
2116 /** @addtogroup RTC_Exported_Functions_Group4
2117 * @brief Peripheral Control functions
2118 *
2119 @verbatim
2120 ===============================================================================
2121 ##### Peripheral Control functions #####
2122 ===============================================================================
2123 [..]
2124 This subsection provides functions allowing to
2125 (+) Wait for RTC Time and Date Synchronization
2126
2127 @endverbatim
2128 * @{
2129 */
2130
2131 /**
2132 * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
2133 * synchronized with RTC APB clock.
2134 * @note The RTC Resynchronization mode is write protected, use the
2135 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2136 * @note To read the calendar through the shadow registers after Calendar
2137 * initialization, calendar update or after wakeup from low power modes
2138 * the software must first clear the RSF flag.
2139 * The software must then wait until it is set again before reading
2140 * the calendar, which means that the calendar registers have been
2141 * correctly copied into the RTC_TR and RTC_DR shadow registers.
2142 * @param hrtc RTC handle
2143 * @retval HAL status
2144 */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)2145 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
2146 {
2147 uint32_t tickstart;
2148
2149 /* Prevent unused argument(s) compilation warning */
2150 UNUSED(hrtc);
2151
2152 /* Clear RSF flag */
2153 CLEAR_BIT(RTC->ICSR, RTC_ICSR_RSF);
2154
2155 tickstart = HAL_GetTick();
2156
2157 /* Wait the registers to be synchronised */
2158 while (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U)
2159 {
2160 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2161 {
2162 return HAL_TIMEOUT;
2163 }
2164 }
2165
2166 return HAL_OK;
2167 }
2168
2169 /**
2170 * @}
2171 */
2172
2173 /** @addtogroup RTC_Exported_Functions_Group5
2174 * @brief Peripheral State functions
2175 *
2176 @verbatim
2177 ===============================================================================
2178 ##### Peripheral State functions #####
2179 ===============================================================================
2180 [..]
2181 This subsection provides functions allowing to
2182 (+) Get RTC state
2183
2184 @endverbatim
2185 * @{
2186 */
2187 /**
2188 * @brief Return the RTC handle state.
2189 * @param hrtc RTC handle
2190 * @retval HAL state
2191 */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)2192 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
2193 {
2194 /* Return RTC handle state */
2195 return hrtc->State;
2196 }
2197
2198 /**
2199 * @}
2200 */
2201 /**
2202 * @}
2203 */
2204
2205 /** @addtogroup RTC_Private_Functions
2206 * @{
2207 */
2208 /**
2209 * @brief Enter the RTC Initialization mode.
2210 * @note The RTC Initialization mode is write protected, use the
2211 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2212 * @param hrtc RTC handle
2213 * @retval HAL status
2214 */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)2215 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
2216 {
2217 uint32_t tickstart;
2218 HAL_StatusTypeDef status = HAL_OK;
2219
2220 /* Prevent unused argument(s) compilation warning */
2221 UNUSED(hrtc);
2222
2223 /* Check if the Initialization mode is set */
2224 if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
2225 {
2226 /* Set the Initialization mode */
2227 SET_BIT(RTC->ICSR, RTC_ICSR_INIT);
2228
2229 tickstart = HAL_GetTick();
2230 /* Wait till RTC is in INIT state and if Time out is reached exit */
2231 while ((READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
2232 {
2233 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2234 {
2235 status = HAL_TIMEOUT;
2236
2237 /* Change RTC state */
2238 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2239 }
2240 }
2241 }
2242
2243 return status;
2244 }
2245
2246 /**
2247 * @brief Exit the RTC Initialization mode.
2248 * @param hrtc RTC handle
2249 * @retval HAL status
2250 */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)2251 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
2252 {
2253 HAL_StatusTypeDef status = HAL_OK;
2254
2255 /* Exit Initialization mode */
2256 CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
2257
2258 /* If CR_BYPSHAD bit = 0, wait for synchro */
2259 if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
2260 {
2261 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2262 {
2263 /* Change RTC state */
2264 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2265 status = HAL_TIMEOUT;
2266 }
2267 }
2268 else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry. */
2269 {
2270 /* Clear BYPSHAD bit */
2271 CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
2272 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2273 {
2274 /* Change RTC state */
2275 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2276 status = HAL_TIMEOUT;
2277 }
2278 /* Restore BYPSHAD bit */
2279 SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
2280 }
2281 return status;
2282 }
2283
2284 /**
2285 * @brief Convert a 2 digit decimal to BCD format.
2286 * @param Value Byte to be converted
2287 * @retval Converted byte
2288 */
RTC_ByteToBcd2(uint8_t Value)2289 uint8_t RTC_ByteToBcd2(uint8_t Value)
2290 {
2291 uint32_t bcd_high = 0U;
2292 uint8_t tmp_value = Value;
2293
2294 while (tmp_value >= 10U)
2295 {
2296 bcd_high++;
2297 tmp_value -= 10U;
2298 }
2299
2300 return ((uint8_t)(bcd_high << 4U) | tmp_value);
2301 }
2302
2303 /**
2304 * @brief Convert from 2 digit BCD to Binary.
2305 * @param Value BCD value to be converted
2306 * @retval Converted word
2307 */
RTC_Bcd2ToByte(uint8_t Value)2308 uint8_t RTC_Bcd2ToByte(uint8_t Value)
2309 {
2310 uint32_t tmp;
2311
2312 tmp = (((uint32_t)Value & 0xF0U) >> 4) * 10U;
2313
2314 return (uint8_t)(tmp + ((uint32_t)Value & 0x0FU));
2315 }
2316
2317 /**
2318 * @}
2319 */
2320
2321 #endif /* HAL_RTC_MODULE_ENABLED */
2322 /**
2323 * @}
2324 */
2325
2326 /**
2327 * @}
2328 */
2329
2330