1 /*
2 * Copyright (c) 2018 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #include <drivers/timer/system_timer.h>
7 #include <sys_clock.h>
8 #include <spinlock.h>
9 #include <arch/arm/aarch32/cortex_m/cmsis.h>
10
11 #define COUNTER_MAX 0x00ffffff
12 #define TIMER_STOPPED 0xff000000
13
14 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
15 / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
16 #define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1)
17 #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
18
19 /* Minimum cycles in the future to try to program. Note that this is
20 * NOT simply "enough cycles to get the counter read and reprogrammed
21 * reliably" -- it becomes the minimum value of the LOAD register, and
22 * thus reflects how much time we can reliably see expire between
23 * calls to elapsed() to read the COUNTFLAG bit. So it needs to be
24 * set to be larger than the maximum time the interrupt might be
25 * masked. Choosing a fraction of a tick is probably a good enough
26 * default, with an absolute minimum of 1k cyc.
27 */
28 #define MIN_DELAY MAX(1024, (CYC_PER_TICK/16))
29
30 #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL))
31
32 static struct k_spinlock lock;
33
34 static uint32_t last_load;
35
36 /*
37 * This local variable holds the amount of SysTick HW cycles elapsed
38 * and it is updated in sys_clock_isr() and sys_clock_set_timeout().
39 *
40 * Note:
41 * At an arbitrary point in time the "current" value of the SysTick
42 * HW timer is calculated as:
43 *
44 * t = cycle_counter + elapsed();
45 */
46 static uint32_t cycle_count;
47
48 /*
49 * This local variable holds the amount of elapsed SysTick HW cycles
50 * that have been announced to the kernel.
51 */
52 static uint32_t announced_cycles;
53
54 /*
55 * This local variable holds the amount of elapsed HW cycles due to
56 * SysTick timer wraps ('overflows') and is used in the calculation
57 * in elapsed() function, as well as in the updates to cycle_count.
58 *
59 * Note:
60 * Each time cycle_count is updated with the value from overflow_cyc,
61 * the overflow_cyc must be reset to zero.
62 */
63 static volatile uint32_t overflow_cyc;
64
65 /* This internal function calculates the amount of HW cycles that have
66 * elapsed since the last time the absolute HW cycles counter has been
67 * updated. 'cycle_count' may be updated either by the ISR, or when we
68 * re-program the SysTick.LOAD register, in sys_clock_set_timeout().
69 *
70 * Additionally, the function updates the 'overflow_cyc' counter, that
71 * holds the amount of elapsed HW cycles due to (possibly) multiple
72 * timer wraps (overflows).
73 *
74 * Prerequisites:
75 * - reprogramming of SysTick.LOAD must be clearing the SysTick.COUNTER
76 * register and the 'overflow_cyc' counter.
77 * - ISR must be clearing the 'overflow_cyc' counter.
78 * - no more than one counter-wrap has occurred between
79 * - the timer reset or the last time the function was called
80 * - and until the current call of the function is completed.
81 * - the function is invoked with interrupts disabled.
82 */
elapsed(void)83 static uint32_t elapsed(void)
84 {
85 uint32_t val1 = SysTick->VAL; /* A */
86 uint32_t ctrl = SysTick->CTRL; /* B */
87 uint32_t val2 = SysTick->VAL; /* C */
88
89 /* SysTick behavior: The counter wraps at zero automatically,
90 * setting the COUNTFLAG field of the CTRL register when it
91 * does. Reading the control register automatically clears
92 * that field.
93 *
94 * If the count wrapped...
95 * 1) Before A then COUNTFLAG will be set and val1 >= val2
96 * 2) Between A and B then COUNTFLAG will be set and val1 < val2
97 * 3) Between B and C then COUNTFLAG will be clear and val1 < val2
98 * 4) After C we'll see it next time
99 *
100 * So the count in val2 is post-wrap and last_load needs to be
101 * added if and only if COUNTFLAG is set or val1 < val2.
102 */
103 if ((ctrl & SysTick_CTRL_COUNTFLAG_Msk)
104 || (val1 < val2)) {
105 overflow_cyc += last_load;
106
107 /* We know there was a wrap, but we might not have
108 * seen it in CTRL, so clear it. */
109 (void)SysTick->CTRL;
110 }
111
112 return (last_load - val2) + overflow_cyc;
113 }
114
115 /* Callout out of platform assembly, not hooked via IRQ_CONNECT... */
sys_clock_isr(void * arg)116 void sys_clock_isr(void *arg)
117 {
118 ARG_UNUSED(arg);
119 uint32_t dticks;
120
121 /* Update overflow_cyc and clear COUNTFLAG by invoking elapsed() */
122 elapsed();
123
124 /* Increment the amount of HW cycles elapsed (complete counter
125 * cycles) and announce the progress to the kernel.
126 */
127 cycle_count += overflow_cyc;
128 overflow_cyc = 0;
129
130 if (TICKLESS) {
131 /* In TICKLESS mode, the SysTick.LOAD is re-programmed
132 * in sys_clock_set_timeout(), followed by resetting of
133 * the counter (VAL = 0).
134 *
135 * If a timer wrap occurs right when we re-program LOAD,
136 * the ISR is triggered immediately after sys_clock_set_timeout()
137 * returns; in that case we shall not increment the cycle_count
138 * because the value has been updated before LOAD re-program.
139 *
140 * We can assess if this is the case by inspecting COUNTFLAG.
141 */
142
143 dticks = (cycle_count - announced_cycles) / CYC_PER_TICK;
144 announced_cycles += dticks * CYC_PER_TICK;
145 sys_clock_announce(dticks);
146 } else {
147 sys_clock_announce(1);
148 }
149 z_arm_int_exit();
150 }
151
sys_clock_driver_init(const struct device * dev)152 int sys_clock_driver_init(const struct device *dev)
153 {
154 ARG_UNUSED(dev);
155
156 NVIC_SetPriority(SysTick_IRQn, _IRQ_PRIO_OFFSET);
157 last_load = CYC_PER_TICK - 1;
158 overflow_cyc = 0U;
159 SysTick->LOAD = last_load;
160 SysTick->VAL = 0; /* resets timer to last_load */
161 SysTick->CTRL |= (SysTick_CTRL_ENABLE_Msk |
162 SysTick_CTRL_TICKINT_Msk |
163 SysTick_CTRL_CLKSOURCE_Msk);
164 return 0;
165 }
166
sys_clock_set_timeout(int32_t ticks,bool idle)167 void sys_clock_set_timeout(int32_t ticks, bool idle)
168 {
169 /* Fast CPUs and a 24 bit counter mean that even idle systems
170 * need to wake up multiple times per second. If the kernel
171 * allows us to miss tick announcements in idle, then shut off
172 * the counter. (Note: we can assume if idle==true that
173 * interrupts are already disabled)
174 */
175 if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && idle && ticks == K_TICKS_FOREVER) {
176 SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
177 last_load = TIMER_STOPPED;
178 return;
179 }
180
181 #if defined(CONFIG_TICKLESS_KERNEL)
182 uint32_t delay;
183 uint32_t val1, val2;
184 uint32_t last_load_ = last_load;
185
186 ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
187 ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
188
189 k_spinlock_key_t key = k_spin_lock(&lock);
190
191 uint32_t pending = elapsed();
192
193 val1 = SysTick->VAL;
194
195 cycle_count += pending;
196 overflow_cyc = 0U;
197
198 uint32_t unannounced = cycle_count - announced_cycles;
199
200 if ((int32_t)unannounced < 0) {
201 /* We haven't announced for more than half the 32-bit
202 * wrap duration, because new timeouts keep being set
203 * before the existing one fires. Force an announce
204 * to avoid loss of a wrap event, making sure the
205 * delay is at least the minimum delay possible.
206 */
207 last_load = MIN_DELAY;
208 } else {
209 /* Desired delay in the future */
210 delay = ticks * CYC_PER_TICK;
211
212 /* Round delay up to next tick boundary */
213 delay += unannounced;
214 delay =
215 ((delay + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK;
216 delay -= unannounced;
217 delay = MAX(delay, MIN_DELAY);
218 if (delay > MAX_CYCLES) {
219 last_load = MAX_CYCLES;
220 } else {
221 last_load = delay;
222 }
223 }
224
225 val2 = SysTick->VAL;
226
227 SysTick->LOAD = last_load - 1;
228 SysTick->VAL = 0; /* resets timer to last_load */
229
230 /*
231 * Add elapsed cycles while computing the new load to cycle_count.
232 *
233 * Note that comparing val1 and val2 is normaly not good enough to
234 * guess if the counter wrapped during this interval. Indeed if val1 is
235 * close to LOAD, then there are little chances to catch val2 between
236 * val1 and LOAD after a wrap. COUNTFLAG should be checked in addition.
237 * But since the load computation is faster than MIN_DELAY, then we
238 * don't need to worry about this case.
239 */
240 if (val1 < val2) {
241 cycle_count += (val1 + (last_load_ - val2));
242 } else {
243 cycle_count += (val1 - val2);
244 }
245 k_spin_unlock(&lock, key);
246 #endif
247 }
248
sys_clock_elapsed(void)249 uint32_t sys_clock_elapsed(void)
250 {
251 if (!TICKLESS) {
252 return 0;
253 }
254
255 k_spinlock_key_t key = k_spin_lock(&lock);
256 uint32_t cyc = elapsed() + cycle_count - announced_cycles;
257
258 k_spin_unlock(&lock, key);
259 return cyc / CYC_PER_TICK;
260 }
261
sys_clock_cycle_get_32(void)262 uint32_t sys_clock_cycle_get_32(void)
263 {
264 k_spinlock_key_t key = k_spin_lock(&lock);
265 uint32_t ret = elapsed() + cycle_count;
266
267 k_spin_unlock(&lock, key);
268 return ret;
269 }
270
sys_clock_idle_exit(void)271 void sys_clock_idle_exit(void)
272 {
273 if (last_load == TIMER_STOPPED) {
274 SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;
275 }
276 }
277
sys_clock_disable(void)278 void sys_clock_disable(void)
279 {
280 SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;
281 }
282