1 /*
2 * Copyright (c) 2021 Kent Hall.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #define DT_DRV_COMPAT st_stm32_counter
8
9 #include <zephyr/drivers/counter.h>
10 #include <zephyr/drivers/clock_control/stm32_clock_control.h>
11 #include <zephyr/drivers/reset.h>
12 #include <zephyr/irq.h>
13 #include <zephyr/sys/atomic.h>
14
15 #include <stm32_ll_tim.h>
16 #include <stm32_ll_rcc.h>
17
18 #include <zephyr/logging/log.h>
19 LOG_MODULE_REGISTER(counter_timer_stm32, CONFIG_COUNTER_LOG_LEVEL);
20
21 /* L0 series MCUs only have 16-bit timers and don't have below macro defined */
22 #ifndef IS_TIM_32B_COUNTER_INSTANCE
23 #define IS_TIM_32B_COUNTER_INSTANCE(INSTANCE) (0)
24 #endif
25
26 /** Maximum number of timer channels. */
27 #define TIMER_MAX_CH 4U
28
29 /** Number of channels for timer by index. */
30 #define NUM_CH(timx) \
31 (IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_4) ? 4U : \
32 (IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_3) ? 3U : \
33 (IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_2) ? 2U : \
34 (IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_1) ? 1U : \
35 0))))
36
37 /** Channel to compare set function mapping. */
38 static void(*const set_timer_compare[TIMER_MAX_CH])(TIM_TypeDef *,
39 uint32_t) = {
40 LL_TIM_OC_SetCompareCH1, LL_TIM_OC_SetCompareCH2,
41 LL_TIM_OC_SetCompareCH3, LL_TIM_OC_SetCompareCH4,
42 };
43
44 /** Channel to compare get function mapping. */
45 #if !defined(CONFIG_SOC_SERIES_STM32F1X) && \
46 !defined(CONFIG_SOC_SERIES_STM32F4X) && \
47 !defined(CONFIG_SOC_SERIES_STM32G4X) && \
48 !defined(CONFIG_SOC_SERIES_STM32MP1X)
49 static uint32_t(*const get_timer_compare[TIMER_MAX_CH])(const TIM_TypeDef *) = {
50 LL_TIM_OC_GetCompareCH1, LL_TIM_OC_GetCompareCH2,
51 LL_TIM_OC_GetCompareCH3, LL_TIM_OC_GetCompareCH4,
52 };
53 #else
54 static uint32_t(*const get_timer_compare[TIMER_MAX_CH])(TIM_TypeDef *) = {
55 LL_TIM_OC_GetCompareCH1, LL_TIM_OC_GetCompareCH2,
56 LL_TIM_OC_GetCompareCH3, LL_TIM_OC_GetCompareCH4,
57 };
58 #endif
59 /** Channel to interrupt enable function mapping. */
60 static void(*const enable_it[TIMER_MAX_CH])(TIM_TypeDef *) = {
61 LL_TIM_EnableIT_CC1, LL_TIM_EnableIT_CC2,
62 LL_TIM_EnableIT_CC3, LL_TIM_EnableIT_CC4,
63 };
64
65 /** Channel to interrupt enable function mapping. */
66 static void(*const disable_it[TIMER_MAX_CH])(TIM_TypeDef *) = {
67 LL_TIM_DisableIT_CC1, LL_TIM_DisableIT_CC2,
68 LL_TIM_DisableIT_CC3, LL_TIM_DisableIT_CC4,
69 };
70
71 #ifdef CONFIG_ASSERT
72 /** Channel to interrupt enable check function mapping. */
73 #if !defined(CONFIG_SOC_SERIES_STM32F1X) && \
74 !defined(CONFIG_SOC_SERIES_STM32F4X) && \
75 !defined(CONFIG_SOC_SERIES_STM32G4X) && \
76 !defined(CONFIG_SOC_SERIES_STM32MP1X)
77 static uint32_t(*const check_it_enabled[TIMER_MAX_CH])(const TIM_TypeDef *) = {
78 LL_TIM_IsEnabledIT_CC1, LL_TIM_IsEnabledIT_CC2,
79 LL_TIM_IsEnabledIT_CC3, LL_TIM_IsEnabledIT_CC4,
80 };
81 #else
82 static uint32_t(*const check_it_enabled[TIMER_MAX_CH])(TIM_TypeDef *) = {
83 LL_TIM_IsEnabledIT_CC1, LL_TIM_IsEnabledIT_CC2,
84 LL_TIM_IsEnabledIT_CC3, LL_TIM_IsEnabledIT_CC4,
85 };
86 #endif
87 #endif
88
89 /** Channel to interrupt flag clear function mapping. */
90 static void(*const clear_it_flag[TIMER_MAX_CH])(TIM_TypeDef *) = {
91 LL_TIM_ClearFlag_CC1, LL_TIM_ClearFlag_CC2,
92 LL_TIM_ClearFlag_CC3, LL_TIM_ClearFlag_CC4,
93 };
94
95 struct counter_stm32_data {
96 counter_top_callback_t top_cb;
97 void *top_user_data;
98 uint32_t guard_period;
99 atomic_t cc_int_pending;
100 uint32_t freq;
101 /* Reset controller device configuration */
102 const struct reset_dt_spec reset;
103 };
104
105 struct counter_stm32_ch_data {
106 counter_alarm_callback_t callback;
107 void *user_data;
108 };
109
110 struct counter_stm32_config {
111 struct counter_config_info info;
112 struct counter_stm32_ch_data *ch_data;
113 TIM_TypeDef *timer;
114 uint32_t prescaler;
115 struct stm32_pclken pclken;
116 void (*irq_config_func)(const struct device *dev);
117 uint32_t irqn;
118
119 LOG_INSTANCE_PTR_DECLARE(log);
120 };
121
counter_stm32_start(const struct device * dev)122 static int counter_stm32_start(const struct device *dev)
123 {
124 const struct counter_stm32_config *config = dev->config;
125 TIM_TypeDef *timer = config->timer;
126
127 /* enable counter */
128 LL_TIM_EnableCounter(timer);
129
130 return 0;
131 }
132
counter_stm32_stop(const struct device * dev)133 static int counter_stm32_stop(const struct device *dev)
134 {
135 const struct counter_stm32_config *config = dev->config;
136 TIM_TypeDef *timer = config->timer;
137
138 /* disable counter */
139 LL_TIM_DisableCounter(timer);
140
141 return 0;
142 }
143
counter_stm32_get_top_value(const struct device * dev)144 static uint32_t counter_stm32_get_top_value(const struct device *dev)
145 {
146 const struct counter_stm32_config *config = dev->config;
147
148 return LL_TIM_GetAutoReload(config->timer);
149 }
150
counter_stm32_read(const struct device * dev)151 static uint32_t counter_stm32_read(const struct device *dev)
152 {
153 const struct counter_stm32_config *config = dev->config;
154
155 return LL_TIM_GetCounter(config->timer);
156 }
157
counter_stm32_get_value(const struct device * dev,uint32_t * ticks)158 static int counter_stm32_get_value(const struct device *dev, uint32_t *ticks)
159 {
160 *ticks = counter_stm32_read(dev);
161 return 0;
162 }
163
counter_stm32_ticks_add(uint32_t val1,uint32_t val2,uint32_t top)164 static uint32_t counter_stm32_ticks_add(uint32_t val1, uint32_t val2, uint32_t top)
165 {
166 uint32_t to_top;
167
168 if (likely(IS_BIT_MASK(top))) {
169 return (val1 + val2) & top;
170 }
171
172 to_top = top - val1;
173
174 return (val2 <= to_top) ? val1 + val2 : val2 - to_top - 1U;
175 }
176
counter_stm32_ticks_sub(uint32_t val,uint32_t old,uint32_t top)177 static uint32_t counter_stm32_ticks_sub(uint32_t val, uint32_t old, uint32_t top)
178 {
179 if (likely(IS_BIT_MASK(top))) {
180 return (val - old) & top;
181 }
182
183 /* if top is not 2^n-1 */
184 return (val >= old) ? (val - old) : val + top + 1U - old;
185 }
186
counter_stm32_counter_stm32_set_cc_int_pending(const struct device * dev,uint8_t chan)187 static void counter_stm32_counter_stm32_set_cc_int_pending(const struct device *dev, uint8_t chan)
188 {
189 const struct counter_stm32_config *config = dev->config;
190 struct counter_stm32_data *data = dev->data;
191
192 atomic_or(&data->cc_int_pending, BIT(chan));
193 NVIC_SetPendingIRQ(config->irqn);
194 }
195
counter_stm32_set_cc(const struct device * dev,uint8_t id,const struct counter_alarm_cfg * alarm_cfg)196 static int counter_stm32_set_cc(const struct device *dev, uint8_t id,
197 const struct counter_alarm_cfg *alarm_cfg)
198 {
199 const struct counter_stm32_config *config = dev->config;
200 struct counter_stm32_data *data = dev->data;
201
202 __ASSERT_NO_MSG(data->guard_period < counter_stm32_get_top_value(dev));
203 uint32_t val = alarm_cfg->ticks;
204 uint32_t flags = alarm_cfg->flags;
205 bool absolute = flags & COUNTER_ALARM_CFG_ABSOLUTE;
206 bool irq_on_late;
207 TIM_TypeDef *timer = config->timer;
208 uint32_t top = counter_stm32_get_top_value(dev);
209 int err = 0;
210 uint32_t prev_val;
211 uint32_t now;
212 uint32_t diff;
213 uint32_t max_rel_val;
214
215 __ASSERT(!check_it_enabled[id](timer),
216 "Expected that CC interrupt is disabled.");
217
218 /* First take care of a risk of an event coming from CC being set to
219 * next tick. Reconfigure CC to future (now tick is the furthest
220 * future).
221 */
222 now = counter_stm32_read(dev);
223 prev_val = get_timer_compare[id](timer);
224 set_timer_compare[id](timer, now);
225 clear_it_flag[id](timer);
226
227 if (absolute) {
228 max_rel_val = top - data->guard_period;
229 irq_on_late = flags & COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE;
230 } else {
231 /* If relative value is smaller than half of the counter range
232 * it is assumed that there is a risk of setting value too late
233 * and late detection algorithm must be applied. When late
234 * setting is detected, interrupt shall be triggered for
235 * immediate expiration of the timer. Detection is performed
236 * by limiting relative distance between CC and counter.
237 *
238 * Note that half of counter range is an arbitrary value.
239 */
240 irq_on_late = val < (top / 2U);
241 /* limit max to detect short relative being set too late. */
242 max_rel_val = irq_on_late ? top / 2U : top;
243 val = counter_stm32_ticks_add(now, val, top);
244 }
245
246 set_timer_compare[id](timer, val);
247
248 /* decrement value to detect also case when val == counter_stm32_read(dev). Otherwise,
249 * condition would need to include comparing diff against 0.
250 */
251 diff = counter_stm32_ticks_sub(val - 1U, counter_stm32_read(dev), top);
252 if (diff > max_rel_val) {
253 if (absolute) {
254 err = -ETIME;
255 }
256
257 /* Interrupt is triggered always for relative alarm and
258 * for absolute depending on the flag.
259 */
260 if (irq_on_late) {
261 counter_stm32_counter_stm32_set_cc_int_pending(dev, id);
262 } else {
263 config->ch_data[id].callback = NULL;
264 }
265 } else {
266 enable_it[id](timer);
267 }
268
269 return err;
270 }
271
counter_stm32_set_alarm(const struct device * dev,uint8_t chan,const struct counter_alarm_cfg * alarm_cfg)272 static int counter_stm32_set_alarm(const struct device *dev, uint8_t chan,
273 const struct counter_alarm_cfg *alarm_cfg)
274 {
275 const struct counter_stm32_config *config = dev->config;
276 struct counter_stm32_ch_data *chdata = &config->ch_data[chan];
277
278 if (alarm_cfg->ticks > counter_stm32_get_top_value(dev)) {
279 return -EINVAL;
280 }
281
282 if (chdata->callback) {
283 return -EBUSY;
284 }
285
286 chdata->callback = alarm_cfg->callback;
287 chdata->user_data = alarm_cfg->user_data;
288
289 return counter_stm32_set_cc(dev, chan, alarm_cfg);
290 }
291
counter_stm32_cancel_alarm(const struct device * dev,uint8_t chan)292 static int counter_stm32_cancel_alarm(const struct device *dev, uint8_t chan)
293 {
294 const struct counter_stm32_config *config = dev->config;
295
296 disable_it[chan](config->timer);
297 config->ch_data[chan].callback = NULL;
298
299 return 0;
300 }
301
counter_stm32_set_top_value(const struct device * dev,const struct counter_top_cfg * cfg)302 static int counter_stm32_set_top_value(const struct device *dev,
303 const struct counter_top_cfg *cfg)
304 {
305 const struct counter_stm32_config *config = dev->config;
306 TIM_TypeDef *timer = config->timer;
307 struct counter_stm32_data *data = dev->data;
308 int err = 0;
309
310 for (int i = 0; i < counter_get_num_of_channels(dev); i++) {
311 /* Overflow can be changed only when all alarms are
312 * disabled.
313 */
314 if (config->ch_data[i].callback) {
315 return -EBUSY;
316 }
317 }
318
319 LL_TIM_DisableIT_UPDATE(timer);
320 LL_TIM_SetAutoReload(timer, cfg->ticks);
321 LL_TIM_ClearFlag_UPDATE(timer);
322
323 data->top_cb = cfg->callback;
324 data->top_user_data = cfg->user_data;
325
326 if (!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
327 LL_TIM_SetCounter(timer, 0);
328 } else if (counter_stm32_read(dev) >= cfg->ticks) {
329 err = -ETIME;
330 if (cfg->flags & COUNTER_TOP_CFG_RESET_WHEN_LATE) {
331 LL_TIM_SetCounter(timer, 0);
332 }
333 }
334
335 if (cfg->callback) {
336 LL_TIM_EnableIT_UPDATE(timer);
337 }
338
339 return err;
340 }
341
counter_stm32_get_pending_int(const struct device * dev)342 static uint32_t counter_stm32_get_pending_int(const struct device *dev)
343 {
344 const struct counter_stm32_config *cfg = dev->config;
345 uint32_t pending = 0;
346
347 switch (counter_get_num_of_channels(dev)) {
348 case 4U:
349 pending |= LL_TIM_IsActiveFlag_CC4(cfg->timer);
350 __fallthrough;
351 case 3U:
352 pending |= LL_TIM_IsActiveFlag_CC3(cfg->timer);
353 __fallthrough;
354 case 2U:
355 pending |= LL_TIM_IsActiveFlag_CC2(cfg->timer);
356 __fallthrough;
357 case 1U:
358 pending |= LL_TIM_IsActiveFlag_CC1(cfg->timer);
359 }
360
361 return !!pending;
362 }
363
364 /**
365 * Obtain timer clock speed.
366 *
367 * @param pclken Timer clock control subsystem.
368 * @param tim_clk Where computed timer clock will be stored.
369 *
370 * @return 0 on success, error code otherwise.
371 *
372 * This function is ripped from the PWM driver; TODO handle code duplication.
373 */
counter_stm32_get_tim_clk(const struct stm32_pclken * pclken,uint32_t * tim_clk)374 static int counter_stm32_get_tim_clk(const struct stm32_pclken *pclken, uint32_t *tim_clk)
375 {
376 int r;
377 const struct device *clk;
378 uint32_t bus_clk, apb_psc;
379
380 clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
381
382 if (!device_is_ready(clk)) {
383 return -ENODEV;
384 }
385
386 r = clock_control_get_rate(clk, (clock_control_subsys_t)pclken,
387 &bus_clk);
388 if (r < 0) {
389 return r;
390 }
391
392 #if defined(CONFIG_SOC_SERIES_STM32H7X)
393 if (pclken->bus == STM32_CLOCK_BUS_APB1) {
394 apb_psc = STM32_D2PPRE1;
395 } else {
396 apb_psc = STM32_D2PPRE2;
397 }
398 #else
399 if (pclken->bus == STM32_CLOCK_BUS_APB1) {
400 #if defined(CONFIG_SOC_SERIES_STM32MP1X)
401 apb_psc = (uint32_t)(READ_BIT(RCC->APB1DIVR, RCC_APB1DIVR_APB1DIV));
402 #else
403 apb_psc = STM32_APB1_PRESCALER;
404 #endif
405 }
406 #if !defined(CONFIG_SOC_SERIES_STM32F0X) && !defined(CONFIG_SOC_SERIES_STM32G0X)
407 else {
408 #if defined(CONFIG_SOC_SERIES_STM32MP1X)
409 apb_psc = (uint32_t)(READ_BIT(RCC->APB2DIVR, RCC_APB2DIVR_APB2DIV));
410 #else
411 apb_psc = STM32_APB2_PRESCALER;
412 #endif
413 }
414 #endif
415 #endif
416
417 #if defined(RCC_DCKCFGR_TIMPRE) || defined(RCC_DCKCFGR1_TIMPRE) || \
418 defined(RCC_CFGR_TIMPRE)
419 /*
420 * There are certain series (some F4, F7 and H7) that have the TIMPRE
421 * bit to control the clock frequency of all the timers connected to
422 * APB1 and APB2 domains.
423 *
424 * Up to a certain threshold value of APB{1,2} prescaler, timer clock
425 * equals to HCLK. This threshold value depends on TIMPRE setting
426 * (2 if TIMPRE=0, 4 if TIMPRE=1). Above threshold, timer clock is set
427 * to a multiple of the APB domain clock PCLK{1,2} (2 if TIMPRE=0, 4 if
428 * TIMPRE=1).
429 */
430
431 if (LL_RCC_GetTIMPrescaler() == LL_RCC_TIM_PRESCALER_TWICE) {
432 /* TIMPRE = 0 */
433 if (apb_psc <= 2u) {
434 LL_RCC_ClocksTypeDef clocks;
435
436 LL_RCC_GetSystemClocksFreq(&clocks);
437 *tim_clk = clocks.HCLK_Frequency;
438 } else {
439 *tim_clk = bus_clk * 2u;
440 }
441 } else {
442 /* TIMPRE = 1 */
443 if (apb_psc <= 4u) {
444 LL_RCC_ClocksTypeDef clocks;
445
446 LL_RCC_GetSystemClocksFreq(&clocks);
447 *tim_clk = clocks.HCLK_Frequency;
448 } else {
449 *tim_clk = bus_clk * 4u;
450 }
451 }
452 #else
453 /*
454 * If the APB prescaler equals 1, the timer clock frequencies
455 * are set to the same frequency as that of the APB domain.
456 * Otherwise, they are set to twice (×2) the frequency of the
457 * APB domain.
458 */
459 if (apb_psc == 1u) {
460 *tim_clk = bus_clk;
461 } else {
462 *tim_clk = bus_clk * 2u;
463 }
464 #endif
465
466 return 0;
467 }
468
counter_stm32_init_timer(const struct device * dev)469 static int counter_stm32_init_timer(const struct device *dev)
470 {
471 const struct counter_stm32_config *cfg = dev->config;
472 struct counter_stm32_data *data = dev->data;
473 TIM_TypeDef *timer = cfg->timer;
474 LL_TIM_InitTypeDef init;
475 uint32_t tim_clk;
476 int r;
477
478 /* initialize clock and check its speed */
479 r = clock_control_on(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
480 (clock_control_subsys_t)&cfg->pclken);
481 if (r < 0) {
482 LOG_ERR("Could not initialize clock (%d)", r);
483 return r;
484 }
485 r = counter_stm32_get_tim_clk(&cfg->pclken, &tim_clk);
486 if (r < 0) {
487 LOG_ERR("Could not obtain timer clock (%d)", r);
488 return r;
489 }
490 data->freq = tim_clk / (cfg->prescaler + 1U);
491
492 if (!device_is_ready(data->reset.dev)) {
493 LOG_ERR("reset controller not ready");
494 return -ENODEV;
495 }
496
497 /* Reset timer to default state using RCC */
498 (void)reset_line_toggle_dt(&data->reset);
499
500 /* config/enable IRQ */
501 cfg->irq_config_func(dev);
502
503 /* initialize timer */
504 LL_TIM_StructInit(&init);
505
506 init.Prescaler = cfg->prescaler;
507 init.CounterMode = LL_TIM_COUNTERMODE_UP;
508 init.Autoreload = counter_get_max_top_value(dev);
509 init.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
510
511 if (LL_TIM_Init(timer, &init) != SUCCESS) {
512 LOG_ERR("Could not initialize timer");
513 return -EIO;
514 }
515
516 return 0;
517 }
518
counter_stm32_get_guard_period(const struct device * dev,uint32_t flags)519 static uint32_t counter_stm32_get_guard_period(const struct device *dev, uint32_t flags)
520 {
521 struct counter_stm32_data *data = dev->data;
522
523 ARG_UNUSED(flags);
524 return data->guard_period;
525 }
526
counter_stm32_set_guard_period(const struct device * dev,uint32_t guard,uint32_t flags)527 static int counter_stm32_set_guard_period(const struct device *dev, uint32_t guard,
528 uint32_t flags)
529 {
530 struct counter_stm32_data *data = dev->data;
531
532 ARG_UNUSED(flags);
533 __ASSERT_NO_MSG(guard < counter_stm32_get_top_value(dev));
534
535 data->guard_period = guard;
536 return 0;
537 }
538
counter_stm32_get_freq(const struct device * dev)539 static uint32_t counter_stm32_get_freq(const struct device *dev)
540 {
541 struct counter_stm32_data *data = dev->data;
542
543 return data->freq;
544 }
545
counter_stm32_top_irq_handle(const struct device * dev)546 static void counter_stm32_top_irq_handle(const struct device *dev)
547 {
548 struct counter_stm32_data *data = dev->data;
549
550 counter_top_callback_t cb = data->top_cb;
551
552 __ASSERT(cb != NULL, "top event enabled - expecting callback");
553 cb(dev, data->top_user_data);
554 }
555
counter_stm32_alarm_irq_handle(const struct device * dev,uint32_t id)556 static void counter_stm32_alarm_irq_handle(const struct device *dev, uint32_t id)
557 {
558 const struct counter_stm32_config *config = dev->config;
559 struct counter_stm32_data *data = dev->data;
560 TIM_TypeDef *timer = config->timer;
561
562 struct counter_stm32_ch_data *chdata;
563 counter_alarm_callback_t cb;
564
565 atomic_and(&data->cc_int_pending, ~BIT(id));
566 disable_it[id](timer);
567
568 chdata = &config->ch_data[id];
569 cb = chdata->callback;
570 chdata->callback = NULL;
571
572 if (cb) {
573 uint32_t cc_val = get_timer_compare[id](timer);
574
575 cb(dev, id, cc_val, chdata->user_data);
576 }
577 }
578
579 static const struct counter_driver_api counter_stm32_driver_api = {
580 .start = counter_stm32_start,
581 .stop = counter_stm32_stop,
582 .get_value = counter_stm32_get_value,
583 .set_alarm = counter_stm32_set_alarm,
584 .cancel_alarm = counter_stm32_cancel_alarm,
585 .set_top_value = counter_stm32_set_top_value,
586 .get_pending_int = counter_stm32_get_pending_int,
587 .get_top_value = counter_stm32_get_top_value,
588 .get_guard_period = counter_stm32_get_guard_period,
589 .set_guard_period = counter_stm32_set_guard_period,
590 .get_freq = counter_stm32_get_freq,
591 };
592
593 #define TIM_IRQ_HANDLE_CC(timx, cc) \
594 do { \
595 bool hw_irq = LL_TIM_IsActiveFlag_CC##cc(timer) && \
596 LL_TIM_IsEnabledIT_CC##cc(timer); \
597 if (hw_irq || (data->cc_int_pending & BIT(cc - 1U))) { \
598 if (hw_irq) { \
599 LL_TIM_ClearFlag_CC##cc(timer); \
600 } \
601 counter_stm32_alarm_irq_handle(dev, cc - 1U); \
602 } \
603 } while (0)
604
counter_stm32_irq_handler(const struct device * dev)605 void counter_stm32_irq_handler(const struct device *dev)
606 {
607 const struct counter_stm32_config *config = dev->config;
608 struct counter_stm32_data *data = dev->data;
609 TIM_TypeDef *timer = config->timer;
610
611 /* Capture compare events */
612 switch (counter_get_num_of_channels(dev)) {
613 case 4U:
614 TIM_IRQ_HANDLE_CC(timer, 4);
615 __fallthrough;
616 case 3U:
617 TIM_IRQ_HANDLE_CC(timer, 3);
618 __fallthrough;
619 case 2U:
620 TIM_IRQ_HANDLE_CC(timer, 2);
621 __fallthrough;
622 case 1U:
623 TIM_IRQ_HANDLE_CC(timer, 1);
624 }
625
626 /* TIM Update event */
627 if (LL_TIM_IsActiveFlag_UPDATE(timer) && LL_TIM_IsEnabledIT_UPDATE(timer)) {
628 LL_TIM_ClearFlag_UPDATE(timer);
629 counter_stm32_top_irq_handle(dev);
630 }
631 }
632
633 #define TIMER(idx) DT_INST_PARENT(idx)
634
635 /** TIMx instance from DT */
636 #define TIM(idx) ((TIM_TypeDef *)DT_REG_ADDR(TIMER(idx)))
637
638 #define COUNTER_DEVICE_INIT(idx) \
639 BUILD_ASSERT(DT_PROP(TIMER(idx), st_prescaler) <= 0xFFFF, \
640 "TIMER prescaler out of range"); \
641 BUILD_ASSERT(NUM_CH(TIM(idx)) <= TIMER_MAX_CH, \
642 "TIMER too many channels"); \
643 \
644 static struct counter_stm32_data counter##idx##_data = { \
645 .reset = RESET_DT_SPEC_GET(TIMER(idx)), \
646 }; \
647 static struct counter_stm32_ch_data counter##idx##_ch_data[TIMER_MAX_CH]; \
648 \
649 static void counter_##idx##_stm32_irq_config(const struct device *dev) \
650 { \
651 IRQ_CONNECT(DT_IRQN(TIMER(idx)), \
652 DT_IRQ(TIMER(idx), priority), \
653 counter_stm32_irq_handler, \
654 DEVICE_DT_INST_GET(idx), \
655 0); \
656 irq_enable(DT_IRQN(TIMER(idx))); \
657 } \
658 \
659 static const struct counter_stm32_config counter##idx##_config = { \
660 .info = { \
661 .max_top_value = \
662 IS_TIM_32B_COUNTER_INSTANCE(TIM(idx)) ? \
663 0xFFFFFFFF : 0x0000FFFF, \
664 .flags = COUNTER_CONFIG_INFO_COUNT_UP, \
665 .channels = NUM_CH(TIM(idx)), \
666 }, \
667 .ch_data = counter##idx##_ch_data, \
668 .timer = TIM(idx), \
669 .prescaler = DT_PROP(TIMER(idx), st_prescaler), \
670 .pclken = { \
671 .bus = DT_CLOCKS_CELL(TIMER(idx), bus), \
672 .enr = DT_CLOCKS_CELL(TIMER(idx), bits) \
673 }, \
674 .irq_config_func = counter_##idx##_stm32_irq_config, \
675 .irqn = DT_IRQN(TIMER(idx)), \
676 }; \
677 \
678 DEVICE_DT_INST_DEFINE(idx, \
679 counter_stm32_init_timer, \
680 NULL, \
681 &counter##idx##_data, \
682 &counter##idx##_config, \
683 PRE_KERNEL_1, CONFIG_COUNTER_INIT_PRIORITY, \
684 &counter_stm32_driver_api);
685
686 DT_INST_FOREACH_STATUS_OKAY(COUNTER_DEVICE_INIT)
687