1 /*
2 * Copyright (c) 2017 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7
8 #include <zephyr/kernel.h>
9 #include <string.h>
10 #include <zephyr/sys/math_extras.h>
11 #include <zephyr/sys/rb.h>
12 #include <zephyr/kernel_structs.h>
13 #include <zephyr/sys/sys_io.h>
14 #include <ksched.h>
15 #include <zephyr/syscall.h>
16 #include <zephyr/syscall_handler.h>
17 #include <zephyr/device.h>
18 #include <zephyr/init.h>
19 #include <stdbool.h>
20 #include <zephyr/app_memory/app_memdomain.h>
21 #include <zephyr/sys/libc-hooks.h>
22 #include <zephyr/sys/mutex.h>
23 #include <inttypes.h>
24 #include <zephyr/linker/linker-defs.h>
25
26 #ifdef Z_LIBC_PARTITION_EXISTS
27 K_APPMEM_PARTITION_DEFINE(z_libc_partition);
28 #endif
29
30 /* TODO: Find a better place to put this. Since we pull the entire
31 * lib..__modules__crypto__mbedtls.a globals into app shared memory
32 * section, we can't put this in zephyr_init.c of the mbedtls module.
33 */
34 #ifdef CONFIG_MBEDTLS
35 K_APPMEM_PARTITION_DEFINE(k_mbedtls_partition);
36 #endif
37
38 #include <zephyr/logging/log.h>
39 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
40
41 /* The originally synchronization strategy made heavy use of recursive
42 * irq_locking, which ports poorly to spinlocks which are
43 * non-recursive. Rather than try to redesign as part of
44 * spinlockification, this uses multiple locks to preserve the
45 * original semantics exactly. The locks are named for the data they
46 * protect where possible, or just for the code that uses them where
47 * not.
48 */
49 #ifdef CONFIG_DYNAMIC_OBJECTS
50 static struct k_spinlock lists_lock; /* kobj dlist */
51 static struct k_spinlock objfree_lock; /* k_object_free */
52
53 #ifdef CONFIG_GEN_PRIV_STACKS
54 /* On ARM & ARC MPU we may have two different alignment requirement
55 * when dynamically allocating thread stacks, one for the privileged
56 * stack and other for the user stack, so we need to account the
57 * worst alignment scenario and reserve space for that.
58 */
59 #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU)
60 #define STACK_ELEMENT_DATA_SIZE(size) \
61 (sizeof(struct z_stack_data) + CONFIG_PRIVILEGED_STACK_SIZE + \
62 Z_THREAD_STACK_OBJ_ALIGN(size) + Z_THREAD_STACK_SIZE_ADJUST(size))
63 #else
64 #define STACK_ELEMENT_DATA_SIZE(size) (sizeof(struct z_stack_data) + \
65 Z_THREAD_STACK_SIZE_ADJUST(size))
66 #endif /* CONFIG_ARM_MPU || CONFIG_ARC_MPU */
67 #else
68 #define STACK_ELEMENT_DATA_SIZE(size) Z_THREAD_STACK_SIZE_ADJUST(size)
69 #endif /* CONFIG_GEN_PRIV_STACKS */
70
71 #endif
72 static struct k_spinlock obj_lock; /* kobj struct data */
73
74 #define MAX_THREAD_BITS (CONFIG_MAX_THREAD_BYTES * 8)
75
76 #ifdef CONFIG_DYNAMIC_OBJECTS
77 extern uint8_t _thread_idx_map[CONFIG_MAX_THREAD_BYTES];
78 #endif
79
80 static void clear_perms_cb(struct z_object *ko, void *ctx_ptr);
81
otype_to_str(enum k_objects otype)82 const char *otype_to_str(enum k_objects otype)
83 {
84 const char *ret;
85 /* -fdata-sections doesn't work right except in very very recent
86 * GCC and these literal strings would appear in the binary even if
87 * otype_to_str was omitted by the linker
88 */
89 #ifdef CONFIG_LOG
90 switch (otype) {
91 /* otype-to-str.h is generated automatically during build by
92 * gen_kobject_list.py
93 */
94 case K_OBJ_ANY:
95 ret = "generic";
96 break;
97 #include <otype-to-str.h>
98 default:
99 ret = "?";
100 break;
101 }
102 #else
103 ARG_UNUSED(otype);
104 ret = NULL;
105 #endif
106 return ret;
107 }
108
109 struct perm_ctx {
110 int parent_id;
111 int child_id;
112 struct k_thread *parent;
113 };
114
115 #ifdef CONFIG_GEN_PRIV_STACKS
116 /* See write_gperf_table() in scripts/build/gen_kobject_list.py. The privilege
117 * mode stacks are allocated as an array. The base of the array is
118 * aligned to Z_PRIVILEGE_STACK_ALIGN, and all members must be as well.
119 */
z_priv_stack_find(k_thread_stack_t * stack)120 uint8_t *z_priv_stack_find(k_thread_stack_t *stack)
121 {
122 struct z_object *obj = z_object_find(stack);
123
124 __ASSERT(obj != NULL, "stack object not found");
125 __ASSERT(obj->type == K_OBJ_THREAD_STACK_ELEMENT,
126 "bad stack object");
127
128 return obj->data.stack_data->priv;
129 }
130 #endif /* CONFIG_GEN_PRIV_STACKS */
131
132 #ifdef CONFIG_DYNAMIC_OBJECTS
133
134 /*
135 * Note that dyn_obj->data is where the kernel object resides
136 * so it is the one that actually needs to be aligned.
137 * Due to the need to get the the fields inside struct dyn_obj
138 * from kernel object pointers (i.e. from data[]), the offset
139 * from data[] needs to be fixed at build time. Therefore,
140 * data[] is declared with __aligned(), such that when dyn_obj
141 * is allocated with alignment, data[] is also aligned.
142 * Due to this requirement, data[] needs to be aligned with
143 * the maximum alignment needed for all kernel objects
144 * (hence the following DYN_OBJ_DATA_ALIGN).
145 */
146 #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT
147 #define DYN_OBJ_DATA_ALIGN_K_THREAD (ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT)
148 #else
149 #define DYN_OBJ_DATA_ALIGN_K_THREAD (sizeof(void *))
150 #endif
151
152 #ifdef CONFIG_DYNAMIC_THREAD_STACK_SIZE
153 #ifndef CONFIG_MPU_STACK_GUARD
154 #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
155 Z_THREAD_STACK_OBJ_ALIGN(CONFIG_PRIVILEGED_STACK_SIZE)
156 #else
157 #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
158 Z_THREAD_STACK_OBJ_ALIGN(CONFIG_DYNAMIC_THREAD_STACK_SIZE)
159 #endif /* !CONFIG_MPU_STACK_GUARD */
160 #else
161 #define DYN_OBJ_DATA_ALIGN_K_THREAD_STACK \
162 Z_THREAD_STACK_OBJ_ALIGN(ARCH_STACK_PTR_ALIGN)
163 #endif /* CONFIG_DYNAMIC_THREAD_STACK_SIZE */
164
165 #define DYN_OBJ_DATA_ALIGN \
166 MAX(DYN_OBJ_DATA_ALIGN_K_THREAD, (sizeof(void *)))
167
168 struct dyn_obj {
169 struct z_object kobj;
170 sys_dnode_t dobj_list;
171
172 /* The object itself */
173 void *data;
174 };
175
176 extern struct z_object *z_object_gperf_find(const void *obj);
177 extern void z_object_gperf_wordlist_foreach(_wordlist_cb_func_t func,
178 void *context);
179
180 /*
181 * Linked list of allocated kernel objects, for iteration over all allocated
182 * objects (and potentially deleting them during iteration).
183 */
184 static sys_dlist_t obj_list = SYS_DLIST_STATIC_INIT(&obj_list);
185
186 /*
187 * TODO: Write some hash table code that will replace obj_list.
188 */
189
obj_size_get(enum k_objects otype)190 static size_t obj_size_get(enum k_objects otype)
191 {
192 size_t ret;
193
194 switch (otype) {
195 #include <otype-to-size.h>
196 default:
197 ret = sizeof(const struct device);
198 break;
199 }
200
201 return ret;
202 }
203
obj_align_get(enum k_objects otype)204 static size_t obj_align_get(enum k_objects otype)
205 {
206 size_t ret;
207
208 switch (otype) {
209 case K_OBJ_THREAD:
210 #ifdef ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT
211 ret = ARCH_DYNAMIC_OBJ_K_THREAD_ALIGNMENT;
212 #else
213 ret = __alignof(struct dyn_obj);
214 #endif
215 break;
216 default:
217 ret = __alignof(struct dyn_obj);
218 break;
219 }
220
221 return ret;
222 }
223
dyn_object_find(void * obj)224 static struct dyn_obj *dyn_object_find(void *obj)
225 {
226 struct dyn_obj *node;
227 k_spinlock_key_t key;
228
229 /* For any dynamically allocated kernel object, the object
230 * pointer is just a member of the containing struct dyn_obj,
231 * so just a little arithmetic is necessary to locate the
232 * corresponding struct rbnode
233 */
234 key = k_spin_lock(&lists_lock);
235
236 SYS_DLIST_FOR_EACH_CONTAINER(&obj_list, node, dobj_list) {
237 if (node->kobj.name == obj) {
238 goto end;
239 }
240 }
241
242 /* No object found */
243 node = NULL;
244
245 end:
246 k_spin_unlock(&lists_lock, key);
247
248 return node;
249 }
250
251 /**
252 * @internal
253 *
254 * @brief Allocate a new thread index for a new thread.
255 *
256 * This finds an unused thread index that can be assigned to a new
257 * thread. If too many threads have been allocated, the kernel will
258 * run out of indexes and this function will fail.
259 *
260 * Note that if an unused index is found, that index will be marked as
261 * used after return of this function.
262 *
263 * @param tidx The new thread index if successful
264 *
265 * @return true if successful, false if failed
266 **/
thread_idx_alloc(uintptr_t * tidx)267 static bool thread_idx_alloc(uintptr_t *tidx)
268 {
269 int i;
270 int idx;
271 int base;
272
273 base = 0;
274 for (i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
275 idx = find_lsb_set(_thread_idx_map[i]);
276
277 if (idx != 0) {
278 *tidx = base + (idx - 1);
279
280 sys_bitfield_clear_bit((mem_addr_t)_thread_idx_map,
281 *tidx);
282
283 /* Clear permission from all objects */
284 z_object_wordlist_foreach(clear_perms_cb,
285 (void *)*tidx);
286
287 return true;
288 }
289
290 base += 8;
291 }
292
293 return false;
294 }
295
296 /**
297 * @internal
298 *
299 * @brief Free a thread index.
300 *
301 * This frees a thread index so it can be used by another
302 * thread.
303 *
304 * @param tidx The thread index to be freed
305 **/
thread_idx_free(uintptr_t tidx)306 static void thread_idx_free(uintptr_t tidx)
307 {
308 /* To prevent leaked permission when index is recycled */
309 z_object_wordlist_foreach(clear_perms_cb, (void *)tidx);
310
311 sys_bitfield_set_bit((mem_addr_t)_thread_idx_map, tidx);
312 }
313
dynamic_object_create(enum k_objects otype,size_t align,size_t size)314 static struct z_object *dynamic_object_create(enum k_objects otype, size_t align,
315 size_t size)
316 {
317 struct dyn_obj *dyn;
318
319 dyn = z_thread_aligned_alloc(align, sizeof(struct dyn_obj));
320 if (dyn == NULL) {
321 return NULL;
322 }
323
324 if (otype == K_OBJ_THREAD_STACK_ELEMENT) {
325 size_t adjusted_size;
326
327 if (size == 0) {
328 k_free(dyn);
329 return NULL;
330 }
331
332 adjusted_size = STACK_ELEMENT_DATA_SIZE(size);
333 dyn->data = z_thread_aligned_alloc(DYN_OBJ_DATA_ALIGN_K_THREAD_STACK,
334 adjusted_size);
335 if (dyn->data == NULL) {
336 k_free(dyn);
337 return NULL;
338 }
339
340 #ifdef CONFIG_GEN_PRIV_STACKS
341 struct z_stack_data *stack_data = (struct z_stack_data *)
342 ((uint8_t *)dyn->data + adjusted_size - sizeof(*stack_data));
343 stack_data->priv = (uint8_t *)dyn->data;
344 dyn->kobj.data.stack_data = stack_data;
345 #if defined(CONFIG_ARM_MPU) || defined(CONFIG_ARC_MPU)
346 dyn->kobj.name = (void *)ROUND_UP(
347 ((uint8_t *)dyn->data + CONFIG_PRIVILEGED_STACK_SIZE),
348 Z_THREAD_STACK_OBJ_ALIGN(size));
349 #else
350 dyn->kobj.name = dyn->data;
351 #endif
352 #else
353 dyn->kobj.name = dyn->data;
354 #endif
355 } else {
356 dyn->data = z_thread_aligned_alloc(align, obj_size_get(otype) + size);
357 if (dyn->data == NULL) {
358 k_free(dyn->data);
359 return NULL;
360 }
361 dyn->kobj.name = dyn->data;
362 }
363
364 dyn->kobj.type = otype;
365 dyn->kobj.flags = 0;
366 (void)memset(dyn->kobj.perms, 0, CONFIG_MAX_THREAD_BYTES);
367
368 k_spinlock_key_t key = k_spin_lock(&lists_lock);
369
370 sys_dlist_append(&obj_list, &dyn->dobj_list);
371 k_spin_unlock(&lists_lock, key);
372
373 return &dyn->kobj;
374 }
375
z_dynamic_object_aligned_create(size_t align,size_t size)376 struct z_object *z_dynamic_object_aligned_create(size_t align, size_t size)
377 {
378 struct z_object *obj = dynamic_object_create(K_OBJ_ANY, align, size);
379
380 if (obj == NULL) {
381 LOG_ERR("could not allocate kernel object, out of memory");
382 }
383
384 return obj;
385 }
386
z_object_alloc(enum k_objects otype,size_t size)387 static void *z_object_alloc(enum k_objects otype, size_t size)
388 {
389 struct z_object *zo;
390 uintptr_t tidx = 0;
391
392 if (otype <= K_OBJ_ANY || otype >= K_OBJ_LAST) {
393 LOG_ERR("bad object type %d requested", otype);
394 return NULL;
395 }
396
397 switch (otype) {
398 case K_OBJ_THREAD:
399 if (!thread_idx_alloc(&tidx)) {
400 LOG_ERR("out of free thread indexes");
401 return NULL;
402 }
403 break;
404 /* The following are currently not allowed at all */
405 case K_OBJ_FUTEX: /* Lives in user memory */
406 case K_OBJ_SYS_MUTEX: /* Lives in user memory */
407 case K_OBJ_NET_SOCKET: /* Indeterminate size */
408 LOG_ERR("forbidden object type '%s' requested",
409 otype_to_str(otype));
410 return NULL;
411 default:
412 /* Remainder within bounds are permitted */
413 break;
414 }
415
416 zo = dynamic_object_create(otype, obj_align_get(otype), size);
417 if (zo == NULL) {
418 if (otype == K_OBJ_THREAD) {
419 thread_idx_free(tidx);
420 }
421 return NULL;
422 }
423
424 if (otype == K_OBJ_THREAD) {
425 zo->data.thread_id = tidx;
426 }
427
428 /* The allocating thread implicitly gets permission on kernel objects
429 * that it allocates
430 */
431 z_thread_perms_set(zo, _current);
432
433 /* Activates reference counting logic for automatic disposal when
434 * all permissions have been revoked
435 */
436 zo->flags |= K_OBJ_FLAG_ALLOC;
437
438 return zo->name;
439 }
440
z_impl_k_object_alloc(enum k_objects otype)441 void *z_impl_k_object_alloc(enum k_objects otype)
442 {
443 return z_object_alloc(otype, 0);
444 }
445
z_impl_k_object_alloc_size(enum k_objects otype,size_t size)446 void *z_impl_k_object_alloc_size(enum k_objects otype, size_t size)
447 {
448 return z_object_alloc(otype, size);
449 }
450
k_object_free(void * obj)451 void k_object_free(void *obj)
452 {
453 struct dyn_obj *dyn;
454
455 /* This function is intentionally not exposed to user mode.
456 * There's currently no robust way to track that an object isn't
457 * being used by some other thread
458 */
459
460 k_spinlock_key_t key = k_spin_lock(&objfree_lock);
461
462 dyn = dyn_object_find(obj);
463 if (dyn != NULL) {
464 sys_dlist_remove(&dyn->dobj_list);
465
466 if (dyn->kobj.type == K_OBJ_THREAD) {
467 thread_idx_free(dyn->kobj.data.thread_id);
468 }
469 }
470 k_spin_unlock(&objfree_lock, key);
471
472 if (dyn != NULL) {
473 k_free(dyn->data);
474 k_free(dyn);
475 }
476 }
477
z_object_find(const void * obj)478 struct z_object *z_object_find(const void *obj)
479 {
480 struct z_object *ret;
481
482 ret = z_object_gperf_find(obj);
483
484 if (ret == NULL) {
485 struct dyn_obj *dyn;
486
487 /* The cast to pointer-to-non-const violates MISRA
488 * 11.8 but is justified since we know dynamic objects
489 * were not declared with a const qualifier.
490 */
491 dyn = dyn_object_find((void *)obj);
492 if (dyn != NULL) {
493 ret = &dyn->kobj;
494 }
495 }
496
497 return ret;
498 }
499
z_object_wordlist_foreach(_wordlist_cb_func_t func,void * context)500 void z_object_wordlist_foreach(_wordlist_cb_func_t func, void *context)
501 {
502 struct dyn_obj *obj, *next;
503
504 z_object_gperf_wordlist_foreach(func, context);
505
506 k_spinlock_key_t key = k_spin_lock(&lists_lock);
507
508 SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&obj_list, obj, next, dobj_list) {
509 func(&obj->kobj, context);
510 }
511 k_spin_unlock(&lists_lock, key);
512 }
513 #endif /* CONFIG_DYNAMIC_OBJECTS */
514
thread_index_get(struct k_thread * thread)515 static unsigned int thread_index_get(struct k_thread *thread)
516 {
517 struct z_object *ko;
518
519 ko = z_object_find(thread);
520
521 if (ko == NULL) {
522 return -1;
523 }
524
525 return ko->data.thread_id;
526 }
527
unref_check(struct z_object * ko,uintptr_t index)528 static void unref_check(struct z_object *ko, uintptr_t index)
529 {
530 k_spinlock_key_t key = k_spin_lock(&obj_lock);
531
532 sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
533
534 #ifdef CONFIG_DYNAMIC_OBJECTS
535 if ((ko->flags & K_OBJ_FLAG_ALLOC) == 0U) {
536 /* skip unref check for static kernel object */
537 goto out;
538 }
539
540 void *vko = ko;
541
542 struct dyn_obj *dyn = CONTAINER_OF(vko, struct dyn_obj, kobj);
543
544 __ASSERT(IS_PTR_ALIGNED(dyn, struct dyn_obj), "unaligned z_object");
545
546 for (int i = 0; i < CONFIG_MAX_THREAD_BYTES; i++) {
547 if (ko->perms[i] != 0U) {
548 goto out;
549 }
550 }
551
552 /* This object has no more references. Some objects may have
553 * dynamically allocated resources, require cleanup, or need to be
554 * marked as uninitailized when all references are gone. What
555 * specifically needs to happen depends on the object type.
556 */
557 switch (ko->type) {
558 #ifdef CONFIG_PIPES
559 case K_OBJ_PIPE:
560 k_pipe_cleanup((struct k_pipe *)ko->name);
561 break;
562 #endif
563 case K_OBJ_MSGQ:
564 k_msgq_cleanup((struct k_msgq *)ko->name);
565 break;
566 case K_OBJ_STACK:
567 k_stack_cleanup((struct k_stack *)ko->name);
568 break;
569 default:
570 /* Nothing to do */
571 break;
572 }
573
574 sys_dlist_remove(&dyn->dobj_list);
575 k_free(dyn->data);
576 k_free(dyn);
577 out:
578 #endif
579 k_spin_unlock(&obj_lock, key);
580 }
581
wordlist_cb(struct z_object * ko,void * ctx_ptr)582 static void wordlist_cb(struct z_object *ko, void *ctx_ptr)
583 {
584 struct perm_ctx *ctx = (struct perm_ctx *)ctx_ptr;
585
586 if (sys_bitfield_test_bit((mem_addr_t)&ko->perms, ctx->parent_id) &&
587 (struct k_thread *)ko->name != ctx->parent) {
588 sys_bitfield_set_bit((mem_addr_t)&ko->perms, ctx->child_id);
589 }
590 }
591
z_thread_perms_inherit(struct k_thread * parent,struct k_thread * child)592 void z_thread_perms_inherit(struct k_thread *parent, struct k_thread *child)
593 {
594 struct perm_ctx ctx = {
595 thread_index_get(parent),
596 thread_index_get(child),
597 parent
598 };
599
600 if ((ctx.parent_id != -1) && (ctx.child_id != -1)) {
601 z_object_wordlist_foreach(wordlist_cb, &ctx);
602 }
603 }
604
z_thread_perms_set(struct z_object * ko,struct k_thread * thread)605 void z_thread_perms_set(struct z_object *ko, struct k_thread *thread)
606 {
607 int index = thread_index_get(thread);
608
609 if (index != -1) {
610 sys_bitfield_set_bit((mem_addr_t)&ko->perms, index);
611 }
612 }
613
z_thread_perms_clear(struct z_object * ko,struct k_thread * thread)614 void z_thread_perms_clear(struct z_object *ko, struct k_thread *thread)
615 {
616 int index = thread_index_get(thread);
617
618 if (index != -1) {
619 sys_bitfield_clear_bit((mem_addr_t)&ko->perms, index);
620 unref_check(ko, index);
621 }
622 }
623
clear_perms_cb(struct z_object * ko,void * ctx_ptr)624 static void clear_perms_cb(struct z_object *ko, void *ctx_ptr)
625 {
626 uintptr_t id = (uintptr_t)ctx_ptr;
627
628 unref_check(ko, id);
629 }
630
z_thread_perms_all_clear(struct k_thread * thread)631 void z_thread_perms_all_clear(struct k_thread *thread)
632 {
633 uintptr_t index = thread_index_get(thread);
634
635 if ((int)index != -1) {
636 z_object_wordlist_foreach(clear_perms_cb, (void *)index);
637 }
638 }
639
thread_perms_test(struct z_object * ko)640 static int thread_perms_test(struct z_object *ko)
641 {
642 int index;
643
644 if ((ko->flags & K_OBJ_FLAG_PUBLIC) != 0U) {
645 return 1;
646 }
647
648 index = thread_index_get(_current);
649 if (index != -1) {
650 return sys_bitfield_test_bit((mem_addr_t)&ko->perms, index);
651 }
652 return 0;
653 }
654
dump_permission_error(struct z_object * ko)655 static void dump_permission_error(struct z_object *ko)
656 {
657 int index = thread_index_get(_current);
658 LOG_ERR("thread %p (%d) does not have permission on %s %p",
659 _current, index,
660 otype_to_str(ko->type), ko->name);
661 LOG_HEXDUMP_ERR(ko->perms, sizeof(ko->perms), "permission bitmap");
662 }
663
z_dump_object_error(int retval,const void * obj,struct z_object * ko,enum k_objects otype)664 void z_dump_object_error(int retval, const void *obj, struct z_object *ko,
665 enum k_objects otype)
666 {
667 switch (retval) {
668 case -EBADF:
669 LOG_ERR("%p is not a valid %s", obj, otype_to_str(otype));
670 if (ko == NULL) {
671 LOG_ERR("address is not a known kernel object");
672 } else {
673 LOG_ERR("address is actually a %s",
674 otype_to_str(ko->type));
675 }
676 break;
677 case -EPERM:
678 dump_permission_error(ko);
679 break;
680 case -EINVAL:
681 LOG_ERR("%p used before initialization", obj);
682 break;
683 case -EADDRINUSE:
684 LOG_ERR("%p %s in use", obj, otype_to_str(otype));
685 break;
686 default:
687 /* Not handled error */
688 break;
689 }
690 }
691
z_impl_k_object_access_grant(const void * object,struct k_thread * thread)692 void z_impl_k_object_access_grant(const void *object, struct k_thread *thread)
693 {
694 struct z_object *ko = z_object_find(object);
695
696 if (ko != NULL) {
697 z_thread_perms_set(ko, thread);
698 }
699 }
700
k_object_access_revoke(const void * object,struct k_thread * thread)701 void k_object_access_revoke(const void *object, struct k_thread *thread)
702 {
703 struct z_object *ko = z_object_find(object);
704
705 if (ko != NULL) {
706 z_thread_perms_clear(ko, thread);
707 }
708 }
709
z_impl_k_object_release(const void * object)710 void z_impl_k_object_release(const void *object)
711 {
712 k_object_access_revoke(object, _current);
713 }
714
k_object_access_all_grant(const void * object)715 void k_object_access_all_grant(const void *object)
716 {
717 struct z_object *ko = z_object_find(object);
718
719 if (ko != NULL) {
720 ko->flags |= K_OBJ_FLAG_PUBLIC;
721 }
722 }
723
z_object_validate(struct z_object * ko,enum k_objects otype,enum _obj_init_check init)724 int z_object_validate(struct z_object *ko, enum k_objects otype,
725 enum _obj_init_check init)
726 {
727 if (unlikely((ko == NULL) ||
728 (otype != K_OBJ_ANY && ko->type != otype))) {
729 return -EBADF;
730 }
731
732 /* Manipulation of any kernel objects by a user thread requires that
733 * thread be granted access first, even for uninitialized objects
734 */
735 if (unlikely(thread_perms_test(ko) == 0)) {
736 return -EPERM;
737 }
738
739 /* Initialization state checks. _OBJ_INIT_ANY, we don't care */
740 if (likely(init == _OBJ_INIT_TRUE)) {
741 /* Object MUST be initialized */
742 if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0U)) {
743 return -EINVAL;
744 }
745 } else if (init == _OBJ_INIT_FALSE) { /* _OBJ_INIT_FALSE case */
746 /* Object MUST NOT be initialized */
747 if (unlikely((ko->flags & K_OBJ_FLAG_INITIALIZED) != 0U)) {
748 return -EADDRINUSE;
749 }
750 } else {
751 /* _OBJ_INIT_ANY */
752 }
753
754 return 0;
755 }
756
z_object_init(const void * obj)757 void z_object_init(const void *obj)
758 {
759 struct z_object *ko;
760
761 /* By the time we get here, if the caller was from userspace, all the
762 * necessary checks have been done in z_object_validate(), which takes
763 * place before the object is initialized.
764 *
765 * This function runs after the object has been initialized and
766 * finalizes it
767 */
768
769 ko = z_object_find(obj);
770 if (ko == NULL) {
771 /* Supervisor threads can ignore rules about kernel objects
772 * and may declare them on stacks, etc. Such objects will never
773 * be usable from userspace, but we shouldn't explode.
774 */
775 return;
776 }
777
778 /* Allows non-initialization system calls to be made on this object */
779 ko->flags |= K_OBJ_FLAG_INITIALIZED;
780 }
781
z_object_recycle(const void * obj)782 void z_object_recycle(const void *obj)
783 {
784 struct z_object *ko = z_object_find(obj);
785
786 if (ko != NULL) {
787 (void)memset(ko->perms, 0, sizeof(ko->perms));
788 z_thread_perms_set(ko, _current);
789 ko->flags |= K_OBJ_FLAG_INITIALIZED;
790 }
791 }
792
z_object_uninit(const void * obj)793 void z_object_uninit(const void *obj)
794 {
795 struct z_object *ko;
796
797 /* See comments in z_object_init() */
798 ko = z_object_find(obj);
799 if (ko == NULL) {
800 return;
801 }
802
803 ko->flags &= ~K_OBJ_FLAG_INITIALIZED;
804 }
805
806 /*
807 * Copy to/from helper functions used in syscall handlers
808 */
z_user_alloc_from_copy(const void * src,size_t size)809 void *z_user_alloc_from_copy(const void *src, size_t size)
810 {
811 void *dst = NULL;
812
813 /* Does the caller in user mode have access to read this memory? */
814 if (Z_SYSCALL_MEMORY_READ(src, size)) {
815 goto out_err;
816 }
817
818 dst = z_thread_malloc(size);
819 if (dst == NULL) {
820 LOG_ERR("out of thread resource pool memory (%zu)", size);
821 goto out_err;
822 }
823
824 (void)memcpy(dst, src, size);
825 out_err:
826 return dst;
827 }
828
user_copy(void * dst,const void * src,size_t size,bool to_user)829 static int user_copy(void *dst, const void *src, size_t size, bool to_user)
830 {
831 int ret = EFAULT;
832
833 /* Does the caller in user mode have access to this memory? */
834 if (to_user ? Z_SYSCALL_MEMORY_WRITE(dst, size) :
835 Z_SYSCALL_MEMORY_READ(src, size)) {
836 goto out_err;
837 }
838
839 (void)memcpy(dst, src, size);
840 ret = 0;
841 out_err:
842 return ret;
843 }
844
z_user_from_copy(void * dst,const void * src,size_t size)845 int z_user_from_copy(void *dst, const void *src, size_t size)
846 {
847 return user_copy(dst, src, size, false);
848 }
849
z_user_to_copy(void * dst,const void * src,size_t size)850 int z_user_to_copy(void *dst, const void *src, size_t size)
851 {
852 return user_copy(dst, src, size, true);
853 }
854
z_user_string_alloc_copy(const char * src,size_t maxlen)855 char *z_user_string_alloc_copy(const char *src, size_t maxlen)
856 {
857 size_t actual_len;
858 int err;
859 char *ret = NULL;
860
861 actual_len = z_user_string_nlen(src, maxlen, &err);
862 if (err != 0) {
863 goto out;
864 }
865 if (actual_len == maxlen) {
866 /* Not NULL terminated */
867 LOG_ERR("string too long %p (%zu)", src, actual_len);
868 goto out;
869 }
870 if (size_add_overflow(actual_len, 1, &actual_len)) {
871 LOG_ERR("overflow");
872 goto out;
873 }
874
875 ret = z_user_alloc_from_copy(src, actual_len);
876
877 /* Someone may have modified the source string during the above
878 * checks. Ensure what we actually copied is still terminated
879 * properly.
880 */
881 if (ret != NULL) {
882 ret[actual_len - 1U] = '\0';
883 }
884 out:
885 return ret;
886 }
887
z_user_string_copy(char * dst,const char * src,size_t maxlen)888 int z_user_string_copy(char *dst, const char *src, size_t maxlen)
889 {
890 size_t actual_len;
891 int ret, err;
892
893 actual_len = z_user_string_nlen(src, maxlen, &err);
894 if (err != 0) {
895 ret = EFAULT;
896 goto out;
897 }
898 if (actual_len == maxlen) {
899 /* Not NULL terminated */
900 LOG_ERR("string too long %p (%zu)", src, actual_len);
901 ret = EINVAL;
902 goto out;
903 }
904 if (size_add_overflow(actual_len, 1, &actual_len)) {
905 LOG_ERR("overflow");
906 ret = EINVAL;
907 goto out;
908 }
909
910 ret = z_user_from_copy(dst, src, actual_len);
911
912 /* See comment above in z_user_string_alloc_copy() */
913 dst[actual_len - 1] = '\0';
914 out:
915 return ret;
916 }
917
918 /*
919 * Application memory region initialization
920 */
921
922 extern char __app_shmem_regions_start[];
923 extern char __app_shmem_regions_end[];
924
app_shmem_bss_zero(void)925 static int app_shmem_bss_zero(void)
926 {
927 struct z_app_region *region, *end;
928
929
930 end = (struct z_app_region *)&__app_shmem_regions_end;
931 region = (struct z_app_region *)&__app_shmem_regions_start;
932
933 for ( ; region < end; region++) {
934 #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
935 /* When BSS sections are not present at boot, we need to wait for
936 * paging mechanism to be initialized before we can zero out BSS.
937 */
938 extern bool z_sys_post_kernel;
939 bool do_clear = z_sys_post_kernel;
940
941 /* During pre-kernel init, z_sys_post_kernel == false, but
942 * with pinned rodata region, so clear. Otherwise skip.
943 * In post-kernel init, z_sys_post_kernel == true,
944 * skip those in pinned rodata region as they have already
945 * been cleared and possibly already in use. Otherwise clear.
946 */
947 if (((uint8_t *)region->bss_start >= (uint8_t *)_app_smem_pinned_start) &&
948 ((uint8_t *)region->bss_start < (uint8_t *)_app_smem_pinned_end)) {
949 do_clear = !do_clear;
950 }
951
952 if (do_clear)
953 #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
954 {
955 (void)memset(region->bss_start, 0, region->bss_size);
956 }
957 }
958
959 return 0;
960 }
961
962 SYS_INIT_NAMED(app_shmem_bss_zero_pre, app_shmem_bss_zero,
963 PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
964
965 #if defined(CONFIG_DEMAND_PAGING) && !defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
966 /* When BSS sections are not present at boot, we need to wait for
967 * paging mechanism to be initialized before we can zero out BSS.
968 */
969 SYS_INIT_NAMED(app_shmem_bss_zero_post, app_shmem_bss_zero,
970 POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
971 #endif /* CONFIG_DEMAND_PAGING && !CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
972
973 /*
974 * Default handlers if otherwise unimplemented
975 */
976
handler_bad_syscall(uintptr_t bad_id,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uintptr_t arg6,void * ssf)977 static uintptr_t handler_bad_syscall(uintptr_t bad_id, uintptr_t arg2,
978 uintptr_t arg3, uintptr_t arg4,
979 uintptr_t arg5, uintptr_t arg6,
980 void *ssf)
981 {
982 LOG_ERR("Bad system call id %" PRIuPTR " invoked", bad_id);
983 arch_syscall_oops(ssf);
984 CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
985 }
986
handler_no_syscall(uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4,uintptr_t arg5,uintptr_t arg6,void * ssf)987 static uintptr_t handler_no_syscall(uintptr_t arg1, uintptr_t arg2,
988 uintptr_t arg3, uintptr_t arg4,
989 uintptr_t arg5, uintptr_t arg6, void *ssf)
990 {
991 LOG_ERR("Unimplemented system call");
992 arch_syscall_oops(ssf);
993 CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
994 }
995
996 #include <syscall_dispatch.c>
997