1 /*
2 * Copyright (c) 2016-2021 Nordic Semiconductor ASA
3 * Copyright (c) 2018 Intel Corporation
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #include <zephyr/init.h>
9 #include <soc.h>
10 #include <zephyr/drivers/clock_control.h>
11 #include <zephyr/drivers/clock_control/nrf_clock_control.h>
12 #include <zephyr/drivers/timer/system_timer.h>
13 #include <zephyr/drivers/timer/nrf_rtc_timer.h>
14 #include <zephyr/sys/util.h>
15 #include <zephyr/sys_clock.h>
16 #include <zephyr/sys/barrier.h>
17 #include <haly/nrfy_rtc.h>
18 #include <zephyr/irq.h>
19
20 #define RTC_PRETICK (IS_ENABLED(CONFIG_SOC_NRF53_RTC_PRETICK) && \
21 IS_ENABLED(CONFIG_SOC_NRF5340_CPUNET))
22
23 #define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
24 #define CHAN_COUNT (EXT_CHAN_COUNT + 1)
25
26 #define RTC NRF_RTC1
27 #define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
28 #define RTC_LABEL rtc1
29 #define CHAN_COUNT_MAX (RTC1_CC_NUM - (RTC_PRETICK ? 1 : 0))
30
31 BUILD_ASSERT(CHAN_COUNT <= CHAN_COUNT_MAX, "Not enough compare channels");
32 /* Ensure that counter driver for RTC1 is not enabled. */
33 BUILD_ASSERT(DT_NODE_HAS_STATUS(DT_NODELABEL(RTC_LABEL), disabled),
34 "Counter for RTC1 must be disabled");
35
36 #define COUNTER_BIT_WIDTH 24U
37 #define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
38 #define COUNTER_MAX (COUNTER_SPAN - 1U)
39 #define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
40 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
41 / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
42 #define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
43 #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
44
45 #define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
46 #define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
47 #define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
48 #define TARGET_TIME_INVALID (UINT64_MAX)
49
50 extern void rtc_pretick_rtc1_isr_hook(void);
51
52 static volatile uint32_t overflow_cnt;
53 static volatile uint64_t anchor;
54 static uint64_t last_count;
55 static bool sys_busy;
56
57 struct z_nrf_rtc_timer_chan_data {
58 z_nrf_rtc_timer_compare_handler_t callback;
59 void *user_context;
60 volatile uint64_t target_time;
61 };
62
63 static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
64 static atomic_t int_mask;
65 static atomic_t alloc_mask;
66 static atomic_t force_isr_mask;
67
counter_sub(uint32_t a,uint32_t b)68 static uint32_t counter_sub(uint32_t a, uint32_t b)
69 {
70 return (a - b) & COUNTER_MAX;
71 }
72
set_comparator(int32_t chan,uint32_t cyc)73 static void set_comparator(int32_t chan, uint32_t cyc)
74 {
75 nrfy_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
76 }
77
event_check(int32_t chan)78 static bool event_check(int32_t chan)
79 {
80 return nrfy_rtc_event_check(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
81 }
82
event_clear(int32_t chan)83 static void event_clear(int32_t chan)
84 {
85 nrfy_rtc_event_clear(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
86 }
87
event_enable(int32_t chan)88 static void event_enable(int32_t chan)
89 {
90 nrfy_rtc_event_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
91 }
92
event_disable(int32_t chan)93 static void event_disable(int32_t chan)
94 {
95 nrfy_rtc_event_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
96 }
97
counter(void)98 static uint32_t counter(void)
99 {
100 return nrfy_rtc_counter_get(RTC);
101 }
102
absolute_time_to_cc(uint64_t absolute_time)103 static uint32_t absolute_time_to_cc(uint64_t absolute_time)
104 {
105 /* 24 least significant bits represent target CC value */
106 return absolute_time & COUNTER_MAX;
107 }
108
full_int_lock(void)109 static uint32_t full_int_lock(void)
110 {
111 uint32_t mcu_critical_state;
112
113 if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
114 mcu_critical_state = __get_PRIMASK();
115 __disable_irq();
116 } else {
117 mcu_critical_state = irq_lock();
118 }
119
120 return mcu_critical_state;
121 }
122
full_int_unlock(uint32_t mcu_critical_state)123 static void full_int_unlock(uint32_t mcu_critical_state)
124 {
125 if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
126 __set_PRIMASK(mcu_critical_state);
127 } else {
128 irq_unlock(mcu_critical_state);
129 }
130 }
131
z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)132 uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
133 {
134 __ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
135 return nrfy_rtc_event_address_get(RTC, nrfy_rtc_compare_event_get(chan));
136 }
137
z_nrf_rtc_timer_capture_task_address_get(int32_t chan)138 uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
139 {
140 #if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
141 __ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
142 if (chan == 0) {
143 return 0;
144 }
145
146 return nrfy_rtc_task_address_get(RTC, nrfy_rtc_capture_task_get(chan));
147 #else
148 ARG_UNUSED(chan);
149 return 0;
150 #endif
151 }
152
compare_int_lock(int32_t chan)153 static bool compare_int_lock(int32_t chan)
154 {
155 atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
156
157 nrfy_rtc_int_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
158
159 barrier_dmem_fence_full();
160 barrier_isync_fence_full();
161
162 return prev & BIT(chan);
163 }
164
165
z_nrf_rtc_timer_compare_int_lock(int32_t chan)166 bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
167 {
168 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
169
170 return compare_int_lock(chan);
171 }
172
compare_int_unlock(int32_t chan,bool key)173 static void compare_int_unlock(int32_t chan, bool key)
174 {
175 if (key) {
176 atomic_or(&int_mask, BIT(chan));
177 nrfy_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
178 if (atomic_get(&force_isr_mask) & BIT(chan)) {
179 NVIC_SetPendingIRQ(RTC_IRQn);
180 }
181 }
182 }
183
z_nrf_rtc_timer_compare_int_unlock(int32_t chan,bool key)184 void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
185 {
186 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
187
188 compare_int_unlock(chan, key);
189 }
190
z_nrf_rtc_timer_compare_read(int32_t chan)191 uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
192 {
193 __ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
194
195 return nrfy_rtc_cc_get(RTC, chan);
196 }
197
z_nrf_rtc_timer_get_ticks(k_timeout_t t)198 uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
199 {
200 uint64_t curr_time;
201 int64_t curr_tick;
202 int64_t result;
203 int64_t abs_ticks;
204
205 do {
206 curr_time = z_nrf_rtc_timer_read();
207 curr_tick = sys_clock_tick_get();
208 } while (curr_time != z_nrf_rtc_timer_read());
209
210 abs_ticks = Z_TICK_ABS(t.ticks);
211 if (Z_IS_TIMEOUT_RELATIVE(t)) {
212 return (t.ticks > COUNTER_SPAN) ?
213 -EINVAL : (curr_time + t.ticks);
214 }
215
216 /* absolute timeout */
217 result = abs_ticks - curr_tick;
218
219 if (result > COUNTER_SPAN) {
220 return -EINVAL;
221 }
222
223 return curr_time + result;
224 }
225
226 /** @brief Function safely sets an alarm.
227 *
228 * It assumes that provided value is at most COUNTER_HALF_SPAN cycles from now
229 * (other values are considered to be from the past). It detects late setting
230 * and properly adjusts CC values that are too near in the future to guarantee
231 * triggering a COMPARE event soon, not after 512 seconds when the RTC wraps
232 * around first.
233 *
234 * @param[in] chan A channel for which a new CC value is to be set.
235 *
236 * @param[in] req_cc Requested CC register value to be set.
237 *
238 * @param[in] exact Use @c false to allow CC adjustment if @c req_cc value is
239 * close to the current value of the timer.
240 * Use @c true to disallow CC adjustment. The function can
241 * fail with -EINVAL result if @p req_cc is too close to the
242 * current value.
243 *
244 * @retval 0 The requested CC has been set successfully.
245 * @retval -EINVAL The requested CC value could not be reliably set.
246 */
set_alarm(int32_t chan,uint32_t req_cc,bool exact)247 static int set_alarm(int32_t chan, uint32_t req_cc, bool exact)
248 {
249 int ret = 0;
250
251 /* Ensure that the value exposed in this driver API is consistent with
252 * assumptions of this function.
253 */
254 BUILD_ASSERT(NRF_RTC_TIMER_MAX_SCHEDULE_SPAN <= COUNTER_HALF_SPAN);
255
256 /* According to product specifications, when the current counter value
257 * is N, a value of N+2 written to the CC register is guaranteed to
258 * trigger a COMPARE event at N+2, but tests show that this compare
259 * value can be missed when the previous CC value is N+1 and the write
260 * occurs in the second half of the RTC clock cycle (such situation can
261 * be provoked by test_next_cycle_timeouts in the nrf_rtc_timer suite).
262 * This never happens when the written value is N+3. Use 3 cycles as
263 * the nearest possible scheduling then.
264 */
265 enum { MIN_CYCLES_FROM_NOW = 3 };
266 uint32_t cc_val = req_cc;
267 uint32_t cc_inc = MIN_CYCLES_FROM_NOW;
268
269 /* Disable event routing for the channel to avoid getting a COMPARE
270 * event for the previous CC value before the new one takes effect
271 * (however, even if such spurious event was generated, it would be
272 * properly filtered out in process_channel(), where the target time
273 * is checked).
274 * Clear also the event as it may already be generated at this point.
275 */
276 event_disable(chan);
277 event_clear(chan);
278
279 for (;;) {
280 uint32_t now;
281
282 set_comparator(chan, cc_val);
283 /* Enable event routing after the required CC value was set.
284 * Even though the above operation may get repeated (see below),
285 * there is no need to disable event routing in every iteration
286 * of the loop, as the COMPARE event resulting from any attempt
287 * of setting the CC register is acceptable (as mentioned above,
288 * process_channel() does the proper filtering).
289 */
290 event_enable(chan);
291
292 now = counter();
293
294 /* Check if the CC register was successfully set to a value
295 * that will for sure trigger a COMPARE event as expected.
296 * If not, try again, adjusting the CC value accordingly.
297 * Increase the CC value by a larger number of cycles in each
298 * trial to avoid spending too much time in this loop if it
299 * continuously gets interrupted and delayed by something.
300 */
301 if (counter_sub(cc_val, now + MIN_CYCLES_FROM_NOW) >
302 (COUNTER_HALF_SPAN - MIN_CYCLES_FROM_NOW)) {
303 /* If the COMPARE event turns out to be already
304 * generated, check if the loop can be finished.
305 */
306 if (event_check(chan)) {
307 /* If the current counter value has not yet
308 * reached the requested CC value, the event
309 * must come from the previously set CC value
310 * (the alarm is apparently rescheduled).
311 * The event needs to be cleared then and the
312 * loop needs to be continued.
313 */
314 now = counter();
315 if (counter_sub(now, req_cc) > COUNTER_HALF_SPAN) {
316 event_clear(chan);
317 if (exact) {
318 ret = -EINVAL;
319 break;
320 }
321 } else {
322 break;
323 }
324 } else if (exact) {
325 ret = -EINVAL;
326 break;
327 }
328
329 cc_val = now + cc_inc;
330 cc_inc++;
331 } else {
332 break;
333 }
334 }
335
336 return ret;
337 }
338
compare_set_nolocks(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data,bool exact)339 static int compare_set_nolocks(int32_t chan, uint64_t target_time,
340 z_nrf_rtc_timer_compare_handler_t handler,
341 void *user_data, bool exact)
342 {
343 int ret = 0;
344 uint32_t cc_value = absolute_time_to_cc(target_time);
345 uint64_t curr_time = z_nrf_rtc_timer_read();
346
347 if (curr_time < target_time) {
348 if (target_time - curr_time > COUNTER_HALF_SPAN) {
349 /* Target time is too distant. */
350 return -EINVAL;
351 }
352
353 if (target_time != cc_data[chan].target_time) {
354 /* Target time is valid and is different than currently set.
355 * Set CC value.
356 */
357 ret = set_alarm(chan, cc_value, exact);
358 }
359 } else if (!exact) {
360 /* Force ISR handling when exiting from critical section. */
361 atomic_or(&force_isr_mask, BIT(chan));
362 } else {
363 ret = -EINVAL;
364 }
365
366 if (ret == 0) {
367 cc_data[chan].target_time = target_time;
368 cc_data[chan].callback = handler;
369 cc_data[chan].user_context = user_data;
370 }
371
372 return ret;
373 }
374
compare_set(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data,bool exact)375 static int compare_set(int32_t chan, uint64_t target_time,
376 z_nrf_rtc_timer_compare_handler_t handler,
377 void *user_data, bool exact)
378 {
379 bool key;
380
381 key = compare_int_lock(chan);
382
383 int ret = compare_set_nolocks(chan, target_time, handler, user_data, exact);
384
385 compare_int_unlock(chan, key);
386
387 return ret;
388 }
389
z_nrf_rtc_timer_set(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data)390 int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
391 z_nrf_rtc_timer_compare_handler_t handler,
392 void *user_data)
393 {
394 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
395
396 return compare_set(chan, target_time, handler, user_data, false);
397 }
398
z_nrf_rtc_timer_exact_set(int32_t chan,uint64_t target_time,z_nrf_rtc_timer_compare_handler_t handler,void * user_data)399 int z_nrf_rtc_timer_exact_set(int32_t chan, uint64_t target_time,
400 z_nrf_rtc_timer_compare_handler_t handler,
401 void *user_data)
402 {
403 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
404
405 return compare_set(chan, target_time, handler, user_data, true);
406 }
407
z_nrf_rtc_timer_abort(int32_t chan)408 void z_nrf_rtc_timer_abort(int32_t chan)
409 {
410 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
411
412 bool key = compare_int_lock(chan);
413
414 cc_data[chan].target_time = TARGET_TIME_INVALID;
415 event_clear(chan);
416 event_disable(chan);
417 (void)atomic_and(&force_isr_mask, ~BIT(chan));
418
419 compare_int_unlock(chan, key);
420 }
421
z_nrf_rtc_timer_read(void)422 uint64_t z_nrf_rtc_timer_read(void)
423 {
424 uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;
425
426 barrier_dmem_fence_full();
427
428 uint32_t cntr = counter();
429
430 val += cntr;
431
432 if (cntr < OVERFLOW_RISK_RANGE_END) {
433 /* `overflow_cnt` can have incorrect value due to still unhandled overflow or
434 * due to possibility that this code preempted overflow interrupt before final write
435 * of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
436 * `anchor` is considered valid and stable. Because of this timing there is no risk
437 * of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
438 */
439 if (val < anchor) {
440 /* Unhandled overflow, detected, let's add correction */
441 val += COUNTER_SPAN;
442 }
443 } else {
444 /* `overflow_cnt` is considered valid and stable in this range, no need to
445 * check validity using `anchor`
446 */
447 }
448
449 return val;
450 }
451
in_anchor_range(uint32_t cc_value)452 static inline bool in_anchor_range(uint32_t cc_value)
453 {
454 return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
455 }
456
anchor_update(uint32_t cc_value)457 static inline void anchor_update(uint32_t cc_value)
458 {
459 /* Update anchor when far from overflow */
460 if (in_anchor_range(cc_value)) {
461 /* In this range `overflow_cnt` is considered valid and stable.
462 * Write of 64-bit `anchor` is non atomic. However it happens
463 * far in time from the moment the `anchor` is read in
464 * `z_nrf_rtc_timer_read`.
465 */
466 anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
467 }
468 }
469
sys_clock_timeout_handler(int32_t chan,uint64_t expire_time,void * user_data)470 static void sys_clock_timeout_handler(int32_t chan,
471 uint64_t expire_time,
472 void *user_data)
473 {
474 uint32_t cc_value = absolute_time_to_cc(expire_time);
475 uint32_t dticks = (uint32_t)(expire_time - last_count) / CYC_PER_TICK;
476
477 last_count += dticks * CYC_PER_TICK;
478
479 anchor_update(cc_value);
480
481 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
482 /* protection is not needed because we are in the RTC interrupt
483 * so it won't get preempted by the interrupt.
484 */
485 compare_set(chan, last_count + CYC_PER_TICK,
486 sys_clock_timeout_handler, NULL, false);
487 }
488
489 sys_clock_announce(dticks);
490 }
491
channel_processing_check_and_clear(int32_t chan)492 static bool channel_processing_check_and_clear(int32_t chan)
493 {
494 if (nrfy_rtc_int_enable_check(RTC, NRF_RTC_CHANNEL_INT_MASK(chan))) {
495 /* The processing of channel can be caused by CC match
496 * or be forced.
497 */
498 if ((atomic_and(&force_isr_mask, ~BIT(chan)) & BIT(chan)) ||
499 event_check(chan)) {
500 event_clear(chan);
501 return true;
502 }
503 }
504
505 return false;
506 }
507
process_channel(int32_t chan)508 static void process_channel(int32_t chan)
509 {
510 if (channel_processing_check_and_clear(chan)) {
511 void *user_context;
512 uint32_t mcu_critical_state;
513 uint64_t curr_time;
514 uint64_t expire_time;
515 z_nrf_rtc_timer_compare_handler_t handler = NULL;
516
517 curr_time = z_nrf_rtc_timer_read();
518
519 /* This critical section is used to provide atomic access to
520 * cc_data structure and prevent higher priority contexts
521 * (including ZLIs) from overwriting it.
522 */
523 mcu_critical_state = full_int_lock();
524
525 /* If target_time is in the past or is equal to current time
526 * value, execute the handler.
527 */
528 expire_time = cc_data[chan].target_time;
529 if (curr_time >= expire_time) {
530 handler = cc_data[chan].callback;
531 user_context = cc_data[chan].user_context;
532 cc_data[chan].callback = NULL;
533 cc_data[chan].target_time = TARGET_TIME_INVALID;
534 event_disable(chan);
535 /* Because of the way set_alarm() sets the CC register,
536 * it may turn out that another COMPARE event has been
537 * generated for the same alarm. Make sure the event
538 * is cleared, so that the ISR is not executed again
539 * unnecessarily.
540 */
541 event_clear(chan);
542 }
543
544 full_int_unlock(mcu_critical_state);
545
546 if (handler) {
547 handler(chan, expire_time, user_context);
548 }
549 }
550 }
551
552 /* Note: this function has public linkage, and MUST have this
553 * particular name. The platform architecture itself doesn't care,
554 * but there is a test (tests/arch/arm_irq_vector_table) that needs
555 * to find it to it can set it in a custom vector table. Should
556 * probably better abstract that at some point (e.g. query and reset
557 * it by pointer at runtime, maybe?) so we don't have this leaky
558 * symbol.
559 */
rtc_nrf_isr(const void * arg)560 void rtc_nrf_isr(const void *arg)
561 {
562 ARG_UNUSED(arg);
563
564 if (RTC_PRETICK) {
565 rtc_pretick_rtc1_isr_hook();
566 }
567
568 if (nrfy_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
569 nrfy_rtc_events_process(RTC, NRF_RTC_INT_OVERFLOW_MASK)) {
570 overflow_cnt++;
571 }
572
573 for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
574 process_channel(chan);
575 }
576 }
577
z_nrf_rtc_timer_chan_alloc(void)578 int32_t z_nrf_rtc_timer_chan_alloc(void)
579 {
580 int32_t chan;
581 atomic_val_t prev;
582 do {
583 chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
584 if (chan < 0) {
585 return -ENOMEM;
586 }
587 prev = atomic_and(&alloc_mask, ~BIT(chan));
588 } while (!(prev & BIT(chan)));
589
590 return chan;
591 }
592
z_nrf_rtc_timer_chan_free(int32_t chan)593 void z_nrf_rtc_timer_chan_free(int32_t chan)
594 {
595 __ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
596
597 atomic_or(&alloc_mask, BIT(chan));
598 }
599
600
z_nrf_rtc_timer_trigger_overflow(void)601 int z_nrf_rtc_timer_trigger_overflow(void)
602 {
603 uint32_t mcu_critical_state;
604 int err = 0;
605
606 if (!IS_ENABLED(CONFIG_NRF_RTC_TIMER_TRIGGER_OVERFLOW) ||
607 (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT > 0)) {
608 return -ENOTSUP;
609 }
610
611 mcu_critical_state = full_int_lock();
612 if (sys_busy) {
613 err = -EBUSY;
614 goto bail;
615 }
616
617 if (counter() >= (COUNTER_SPAN - 100)) {
618 err = -EAGAIN;
619 goto bail;
620 }
621
622 nrfy_rtc_task_trigger(RTC, NRF_RTC_TASK_TRIGGER_OVERFLOW);
623 k_busy_wait(80);
624
625 uint64_t now = z_nrf_rtc_timer_read();
626
627 if (err == 0) {
628 sys_clock_timeout_handler(0, now, NULL);
629 }
630 bail:
631 full_int_unlock(mcu_critical_state);
632
633 return err;
634 }
635
sys_clock_set_timeout(int32_t ticks,bool idle)636 void sys_clock_set_timeout(int32_t ticks, bool idle)
637 {
638 ARG_UNUSED(idle);
639 uint32_t cyc;
640
641 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
642 return;
643 }
644
645 if (ticks == K_TICKS_FOREVER) {
646 cyc = MAX_TICKS * CYC_PER_TICK;
647 sys_busy = false;
648 } else {
649 /* Value of ticks can be zero or negative, what means "announce
650 * the next tick" (the same as ticks equal to 1).
651 */
652 cyc = CLAMP(ticks, 1, (int32_t)MAX_TICKS);
653 cyc *= CYC_PER_TICK;
654 sys_busy = true;
655 }
656
657 uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;
658
659 /* If we haven't announced for more than half the 24-bit wrap
660 * duration, then force an announce to avoid loss of a wrap
661 * event. This can happen if new timeouts keep being set
662 * before the existing one triggers the interrupt.
663 */
664 if (unannounced >= COUNTER_HALF_SPAN) {
665 cyc = 0;
666 }
667
668 /* Get the cycles from last_count to the tick boundary after
669 * the requested ticks have passed starting now.
670 */
671 cyc += unannounced;
672 cyc = DIV_ROUND_UP(cyc, CYC_PER_TICK) * CYC_PER_TICK;
673
674 /* Due to elapsed time the calculation above might produce a
675 * duration that laps the counter. Don't let it.
676 * This limitation also guarantees that the anchor will be properly
677 * updated before every overflow (see anchor_update()).
678 */
679 if (cyc > MAX_CYCLES) {
680 cyc = MAX_CYCLES;
681 }
682
683 uint64_t target_time = cyc + last_count;
684
685 compare_set(0, target_time, sys_clock_timeout_handler, NULL, false);
686 }
687
sys_clock_elapsed(void)688 uint32_t sys_clock_elapsed(void)
689 {
690 if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
691 return 0;
692 }
693
694 return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
695 }
696
sys_clock_cycle_get_32(void)697 uint32_t sys_clock_cycle_get_32(void)
698 {
699 return (uint32_t)z_nrf_rtc_timer_read();
700 }
701
int_event_disable_rtc(void)702 static void int_event_disable_rtc(void)
703 {
704 uint32_t mask = NRF_RTC_INT_TICK_MASK |
705 NRF_RTC_INT_OVERFLOW_MASK |
706 NRF_RTC_INT_COMPARE0_MASK |
707 NRF_RTC_INT_COMPARE1_MASK |
708 NRF_RTC_INT_COMPARE2_MASK |
709 NRF_RTC_INT_COMPARE3_MASK;
710
711 /* Reset interrupt enabling to expected reset values */
712 nrfy_rtc_int_disable(RTC, mask);
713
714 /* Reset event routing enabling to expected reset values */
715 nrfy_rtc_event_disable(RTC, mask);
716 }
717
sys_clock_disable(void)718 void sys_clock_disable(void)
719 {
720 nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_STOP);
721 irq_disable(RTC_IRQn);
722 int_event_disable_rtc();
723 NVIC_ClearPendingIRQ(RTC_IRQn);
724 }
725
sys_clock_driver_init(void)726 static int sys_clock_driver_init(void)
727 {
728 int_event_disable_rtc();
729
730 /* TODO: replace with counter driver to access RTC */
731 nrfy_rtc_prescaler_set(RTC, 0);
732 for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
733 cc_data[chan].target_time = TARGET_TIME_INVALID;
734 nrfy_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
735 }
736
737 nrfy_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);
738
739 NVIC_ClearPendingIRQ(RTC_IRQn);
740
741 IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
742 rtc_nrf_isr, 0, 0);
743 irq_enable(RTC_IRQn);
744
745 nrfy_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
746 nrfy_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
747
748 int_mask = BIT_MASK(CHAN_COUNT);
749 if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
750 alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
751 }
752
753 uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
754 MAX_CYCLES : CYC_PER_TICK;
755
756 compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL, false);
757
758 #if defined(CONFIG_CLOCK_CONTROL_NRF)
759 static const enum nrf_lfclk_start_mode mode =
760 IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
761 CLOCK_CONTROL_NRF_LF_START_NOWAIT :
762 (IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
763 CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
764 CLOCK_CONTROL_NRF_LF_START_STABLE);
765
766 z_nrf_clock_control_lf_on(mode);
767 #endif
768
769 return 0;
770 }
771
772 SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
773 CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
774