1 /*
2 * Copyright (c) 1997-1998, 2000-2002, 2004, 2006-2008, 2011-2015 Wind River
3 * Systems, Inc.
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #define DT_DRV_COMPAT intel_ioapic
9
10 /**
11 * @file
12 * @brief Intel IO APIC/xAPIC driver
13 *
14 * This module is a driver for the IO APIC/xAPIC (Advanced Programmable
15 * Interrupt Controller) for P6 (PentiumPro, II, III) family processors
16 * and P7 (Pentium4) family processors. The IO APIC/xAPIC is included
17 * in the Intel's system chip set, such as ICH2. Software intervention
18 * may be required to enable the IO APIC/xAPIC in some chip sets.
19 * The 8259A interrupt controller is intended for use in a uni-processor
20 * system, IO APIC can be used in either a uni-processor or multi-processor
21 * system. The IO APIC handles interrupts very differently than the 8259A.
22 * Briefly, these differences are:
23 * - Method of Interrupt Transmission. The IO APIC transmits interrupts
24 * through a 3-wire bus and interrupts are handled without the need for
25 * the processor to run an interrupt acknowledge cycle.
26 * - Interrupt Priority. The priority of interrupts in the IO APIC is
27 * independent of the interrupt number. For example, interrupt 10 can
28 * be given a higher priority than interrupt 3.
29 * - More Interrupts. The IO APIC supports a total of 24 interrupts.
30 *
31 * The IO APIC unit consists of a set of interrupt input signals, a 24-entry
32 * by 64-bit Interrupt Redirection Table, programmable registers, and a message
33 * unit for sending and receiving APIC messages over the APIC bus or the
34 * Front-Side (system) bus. IO devices inject interrupts into the system by
35 * asserting one of the interrupt lines to the IO APIC. The IO APIC selects the
36 * corresponding entry in the Redirection Table and uses the information in that
37 * entry to format an interrupt request message. Each entry in the Redirection
38 * Table can be individually programmed to indicate edge/level sensitive interrupt
39 * signals, the interrupt vector and priority, the destination processor, and how
40 * the processor is selected (statically and dynamically). The information in
41 * the table is used to transmit a message to other APIC units (via the APIC bus
42 * or the Front-Side (system) bus). IO APIC is used in the Symmetric IO Mode.
43 * The base address of IO APIC is determined in loapic_init() and stored in the
44 * global variable ioApicBase and ioApicData.
45 * The lower 32 bit value of the redirection table entries for IRQ 0
46 * to 15 are edge triggered positive high, and for IRQ 16 to 23 are level
47 * triggered positive low.
48 *
49 * This implementation doesn't support multiple IO APICs.
50 *
51 * INCLUDE FILES: ioapic.h loapic.h
52 *
53 */
54
55 #include <kernel.h>
56 #include <arch/cpu.h>
57
58 #include <toolchain.h>
59 #include <linker/sections.h>
60 #include <device.h>
61 #include <string.h>
62
63 #include <drivers/interrupt_controller/ioapic.h> /* public API declarations */
64 #include <drivers/interrupt_controller/loapic.h> /* public API declarations and registers */
65 #include "intc_ioapic_priv.h"
66
67 DEVICE_MMIO_TOPLEVEL_STATIC(ioapic_regs, DT_DRV_INST(0));
68
69 #define IOAPIC_REG DEVICE_MMIO_TOPLEVEL_GET(ioapic_regs)
70
71 /*
72 * Destination field (bits[56:63]) defines a set of processors, which is
73 * used to be compared with local LDR to determine which local APICs accept
74 * the interrupt.
75 *
76 * XAPIC: in logical destination mode and flat model (determined by DFR).
77 * LDR bits[24:31] can accommodate up to 8 logical APIC IDs.
78 *
79 * X2APIC: in logical destination mode and cluster model.
80 * In this case, LDR is read-only to system software and supports up to 16
81 * logical IDs. (Cluster ID: don't care to IO APIC).
82 *
83 * In either case, regardless how many CPUs in the system, 0xff implies that
84 * it's intended to deliver to all possible 8 local APICs.
85 */
86 #define DEFAULT_RTE_DEST (0xFF << 24)
87
88 static __pinned_bss uint32_t ioapic_rtes;
89
90 #ifdef CONFIG_PM_DEVICE
91 #include <pm/device.h>
92
93 #define BITS_PER_IRQ 4
94 #define IOAPIC_BITFIELD_HI_LO 0
95 #define IOAPIC_BITFIELD_LVL_EDGE 1
96 #define IOAPIC_BITFIELD_ENBL_DSBL 2
97 #define IOAPIC_BITFIELD_DELIV_MODE 3
98
99 #define BIT_POS_FOR_IRQ_OPTION(irq, option) ((irq) * BITS_PER_IRQ + (option))
100
101 /* Allocating up to 256 irq bits bufffer for RTEs, RTEs are dynamically found
102 * so let's just assume the maximum, it's only 128 bytes in total.
103 */
104 #define SUSPEND_BITS_REQD (ROUND_UP((256 * BITS_PER_IRQ), 32))
105
106 __pinned_bss
107 uint32_t ioapic_suspend_buf[SUSPEND_BITS_REQD / 32] = {0};
108 #endif
109
110 static uint32_t __IoApicGet(int32_t offset);
111 static void __IoApicSet(int32_t offset, uint32_t value);
112 static void ioApicRedSetHi(unsigned int irq, uint32_t upper32);
113 static void ioApicRedSetLo(unsigned int irq, uint32_t lower32);
114 static uint32_t ioApicRedGetLo(unsigned int irq);
115 static void IoApicRedUpdateLo(unsigned int irq, uint32_t value,
116 uint32_t mask);
117
118 /*
119 * The functions irq_enable() and irq_disable() are implemented in the
120 * interrupt controller driver due to the IRQ virtualization imposed by
121 * the x86 architecture.
122 */
123
124 /**
125 *
126 * @brief Initialize the IO APIC or xAPIC
127 *
128 * This routine initializes the IO APIC or xAPIC.
129 *
130 * @return N/A
131 */
132 __boot_func
ioapic_init(const struct device * unused)133 int ioapic_init(const struct device *unused)
134 {
135 ARG_UNUSED(unused);
136
137 DEVICE_MMIO_TOPLEVEL_MAP(ioapic_regs, K_MEM_CACHE_NONE);
138
139 /* Reading MRE: this will give the number of RTEs available */
140 ioapic_rtes = ((__IoApicGet(IOAPIC_VERS) &
141 IOAPIC_MRE_MASK) >> IOAPIC_MRE_POS) + 1;
142
143 #ifdef CONFIG_IOAPIC_MASK_RTE
144 int32_t ix; /* redirection table index */
145 uint32_t rteValue; /* value to copy into redirection table entry */
146
147 rteValue = IOAPIC_EDGE | IOAPIC_HIGH | IOAPIC_FIXED | IOAPIC_INT_MASK |
148 IOAPIC_LOGICAL | 0 /* dummy vector */;
149
150 for (ix = 0; ix < ioapic_rtes; ix++) {
151 ioApicRedSetHi(ix, DEFAULT_RTE_DEST);
152 ioApicRedSetLo(ix, rteValue);
153 }
154 #endif
155 return 0;
156 }
157
158 __pinned_func
z_ioapic_num_rtes(void)159 uint32_t z_ioapic_num_rtes(void)
160 {
161 return ioapic_rtes;
162 }
163
164 /**
165 *
166 * @brief Enable a specified APIC interrupt input line
167 *
168 * This routine enables a specified APIC interrupt input line.
169 * @param irq IRQ number to enable
170 *
171 * @return N/A
172 */
173 __pinned_func
z_ioapic_irq_enable(unsigned int irq)174 void z_ioapic_irq_enable(unsigned int irq)
175 {
176 IoApicRedUpdateLo(irq, 0, IOAPIC_INT_MASK);
177 }
178
179 /**
180 *
181 * @brief Disable a specified APIC interrupt input line
182 *
183 * This routine disables a specified APIC interrupt input line.
184 * @param irq IRQ number to disable
185 *
186 * @return N/A
187 */
188 __pinned_func
z_ioapic_irq_disable(unsigned int irq)189 void z_ioapic_irq_disable(unsigned int irq)
190 {
191 IoApicRedUpdateLo(irq, IOAPIC_INT_MASK, IOAPIC_INT_MASK);
192 }
193
194
195 #ifdef CONFIG_PM_DEVICE
196
197 __pinned_func
store_flags(unsigned int irq,uint32_t flags)198 void store_flags(unsigned int irq, uint32_t flags)
199 {
200 /* Currently only the following four flags are modified */
201 if (flags & IOAPIC_LOW) {
202 sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
203 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_HI_LO));
204 }
205
206 if (flags & IOAPIC_LEVEL) {
207 sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
208 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_LVL_EDGE));
209 }
210
211 if (flags & IOAPIC_INT_MASK) {
212 sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
213 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_ENBL_DSBL));
214 }
215
216 /*
217 * We support lowest priority and fixed mode only, so only one bit
218 * needs to be saved.
219 */
220 if (flags & IOAPIC_LOWEST) {
221 sys_bitfield_set_bit((mem_addr_t) ioapic_suspend_buf,
222 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_DELIV_MODE));
223 }
224 }
225
226 __pinned_func
restore_flags(unsigned int irq)227 uint32_t restore_flags(unsigned int irq)
228 {
229 uint32_t flags = 0U;
230
231 if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
232 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_HI_LO))) {
233 flags |= IOAPIC_LOW;
234 }
235
236 if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
237 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_LVL_EDGE))) {
238 flags |= IOAPIC_LEVEL;
239 }
240
241 if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
242 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_ENBL_DSBL))) {
243 flags |= IOAPIC_INT_MASK;
244 }
245
246 if (sys_bitfield_test_bit((mem_addr_t) ioapic_suspend_buf,
247 BIT_POS_FOR_IRQ_OPTION(irq, IOAPIC_BITFIELD_DELIV_MODE))) {
248 flags |= IOAPIC_LOWEST;
249 }
250
251 return flags;
252 }
253
254
255 __pinned_func
ioapic_suspend(const struct device * port)256 int ioapic_suspend(const struct device *port)
257 {
258 int irq;
259 uint32_t rte_lo;
260
261 ARG_UNUSED(port);
262 (void)memset(ioapic_suspend_buf, 0, (SUSPEND_BITS_REQD >> 3));
263 for (irq = 0; irq < ioapic_rtes; irq++) {
264 /*
265 * The following check is to figure out the registered
266 * IRQ lines, so as to limit ourselves to saving the
267 * flags for them only.
268 */
269 if (_irq_to_interrupt_vector[irq]) {
270 rte_lo = ioApicRedGetLo(irq);
271 store_flags(irq, rte_lo);
272 }
273 }
274 return 0;
275 }
276
277 __pinned_func
ioapic_resume_from_suspend(const struct device * port)278 int ioapic_resume_from_suspend(const struct device *port)
279 {
280 int irq;
281 uint32_t flags;
282 uint32_t rteValue;
283
284 ARG_UNUSED(port);
285
286 for (irq = 0; irq < ioapic_rtes; irq++) {
287 if (_irq_to_interrupt_vector[irq]) {
288 /* Get the saved flags */
289 flags = restore_flags(irq);
290 /* Appending the flags that are never modified */
291 flags = flags | IOAPIC_LOGICAL;
292
293 rteValue = (_irq_to_interrupt_vector[irq] &
294 IOAPIC_VEC_MASK) | flags;
295 } else {
296 /* Initialize the other RTEs to sane values */
297 rteValue = IOAPIC_EDGE | IOAPIC_HIGH |
298 IOAPIC_FIXED | IOAPIC_INT_MASK |
299 IOAPIC_LOGICAL | 0 ; /* dummy vector*/
300 }
301 ioApicRedSetHi(irq, DEFAULT_RTE_DEST);
302 ioApicRedSetLo(irq, rteValue);
303 }
304 return 0;
305 }
306
307 /*
308 * Implements the driver control management functionality
309 * the *context may include IN data or/and OUT data
310 */
311 __pinned_func
ioapic_device_ctrl(const struct device * dev,enum pm_device_action action)312 static int ioapic_device_ctrl(const struct device *dev,
313 enum pm_device_action action)
314 {
315 int ret = 0;
316
317 switch (action) {
318 case PM_DEVICE_ACTION_RESUME:
319 ret = ioapic_resume_from_suspend(dev);
320 break;
321 case PM_DEVICE_ACTION_SUSPEND:
322 ret = ioapic_suspend(dev);
323 break;
324 default:
325 ret = -ENOTSUP;
326 }
327
328 return ret;
329 }
330
331 #endif /*CONFIG_PM_DEVICE*/
332
333 /**
334 *
335 * @brief Programs the interrupt redirection table
336 *
337 * This routine sets up the redirection table entry for the specified IRQ
338 * @param irq Virtualized IRQ
339 * @param vector Vector number
340 * @param flags Interrupt flags
341 *
342 * @return N/A
343 */
344 __boot_func
z_ioapic_irq_set(unsigned int irq,unsigned int vector,uint32_t flags)345 void z_ioapic_irq_set(unsigned int irq, unsigned int vector, uint32_t flags)
346 {
347 uint32_t rteValue; /* value to copy into redirection table entry */
348
349 /* the delivery mode is determined by the flags passed from drivers */
350 rteValue = IOAPIC_INT_MASK | IOAPIC_LOGICAL |
351 (vector & IOAPIC_VEC_MASK) | flags;
352 ioApicRedSetHi(irq, DEFAULT_RTE_DEST);
353 ioApicRedSetLo(irq, rteValue);
354 }
355
356 /**
357 *
358 * @brief Program interrupt vector for specified irq
359 *
360 * The routine writes the interrupt vector in the Interrupt Redirection
361 * Table for specified irq number
362 *
363 * @param irq Interrupt number
364 * @param vector Vector number
365 * @return N/A
366 */
367 __boot_func
z_ioapic_int_vec_set(unsigned int irq,unsigned int vector)368 void z_ioapic_int_vec_set(unsigned int irq, unsigned int vector)
369 {
370 IoApicRedUpdateLo(irq, vector, IOAPIC_VEC_MASK);
371 }
372
373 /**
374 *
375 * @brief Read a 32 bit IO APIC register
376 *
377 * This routine reads the specified IO APIC register using indirect addressing.
378 * @param offset Register offset (8 bits)
379 *
380 * @return register value
381 */
382 __pinned_func
__IoApicGet(int32_t offset)383 static uint32_t __IoApicGet(int32_t offset)
384 {
385 uint32_t value; /* value */
386 unsigned int key; /* interrupt lock level */
387
388 /* lock interrupts to ensure indirect addressing works "atomically" */
389
390 key = irq_lock();
391
392 *((volatile uint32_t *) (IOAPIC_REG + IOAPIC_IND)) = (char)offset;
393 value = *((volatile uint32_t *)(IOAPIC_REG + IOAPIC_DATA));
394
395 irq_unlock(key);
396
397 return value;
398 }
399
400 /**
401 *
402 * @brief Write a 32 bit IO APIC register
403 *
404 * This routine writes the specified IO APIC register using indirect addressing.
405 *
406 * @param offset Register offset (8 bits)
407 * @param value Value to set the register
408 * @return N/A
409 */
410 __pinned_func
__IoApicSet(int32_t offset,uint32_t value)411 static void __IoApicSet(int32_t offset, uint32_t value)
412 {
413 unsigned int key; /* interrupt lock level */
414
415 /* lock interrupts to ensure indirect addressing works "atomically" */
416
417 key = irq_lock();
418
419 *(volatile uint32_t *)(IOAPIC_REG + IOAPIC_IND) = (char)offset;
420 *((volatile uint32_t *)(IOAPIC_REG + IOAPIC_DATA)) = value;
421
422 irq_unlock(key);
423 }
424
425 /**
426 *
427 * @brief Get low 32 bits of Redirection Table entry
428 *
429 * This routine reads the low-order 32 bits of a Redirection Table entry.
430 *
431 * @param irq INTIN number
432 * @return 32 low-order bits
433 */
434 __pinned_func
ioApicRedGetLo(unsigned int irq)435 static uint32_t ioApicRedGetLo(unsigned int irq)
436 {
437 int32_t offset = IOAPIC_REDTBL + (irq << 1); /* register offset */
438
439 return __IoApicGet(offset);
440 }
441
442 /**
443 *
444 * @brief Set low 32 bits of Redirection Table entry
445 *
446 * This routine writes the low-order 32 bits of a Redirection Table entry.
447 *
448 * @param irq INTIN number
449 * @param lower32 Value to be written
450 * @return N/A
451 */
452 __pinned_func
ioApicRedSetLo(unsigned int irq,uint32_t lower32)453 static void ioApicRedSetLo(unsigned int irq, uint32_t lower32)
454 {
455 int32_t offset = IOAPIC_REDTBL + (irq << 1); /* register offset */
456
457 __IoApicSet(offset, lower32);
458 }
459
460 /**
461 *
462 * @brief Set high 32 bits of Redirection Table entry
463 *
464 * This routine writes the high-order 32 bits of a Redirection Table entry.
465 *
466 * @param irq INTIN number
467 * @param upper32 Value to be written
468 * @return N/A
469 */
470 __pinned_func
ioApicRedSetHi(unsigned int irq,uint32_t upper32)471 static void ioApicRedSetHi(unsigned int irq, uint32_t upper32)
472 {
473 int32_t offset = IOAPIC_REDTBL + (irq << 1) + 1; /* register offset */
474
475 __IoApicSet(offset, upper32);
476 }
477
478 /**
479 *
480 * @brief Modify low 32 bits of Redirection Table entry
481 *
482 * This routine modifies selected portions of the low-order 32 bits of a
483 * Redirection Table entry, as indicated by the associate bit mask.
484 *
485 * @param irq INTIN number
486 * @param value Value to be written
487 * @param mask Mask of bits to be modified
488 * @return N/A
489 */
490 __pinned_func
IoApicRedUpdateLo(unsigned int irq,uint32_t value,uint32_t mask)491 static void IoApicRedUpdateLo(unsigned int irq,
492 uint32_t value,
493 uint32_t mask)
494 {
495 ioApicRedSetLo(irq, (ioApicRedGetLo(irq) & ~mask) | (value & mask));
496 }
497
498
499 #ifdef CONFIG_PM_DEVICE
500 SYS_DEVICE_DEFINE("ioapic", ioapic_init, ioapic_device_ctrl, PRE_KERNEL_1,
501 CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
502 #else
503 SYS_INIT(ioapic_init, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
504 #endif
505