1 /*
2  * Copyright (c) 2010-2014 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief Kernel initialization module
10  *
11  * This module contains routines that are used to initialize the kernel.
12  */
13 
14 #include <offsets_short.h>
15 #include <zephyr/kernel.h>
16 #include <zephyr/sys/printk.h>
17 #include <zephyr/debug/stack.h>
18 #include <zephyr/random/random.h>
19 #include <zephyr/linker/sections.h>
20 #include <zephyr/toolchain.h>
21 #include <zephyr/kernel_structs.h>
22 #include <zephyr/device.h>
23 #include <zephyr/init.h>
24 #include <zephyr/linker/linker-defs.h>
25 #include <ksched.h>
26 #include <kthread.h>
27 #include <string.h>
28 #include <zephyr/sys/dlist.h>
29 #include <kernel_internal.h>
30 #include <zephyr/drivers/entropy.h>
31 #include <zephyr/logging/log_ctrl.h>
32 #include <zephyr/tracing/tracing.h>
33 #include <stdbool.h>
34 #include <zephyr/debug/gcov.h>
35 #include <kswap.h>
36 #include <zephyr/timing/timing.h>
37 #include <zephyr/logging/log.h>
38 #include <zephyr/pm/device_runtime.h>
39 #include <zephyr/internal/syscall_handler.h>
40 LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);
41 
42 BUILD_ASSERT(CONFIG_MP_NUM_CPUS == CONFIG_MP_MAX_NUM_CPUS,
43 	     "CONFIG_MP_NUM_CPUS and CONFIG_MP_MAX_NUM_CPUS need to be set the same");
44 
45 /* the only struct z_kernel instance */
46 __pinned_bss
47 struct z_kernel _kernel;
48 
49 #ifdef CONFIG_PM
50 __pinned_bss atomic_t _cpus_active;
51 #endif
52 
53 /* init/main and idle threads */
54 K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
55 struct k_thread z_main_thread;
56 
57 #ifdef CONFIG_MULTITHREADING
58 __pinned_bss
59 struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
60 
61 static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks,
62 					  CONFIG_MP_MAX_NUM_CPUS,
63 					  CONFIG_IDLE_STACK_SIZE);
64 
z_init_static_threads(void)65 static void z_init_static_threads(void)
66 {
67 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
68 		z_setup_new_thread(
69 			thread_data->init_thread,
70 			thread_data->init_stack,
71 			thread_data->init_stack_size,
72 			thread_data->init_entry,
73 			thread_data->init_p1,
74 			thread_data->init_p2,
75 			thread_data->init_p3,
76 			thread_data->init_prio,
77 			thread_data->init_options,
78 			thread_data->init_name);
79 
80 		thread_data->init_thread->init_data = thread_data;
81 	}
82 
83 #ifdef CONFIG_USERSPACE
84 	STRUCT_SECTION_FOREACH(k_object_assignment, pos) {
85 		for (int i = 0; pos->objects[i] != NULL; i++) {
86 			k_object_access_grant(pos->objects[i],
87 					      pos->thread);
88 		}
89 	}
90 #endif /* CONFIG_USERSPACE */
91 
92 	/*
93 	 * Non-legacy static threads may be started immediately or
94 	 * after a previously specified delay. Even though the
95 	 * scheduler is locked, ticks can still be delivered and
96 	 * processed. Take a sched lock to prevent them from running
97 	 * until they are all started.
98 	 *
99 	 * Note that static threads defined using the legacy API have a
100 	 * delay of K_FOREVER.
101 	 */
102 	k_sched_lock();
103 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
104 		k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data);
105 
106 		if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) {
107 			thread_schedule_new(thread_data->init_thread,
108 					    init_delay);
109 		}
110 	}
111 	k_sched_unlock();
112 }
113 #else
114 #define z_init_static_threads() do { } while (false)
115 #endif /* CONFIG_MULTITHREADING */
116 
117 extern const struct init_entry __init_start[];
118 extern const struct init_entry __init_EARLY_start[];
119 extern const struct init_entry __init_PRE_KERNEL_1_start[];
120 extern const struct init_entry __init_PRE_KERNEL_2_start[];
121 extern const struct init_entry __init_POST_KERNEL_start[];
122 extern const struct init_entry __init_APPLICATION_start[];
123 extern const struct init_entry __init_end[];
124 
125 enum init_level {
126 	INIT_LEVEL_EARLY = 0,
127 	INIT_LEVEL_PRE_KERNEL_1,
128 	INIT_LEVEL_PRE_KERNEL_2,
129 	INIT_LEVEL_POST_KERNEL,
130 	INIT_LEVEL_APPLICATION,
131 #ifdef CONFIG_SMP
132 	INIT_LEVEL_SMP,
133 #endif /* CONFIG_SMP */
134 };
135 
136 #ifdef CONFIG_SMP
137 extern const struct init_entry __init_SMP_start[];
138 #endif /* CONFIG_SMP */
139 
140 /*
141  * storage space for the interrupt stack
142  *
143  * Note: This area is used as the system stack during kernel initialization,
144  * since the kernel hasn't yet set up its own stack areas. The dual purposing
145  * of this area is safe since interrupts are disabled until the kernel context
146  * switches to the init thread.
147  */
148 K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks,
149 				   CONFIG_MP_MAX_NUM_CPUS,
150 				   CONFIG_ISR_STACK_SIZE);
151 
152 extern void idle(void *unused1, void *unused2, void *unused3);
153 
154 #ifdef CONFIG_OBJ_CORE_SYSTEM
155 static struct k_obj_type obj_type_cpu;
156 static struct k_obj_type obj_type_kernel;
157 
158 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
159 static struct k_obj_core_stats_desc  cpu_stats_desc = {
160 	.raw_size = sizeof(struct k_cycle_stats),
161 	.query_size = sizeof(struct k_thread_runtime_stats),
162 	.raw   = z_cpu_stats_raw,
163 	.query = z_cpu_stats_query,
164 	.reset = NULL,
165 	.disable = NULL,
166 	.enable  = NULL,
167 };
168 
169 static struct k_obj_core_stats_desc  kernel_stats_desc = {
170 	.raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS,
171 	.query_size = sizeof(struct k_thread_runtime_stats),
172 	.raw   = z_kernel_stats_raw,
173 	.query = z_kernel_stats_query,
174 	.reset = NULL,
175 	.disable = NULL,
176 	.enable  = NULL,
177 };
178 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
179 #endif /* CONFIG_OBJ_CORE_SYSTEM */
180 
181 /* LCOV_EXCL_START
182  *
183  * This code is called so early in the boot process that code coverage
184  * doesn't work properly. In addition, not all arches call this code,
185  * some like x86 do this with optimized assembly
186  */
187 
188 /**
189  * @brief equivalent of memset() for early boot usage
190  *
191  * Architectures that can't safely use the regular (optimized) memset very
192  * early during boot because e.g. hardware isn't yet sufficiently initialized
193  * may override this with their own safe implementation.
194  */
195 __boot_func
z_early_memset(void * dst,int c,size_t n)196 void __weak z_early_memset(void *dst, int c, size_t n)
197 {
198 	(void) memset(dst, c, n);
199 }
200 
201 /**
202  * @brief equivalent of memcpy() for early boot usage
203  *
204  * Architectures that can't safely use the regular (optimized) memcpy very
205  * early during boot because e.g. hardware isn't yet sufficiently initialized
206  * may override this with their own safe implementation.
207  */
208 __boot_func
z_early_memcpy(void * dst,const void * src,size_t n)209 void __weak z_early_memcpy(void *dst, const void *src, size_t n)
210 {
211 	(void) memcpy(dst, src, n);
212 }
213 
214 /**
215  * @brief Clear BSS
216  *
217  * This routine clears the BSS region, so all bytes are 0.
218  */
219 __boot_func
z_bss_zero(void)220 void z_bss_zero(void)
221 {
222 	if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) {
223 		return;
224 	}
225 
226 	z_early_memset(__bss_start, 0, __bss_end - __bss_start);
227 #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay)
228 	z_early_memset(&__ccm_bss_start, 0,
229 		       (uintptr_t) &__ccm_bss_end
230 		       - (uintptr_t) &__ccm_bss_start);
231 #endif
232 #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
233 	z_early_memset(&__dtcm_bss_start, 0,
234 		       (uintptr_t) &__dtcm_bss_end
235 		       - (uintptr_t) &__dtcm_bss_start);
236 #endif
237 #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ocm), okay)
238 	z_early_memset(&__ocm_bss_start, 0,
239 		       (uintptr_t) &__ocm_bss_end
240 		       - (uintptr_t) &__ocm_bss_start);
241 #endif
242 #ifdef CONFIG_CODE_DATA_RELOCATION
243 	extern void bss_zeroing_relocation(void);
244 
245 	bss_zeroing_relocation();
246 #endif	/* CONFIG_CODE_DATA_RELOCATION */
247 #ifdef CONFIG_COVERAGE_GCOV
248 	z_early_memset(&__gcov_bss_start, 0,
249 		       ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start));
250 #endif /* CONFIG_COVERAGE_GCOV */
251 }
252 
253 #ifdef CONFIG_LINKER_USE_BOOT_SECTION
254 /**
255  * @brief Clear BSS within the bot region
256  *
257  * This routine clears the BSS within the boot region.
258  * This is separate from z_bss_zero() as boot region may
259  * contain symbols required for the boot process before
260  * paging is initialized.
261  */
262 __boot_func
z_bss_zero_boot(void)263 void z_bss_zero_boot(void)
264 {
265 	z_early_memset(&lnkr_boot_bss_start, 0,
266 		       (uintptr_t)&lnkr_boot_bss_end
267 		       - (uintptr_t)&lnkr_boot_bss_start);
268 }
269 #endif /* CONFIG_LINKER_USE_BOOT_SECTION */
270 
271 #ifdef CONFIG_LINKER_USE_PINNED_SECTION
272 /**
273  * @brief Clear BSS within the pinned region
274  *
275  * This routine clears the BSS within the pinned region.
276  * This is separate from z_bss_zero() as pinned region may
277  * contain symbols required for the boot process before
278  * paging is initialized.
279  */
280 #ifdef CONFIG_LINKER_USE_BOOT_SECTION
281 __boot_func
282 #else
283 __pinned_func
284 #endif /* CONFIG_LINKER_USE_BOOT_SECTION */
z_bss_zero_pinned(void)285 void z_bss_zero_pinned(void)
286 {
287 	z_early_memset(&lnkr_pinned_bss_start, 0,
288 		       (uintptr_t)&lnkr_pinned_bss_end
289 		       - (uintptr_t)&lnkr_pinned_bss_start);
290 }
291 #endif /* CONFIG_LINKER_USE_PINNED_SECTION */
292 
293 #ifdef CONFIG_STACK_CANARIES
294 #ifdef CONFIG_STACK_CANARIES_TLS
295 extern __thread volatile uintptr_t __stack_chk_guard;
296 #else
297 extern volatile uintptr_t __stack_chk_guard;
298 #endif /* CONFIG_STACK_CANARIES_TLS */
299 #endif /* CONFIG_STACK_CANARIES */
300 
301 /* LCOV_EXCL_STOP */
302 
303 __pinned_bss
304 bool z_sys_post_kernel;
305 
do_device_init(const struct init_entry * entry)306 static int do_device_init(const struct init_entry *entry)
307 {
308 	const struct device *dev = entry->dev;
309 	int rc = 0;
310 
311 	if (entry->init_fn.dev != NULL) {
312 		rc = entry->init_fn.dev(dev);
313 		/* Mark device initialized. If initialization
314 		 * failed, record the error condition.
315 		 */
316 		if (rc != 0) {
317 			if (rc < 0) {
318 				rc = -rc;
319 			}
320 			if (rc > UINT8_MAX) {
321 				rc = UINT8_MAX;
322 			}
323 			dev->state->init_res = rc;
324 		}
325 	}
326 
327 	dev->state->initialized = true;
328 
329 	if (rc == 0) {
330 		/* Run automatic device runtime enablement */
331 		(void)pm_device_runtime_auto_enable(dev);
332 	}
333 
334 	return rc;
335 }
336 
337 /**
338  * @brief Execute all the init entry initialization functions at a given level
339  *
340  * @details Invokes the initialization routine for each init entry object
341  * created by the INIT_ENTRY_DEFINE() macro using the specified level.
342  * The linker script places the init entry objects in memory in the order
343  * they need to be invoked, with symbols indicating where one level leaves
344  * off and the next one begins.
345  *
346  * @param level init level to run.
347  */
z_sys_init_run_level(enum init_level level)348 static void z_sys_init_run_level(enum init_level level)
349 {
350 	static const struct init_entry *levels[] = {
351 		__init_EARLY_start,
352 		__init_PRE_KERNEL_1_start,
353 		__init_PRE_KERNEL_2_start,
354 		__init_POST_KERNEL_start,
355 		__init_APPLICATION_start,
356 #ifdef CONFIG_SMP
357 		__init_SMP_start,
358 #endif /* CONFIG_SMP */
359 		/* End marker */
360 		__init_end,
361 	};
362 	const struct init_entry *entry;
363 
364 	for (entry = levels[level]; entry < levels[level+1]; entry++) {
365 		const struct device *dev = entry->dev;
366 		int result;
367 
368 		sys_trace_sys_init_enter(entry, level);
369 		if (dev != NULL) {
370 			result = do_device_init(entry);
371 		} else {
372 			result = entry->init_fn.sys();
373 		}
374 		sys_trace_sys_init_exit(entry, level, result);
375 	}
376 }
377 
378 
z_impl_device_init(const struct device * dev)379 int z_impl_device_init(const struct device *dev)
380 {
381 	if (dev == NULL) {
382 		return -ENOENT;
383 	}
384 
385 	STRUCT_SECTION_FOREACH_ALTERNATE(_deferred_init, init_entry, entry) {
386 		if (entry->dev == dev) {
387 			return do_device_init(entry);
388 		}
389 	}
390 
391 	return -ENOENT;
392 }
393 
394 #ifdef CONFIG_USERSPACE
z_vrfy_device_init(const struct device * dev)395 static inline int z_vrfy_device_init(const struct device *dev)
396 {
397 	K_OOPS(K_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY));
398 
399 	return z_impl_device_init(dev);
400 }
401 #include <zephyr/syscalls/device_init_mrsh.c>
402 #endif
403 
404 extern void boot_banner(void);
405 
406 
407 /**
408  * @brief Mainline for kernel's background thread
409  *
410  * This routine completes kernel initialization by invoking the remaining
411  * init functions, then invokes application's main() routine.
412  */
413 __boot_func
bg_thread_main(void * unused1,void * unused2,void * unused3)414 static void bg_thread_main(void *unused1, void *unused2, void *unused3)
415 {
416 	ARG_UNUSED(unused1);
417 	ARG_UNUSED(unused2);
418 	ARG_UNUSED(unused3);
419 
420 #ifdef CONFIG_MMU
421 	/* Invoked here such that backing store or eviction algorithms may
422 	 * initialize kernel objects, and that all POST_KERNEL and later tasks
423 	 * may perform memory management tasks (except for
424 	 * k_mem_map_phys_bare() which is allowed at any time)
425 	 */
426 	z_mem_manage_init();
427 #endif /* CONFIG_MMU */
428 	z_sys_post_kernel = true;
429 
430 	z_sys_init_run_level(INIT_LEVEL_POST_KERNEL);
431 #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
432 	z_stack_adjust_initialized = 1;
433 #endif /* CONFIG_STACK_POINTER_RANDOM */
434 	boot_banner();
435 
436 	void z_init_static(void);
437 	z_init_static();
438 
439 	/* Final init level before app starts */
440 	z_sys_init_run_level(INIT_LEVEL_APPLICATION);
441 
442 	z_init_static_threads();
443 
444 #ifdef CONFIG_KERNEL_COHERENCE
445 	__ASSERT_NO_MSG(arch_mem_coherent(&_kernel));
446 #endif /* CONFIG_KERNEL_COHERENCE */
447 
448 #ifdef CONFIG_SMP
449 	if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) {
450 		z_smp_init();
451 	}
452 	z_sys_init_run_level(INIT_LEVEL_SMP);
453 #endif /* CONFIG_SMP */
454 
455 #ifdef CONFIG_MMU
456 	z_mem_manage_boot_finish();
457 #endif /* CONFIG_MMU */
458 
459 	extern int main(void);
460 
461 	(void)main();
462 
463 	/* Mark non-essential since main() has no more work to do */
464 	z_thread_essential_clear(&z_main_thread);
465 
466 #ifdef CONFIG_COVERAGE_DUMP
467 	/* Dump coverage data once the main() has exited. */
468 	gcov_coverage_dump();
469 #endif /* CONFIG_COVERAGE_DUMP */
470 } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */
471 
472 #if defined(CONFIG_MULTITHREADING)
473 __boot_func
init_idle_thread(int i)474 static void init_idle_thread(int i)
475 {
476 	struct k_thread *thread = &z_idle_threads[i];
477 	k_thread_stack_t *stack = z_idle_stacks[i];
478 	size_t stack_size = K_KERNEL_STACK_SIZEOF(z_idle_stacks[i]);
479 
480 #ifdef CONFIG_THREAD_NAME
481 
482 #if CONFIG_MP_MAX_NUM_CPUS > 1
483 	char tname[8];
484 	snprintk(tname, 8, "idle %02d", i);
485 #else
486 	char *tname = "idle";
487 #endif /* CONFIG_MP_MAX_NUM_CPUS */
488 
489 #else
490 	char *tname = NULL;
491 #endif /* CONFIG_THREAD_NAME */
492 
493 	z_setup_new_thread(thread, stack,
494 			  stack_size, idle, &_kernel.cpus[i],
495 			  NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL,
496 			  tname);
497 	z_mark_thread_as_started(thread);
498 
499 #ifdef CONFIG_SMP
500 	thread->base.is_idle = 1U;
501 #endif /* CONFIG_SMP */
502 }
503 
z_init_cpu(int id)504 void z_init_cpu(int id)
505 {
506 	init_idle_thread(id);
507 	_kernel.cpus[id].idle_thread = &z_idle_threads[id];
508 	_kernel.cpus[id].id = id;
509 	_kernel.cpus[id].irq_stack =
510 		(K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) +
511 		 K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id]));
512 #ifdef CONFIG_SCHED_THREAD_USAGE_ALL
513 	_kernel.cpus[id].usage = &_kernel.usage[id];
514 	_kernel.cpus[id].usage->track_usage =
515 		CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
516 #endif
517 
518 #ifdef CONFIG_PM
519 	/*
520 	 * Increment number of CPUs active. The pm subsystem
521 	 * will keep track of this from here.
522 	 */
523 	atomic_inc(&_cpus_active);
524 #endif
525 
526 #ifdef CONFIG_OBJ_CORE_SYSTEM
527 	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu);
528 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
529 	k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]),
530 				  _kernel.cpus[id].usage,
531 				  sizeof(struct k_cycle_stats));
532 #endif
533 #endif
534 }
535 
536 /**
537  *
538  * @brief Initializes kernel data structures
539  *
540  * This routine initializes various kernel data structures, including
541  * the init and idle threads and any architecture-specific initialization.
542  *
543  * Note that all fields of "_kernel" are set to zero on entry, which may
544  * be all the initialization many of them require.
545  *
546  * @return initial stack pointer for the main thread
547  */
548 __boot_func
prepare_multithreading(void)549 static char *prepare_multithreading(void)
550 {
551 	char *stack_ptr;
552 
553 	/* _kernel.ready_q is all zeroes */
554 	z_sched_init();
555 
556 #ifndef CONFIG_SMP
557 	/*
558 	 * prime the cache with the main thread since:
559 	 *
560 	 * - the cache can never be NULL
561 	 * - the main thread will be the one to run first
562 	 * - no other thread is initialized yet and thus their priority fields
563 	 *   contain garbage, which would prevent the cache loading algorithm
564 	 *   to work as intended
565 	 */
566 	_kernel.ready_q.cache = &z_main_thread;
567 #endif /* CONFIG_SMP */
568 	stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
569 				       K_THREAD_STACK_SIZEOF(z_main_stack),
570 				       bg_thread_main,
571 				       NULL, NULL, NULL,
572 				       CONFIG_MAIN_THREAD_PRIORITY,
573 				       K_ESSENTIAL, "main");
574 	z_mark_thread_as_started(&z_main_thread);
575 	z_ready_thread(&z_main_thread);
576 
577 	z_init_cpu(0);
578 
579 	return stack_ptr;
580 }
581 
582 __boot_func
switch_to_main_thread(char * stack_ptr)583 static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
584 {
585 #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
586 	arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
587 #else
588 	ARG_UNUSED(stack_ptr);
589 	/*
590 	 * Context switch to main task (entry function is _main()): the
591 	 * current fake thread is not on a wait queue or ready queue, so it
592 	 * will never be rescheduled in.
593 	 */
594 	z_swap_unlocked();
595 #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
596 	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
597 }
598 #endif /* CONFIG_MULTITHREADING */
599 
600 __boot_func
z_early_rand_get(uint8_t * buf,size_t length)601 void __weak z_early_rand_get(uint8_t *buf, size_t length)
602 {
603 	static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE;
604 	int rc;
605 
606 #ifdef CONFIG_ENTROPY_HAS_DRIVER
607 	const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy));
608 
609 	if ((entropy != NULL) && device_is_ready(entropy)) {
610 		/* Try to see if driver provides an ISR-specific API */
611 		rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
612 		if (rc > 0) {
613 			length -= rc;
614 			buf += rc;
615 		}
616 	}
617 #endif /* CONFIG_ENTROPY_HAS_DRIVER */
618 
619 	while (length > 0) {
620 		uint32_t val;
621 
622 		state = state + k_cycle_get_32();
623 		state = state * 2862933555777941757ULL + 3037000493ULL;
624 		val = (uint32_t)(state >> 32);
625 		rc = MIN(length, sizeof(val));
626 		z_early_memcpy((void *)buf, &val, rc);
627 
628 		length -= rc;
629 		buf += rc;
630 	}
631 }
632 
633 /**
634  *
635  * @brief Initialize kernel
636  *
637  * This routine is invoked when the system is ready to run C code. The
638  * processor must be running in 32-bit mode, and the BSS must have been
639  * cleared/zeroed.
640  *
641  * @return Does not return
642  */
643 __boot_func
644 FUNC_NO_STACK_PROTECTOR
z_cstart(void)645 FUNC_NORETURN void z_cstart(void)
646 {
647 	/* gcov hook needed to get the coverage report.*/
648 	gcov_static_init();
649 
650 	/* initialize early init calls */
651 	z_sys_init_run_level(INIT_LEVEL_EARLY);
652 
653 	/* perform any architecture-specific initialization */
654 	arch_kernel_init();
655 
656 	LOG_CORE_INIT();
657 
658 #if defined(CONFIG_MULTITHREADING)
659 	z_dummy_thread_init(&_thread_dummy);
660 #endif /* CONFIG_MULTITHREADING */
661 	/* do any necessary initialization of static devices */
662 	z_device_state_init();
663 
664 	/* perform basic hardware initialization */
665 	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1);
666 #if defined(CONFIG_SMP)
667 	arch_smp_init();
668 #endif
669 	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2);
670 
671 #ifdef CONFIG_STACK_CANARIES
672 	uintptr_t stack_guard;
673 
674 	z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
675 	__stack_chk_guard = stack_guard;
676 	__stack_chk_guard <<= 8;
677 #endif	/* CONFIG_STACK_CANARIES */
678 
679 #ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT
680 	timing_init();
681 	timing_start();
682 #endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */
683 
684 #ifdef CONFIG_MULTITHREADING
685 	switch_to_main_thread(prepare_multithreading());
686 #else
687 #ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
688 	/* Custom ARCH-specific routine to switch to main()
689 	 * in the case of no multi-threading.
690 	 */
691 	ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
692 		NULL, NULL, NULL);
693 #else
694 	bg_thread_main(NULL, NULL, NULL);
695 
696 	/* LCOV_EXCL_START
697 	 * We've already dumped coverage data at this point.
698 	 */
699 	irq_lock();
700 	while (true) {
701 	}
702 	/* LCOV_EXCL_STOP */
703 #endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */
704 #endif /* CONFIG_MULTITHREADING */
705 
706 	/*
707 	 * Compiler can't tell that the above routines won't return and issues
708 	 * a warning unless we explicitly tell it that control never gets this
709 	 * far.
710 	 */
711 
712 	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
713 }
714 
715 #ifdef CONFIG_OBJ_CORE_SYSTEM
init_cpu_obj_core_list(void)716 static int init_cpu_obj_core_list(void)
717 {
718 	/* Initialize CPU object type */
719 
720 	z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID,
721 			offsetof(struct _cpu, obj_core));
722 
723 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
724 	k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc);
725 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
726 
727 	return 0;
728 }
729 
init_kernel_obj_core_list(void)730 static int init_kernel_obj_core_list(void)
731 {
732 	/* Initialize kernel object type */
733 
734 	z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID,
735 			offsetof(struct z_kernel, obj_core));
736 
737 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
738 	k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc);
739 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
740 
741 	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel);
742 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
743 	k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage,
744 				  sizeof(_kernel.usage));
745 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
746 
747 	return 0;
748 }
749 
750 SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1,
751 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
752 
753 SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1,
754 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
755 #endif /* CONFIG_OBJ_CORE_SYSTEM */
756