1import os.path 2import itertools 3import Tools 4import random 5import numpy as np 6import scipy.spatial 7 8NBTESTSAMPLES = 10 9 10VECDIM = [35,14,20] 11 12query=np.array([ 0.08387197, 0.68082274, 1.06756417, 0.88914541, 0.42513398, -0.3259053, 13 -0.80934885, -0.90979435, -0.64026483, 0.06923695]) 14 15template=np.array([ 1.00000000e+00, 7.96326711e-04, -9.99998732e-01, -2.38897811e-03, 16 9.99994927e-01]) 17 18def euclidean(xa,xb): 19 r = scipy.spatial.distance.euclidean(xa,xb) 20 return(r) 21 22def braycurtis(xa,xb): 23 r = scipy.spatial.distance.braycurtis(xa,xb) 24 return(r) 25 26def canberra(xa,xb): 27 r = scipy.spatial.distance.canberra(xa,xb) 28 return(r) 29 30def chebyshev(xa,xb): 31 r = scipy.spatial.distance.chebyshev(xa,xb) 32 return(r) 33 34def cityblock(xa,xb): 35 r = scipy.spatial.distance.cityblock(xa,xb) 36 return(r) 37 38def correlation(xa,xb): 39 r = scipy.spatial.distance.correlation (xa,xb) 40 return(r) 41 42def cosine(xa,xb): 43 r = scipy.spatial.distance.cosine (xa,xb) 44 return(r) 45 46def jensenshannon(xa,xb): 47 r = scipy.spatial.distance.jensenshannon (xa,xb) 48 return(r) 49 50def minkowski (xa,xb,dim): 51 r = scipy.spatial.distance.minkowski(xa,xb,p=dim) 52 return(r) 53 54def dice(xa,xb): 55 r = scipy.spatial.distance.dice (xa,xb) 56 return(r) 57 58def hamming(xa,xb): 59 r = scipy.spatial.distance.hamming (xa,xb) 60 return(r) 61 62def jaccard(xa,xb): 63 r = scipy.spatial.distance.jaccard (xa,xb) 64 return(r) 65 66def kulsinski(xa,xb): 67 r = scipy.spatial.distance.kulsinski (xa,xb) 68 return(r) 69 70def rogerstanimoto(xa,xb): 71 r = scipy.spatial.distance.rogerstanimoto (xa,xb) 72 return(r) 73 74def russellrao(xa,xb): 75 r = scipy.spatial.distance.russellrao (xa,xb) 76 return(r) 77 78def sokalmichener(xa,xb): 79 r = scipy.spatial.distance.sokalmichener (xa,xb) 80 return(r) 81 82def sokalsneath(xa,xb): 83 r = scipy.spatial.distance.sokalsneath (xa,xb) 84 return(r) 85 86def yule(xa,xb): 87 r = scipy.spatial.distance.yule (xa,xb) 88 return(r) 89 90def writeDTW(config): 91 config.setOverwrite(True) 92 config.writeInput(10, query,"Query") 93 config.writeInput(10, template,"Template") 94 query_index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9] 95 template_index = [0, 0, 0, 0, 0, 1, 2, 2, 2, 3, 4] 96 path = np.array(list(zip(query_index,template_index))).flatten() 97 config.writeReferenceS16(10,path ,"PathRef") 98 # Distance computed with different windows 99 references=[0.29962325787495825, 100 0.41319151913793334, 101 0.6170999383691333 102 ] 103 config.writeReference(10, references,"DTWRef") 104 config.setOverwrite(False) 105 106def writeFTest(config,funcList): 107 dims=[] 108 dimsM=[] 109 inputsA=[] 110 inputsB=[] 111 inputsAJ=[] 112 inputsBJ=[] 113 outputs=[] 114 outputMin=[] 115 outputJen=[] 116 for i in range(0,len(funcList)): 117 outputs.append([]) 118 119 vecDim = VECDIM[0] 120 121 dims.append(NBTESTSAMPLES) 122 dims.append(vecDim) 123 124 dimsM.append(NBTESTSAMPLES) 125 dimsM.append(vecDim) 126 127 for _ in range(0,NBTESTSAMPLES): 128 normDim = np.random.choice([2,3,4]) 129 dimsM.append(normDim) 130 va = np.random.randn(vecDim) 131 # Normalization for distance assuming probability distribution in entry 132 vb = np.random.randn(vecDim) 133 for i in range(0,len(funcList)): 134 func = funcList[i] 135 outputs[i].append(func(va,vb)) 136 outputMin.append(minkowski(va,vb,normDim)) 137 138 inputsA += list(va) 139 inputsB += list(vb) 140 141 va = np.abs(va) 142 va = va / np.sum(va) 143 144 vb = np.abs(vb) 145 vb = vb / np.sum(vb) 146 147 inputsAJ += list(va) 148 inputsBJ += list(vb) 149 outputJen.append(jensenshannon(va,vb)) 150 151 152 inputsA=np.array(inputsA) 153 inputsB=np.array(inputsB) 154 for i in range(0,len(funcList)): 155 outputs[i]=np.array(outputs[i]) 156 157 config.writeInput(1, inputsA,"InputA") 158 config.writeInput(1, inputsB,"InputB") 159 config.writeInput(8, inputsAJ,"InputA") 160 config.writeInput(8, inputsBJ,"InputB") 161 config.writeInputS16(1, dims,"Dims") 162 config.writeInputS16(9, dimsM,"Dims") 163 164 for i in range(0,len(funcList)): 165 config.writeReference(i+1, outputs[i],"Ref") 166 167 config.writeReference(8, outputJen,"Ref") 168 config.writeReference(9, outputMin,"Ref") 169 170 writeDTW(config) 171 172 173def writeBTest(config,funcList): 174 dims=[] 175 inputsA=[] 176 inputsB=[] 177 outputs=[] 178 for i in range(0,len(funcList)): 179 outputs.append([]) 180 181 vecDim = VECDIM[0] 182 183 dims.append(NBTESTSAMPLES) 184 dims.append(vecDim) 185 va = np.random.choice([0,1],vecDim) 186 # Number of word32 containing all of our bits 187 pva = Tools.packset(va) 188 dims.append(len(pva)) 189 190 for _ in range(0,NBTESTSAMPLES): 191 va = np.random.choice([0,1],vecDim) 192 vb = np.random.choice([0,1],vecDim) 193 # Boolean arrays are packed for the C code 194 pva = Tools.packset(va) 195 pvb = Tools.packset(vb) 196 for i in range(0,len(funcList)): 197 func = funcList[i] 198 outputs[i].append(func(va,vb)) 199 200 inputsA += pva 201 inputsB += pvb 202 203 inputsA=np.array(inputsA) 204 inputsB=np.array(inputsB) 205 for i in range(0,len(funcList)): 206 outputs[i]=np.array(outputs[i]) 207 208 config.writeInput(1, inputsA,"InputA") 209 config.writeInput(1, inputsB,"InputB") 210 config.writeInputS16(1, dims,"Dims") 211 212 for i in range(0,len(funcList)): 213 config.writeReferenceF32(i+1, outputs[i],"Ref") 214 215def writeFTests(config): 216 writeFTest(config,[braycurtis,canberra,chebyshev,cityblock,correlation,cosine,euclidean]) 217 218def writeBTests(config): 219 writeBTest(config,[dice,hamming,jaccard,kulsinski,rogerstanimoto,russellrao,sokalmichener,sokalsneath,yule]) 220 221def writeFBenchmark(config): 222 NBSAMPLES=256 223 224 va = np.random.randn(NBSAMPLES) 225 vb = np.random.randn(NBSAMPLES) 226 227 inputsA = list(va) 228 inputsB = list(vb) 229 230 va = np.abs(va) 231 va = list(va / np.sum(va)) 232 233 vb = np.abs(vb) 234 vb = list(vb / np.sum(vb)) 235 236 config.writeInput(1, inputsA,"InputBenchA") 237 config.writeInput(1, inputsB,"InputBenchB") 238 239 config.writeInput(1, va,"InputBenchProbaA") 240 config.writeInput(1, vb,"InputBenchProbaB") 241 242def writeUBenchmark(config): 243 NBSAMPLES=256*32 244 va = np.random.choice([0,1],NBSAMPLES) 245 vb = np.random.choice([0,1],NBSAMPLES) 246 pva = list(Tools.packset(va)) 247 pvb = list(Tools.packset(vb)) 248 config.writeInput(1, pva,"InputBenchA") 249 config.writeInput(1, pvb,"InputBenchB") 250 251 252 253def generatePatterns(): 254 PATTERNDIR = os.path.join("Patterns","DSP","Distance","Distance") 255 PARAMDIR = os.path.join("Parameters","DSP","Distance","Distance") 256 257 configf64=Tools.Config(PATTERNDIR,PARAMDIR,"f64") 258 configf32=Tools.Config(PATTERNDIR,PARAMDIR,"f32") 259 configf16=Tools.Config(PATTERNDIR,PARAMDIR,"f16") 260 configu32=Tools.Config(PATTERNDIR,PARAMDIR,"u32") 261 262 configf64.setOverwrite(False) 263 configf32.setOverwrite(False) 264 configf16.setOverwrite(False) 265 configu32.setOverwrite(False) 266 267 268 writeFTests(configf64) 269 writeFTests(configf32) 270 writeFTests(configf16) 271 writeBTests(configu32) 272 273 writeFBenchmark(configf32) 274 writeFBenchmark(configf16) 275 writeUBenchmark(configu32) 276 277if __name__ == '__main__': 278 generatePatterns()