1 /*
2 * Copyright (c) 2017, Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6 #include <string.h>
7 #include <xtensa_asm2_context.h>
8 #include <zephyr/kernel.h>
9 #include <ksched.h>
10 #include <zephyr/kernel_structs.h>
11 #include <kernel_internal.h>
12 #include <kswap.h>
13 #include <zephyr/toolchain.h>
14 #include <zephyr/logging/log.h>
15 #include <zephyr/offsets.h>
16 #include <zephyr/zsr.h>
17 #include <zephyr/arch/common/exc_handle.h>
18
19 #ifdef CONFIG_XTENSA_GEN_HANDLERS
20 #include <xtensa_handlers.h>
21 #else
22 #include <_soc_inthandlers.h>
23 #endif
24
25 #include <kernel_internal.h>
26 #include <xtensa_internal.h>
27 #include <xtensa_stack.h>
28
29 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
30
31 extern char xtensa_arch_except_epc[];
32 extern char xtensa_arch_kernel_oops_epc[];
33
xtensa_is_outside_stack_bounds(uintptr_t addr,size_t sz,uint32_t ps)34 bool xtensa_is_outside_stack_bounds(uintptr_t addr, size_t sz, uint32_t ps)
35 {
36 uintptr_t start, end;
37 struct k_thread *thread = arch_current_thread();
38 bool was_in_isr, invalid;
39
40 /* Without userspace, there is no privileged stack so the thread stack
41 * is the whole stack (minus reserved area). So there is no need to
42 * check for PS == UINT32_MAX for special treatment.
43 */
44 ARG_UNUSED(ps);
45
46 /* Since both level 1 interrupts and exceptions go through
47 * the same interrupt vector, both of them increase the nested
48 * counter in the CPU struct. The architecture vector handler
49 * moves execution to the interrupt stack when nested goes from
50 * zero to one. Afterwards, any nested interrupts/exceptions will
51 * continue running in interrupt stack. Therefore, only when
52 * nested > 1, then it was running in the interrupt stack, and
53 * we should check bounds against the interrupt stack.
54 */
55 was_in_isr = arch_curr_cpu()->nested > 1;
56
57 if ((thread == NULL) || was_in_isr) {
58 /* We were servicing an interrupt or in early boot environment
59 * and are supposed to be on the interrupt stack.
60 */
61 int cpu_id;
62
63 #ifdef CONFIG_SMP
64 cpu_id = arch_curr_cpu()->id;
65 #else
66 cpu_id = 0;
67 #endif
68
69 start = (uintptr_t)K_KERNEL_STACK_BUFFER(z_interrupt_stacks[cpu_id]);
70 end = start + CONFIG_ISR_STACK_SIZE;
71 #ifdef CONFIG_USERSPACE
72 } else if (ps == UINT32_MAX) {
73 /* Since the stashed PS is inside struct pointed by frame->ptr_to_bsa,
74 * we need to verify that both frame and frame->ptr_to_bsa are valid
75 * pointer within the thread stack. Also without PS, we have no idea
76 * whether we were in kernel mode (using privileged stack) or user
77 * mode (normal thread stack). So we need to check the whole stack
78 * area.
79 *
80 * And... we cannot account for reserved area since we have no idea
81 * which to use: ARCH_KERNEL_STACK_RESERVED or ARCH_THREAD_STACK_RESERVED
82 * as we don't know whether we were in kernel or user mode.
83 */
84 start = (uintptr_t)thread->stack_obj;
85 end = Z_STACK_PTR_ALIGN(thread->stack_info.start + thread->stack_info.size);
86 } else if (((ps & PS_RING_MASK) == 0U) &&
87 ((thread->base.user_options & K_USER) == K_USER)) {
88 /* Check if this is a user thread, and that it was running in
89 * kernel mode. If so, we must have been doing a syscall, so
90 * check with privileged stack bounds.
91 */
92 start = thread->stack_info.start - CONFIG_PRIVILEGED_STACK_SIZE;
93 end = thread->stack_info.start;
94 #endif
95 } else {
96 start = thread->stack_info.start;
97 end = Z_STACK_PTR_ALIGN(thread->stack_info.start + thread->stack_info.size);
98 }
99
100 invalid = (addr <= start) || ((addr + sz) >= end);
101
102 return invalid;
103 }
104
xtensa_is_frame_pointer_valid(_xtensa_irq_stack_frame_raw_t * frame)105 bool xtensa_is_frame_pointer_valid(_xtensa_irq_stack_frame_raw_t *frame)
106 {
107 _xtensa_irq_bsa_t *bsa;
108
109 /* Check if the pointer to the frame is within stack bounds. If not, there is no
110 * need to test if the BSA (base save area) pointer is also valid as it is
111 * possibly invalid.
112 */
113 if (xtensa_is_outside_stack_bounds((uintptr_t)frame, sizeof(*frame), UINT32_MAX)) {
114 return false;
115 }
116
117 /* Need to test if the BSA area is also within stack bounds. The information
118 * contained within the BSA is only valid if within stack bounds.
119 */
120 bsa = frame->ptr_to_bsa;
121 if (xtensa_is_outside_stack_bounds((uintptr_t)bsa, sizeof(*bsa), UINT32_MAX)) {
122 return false;
123 }
124
125 #ifdef CONFIG_USERSPACE
126 /* With usespace, we have privileged stack and normal thread stack within
127 * one stack object. So we need to further test whether the frame pointer
128 * resides in the correct stack based on kernel/user mode.
129 */
130 if (xtensa_is_outside_stack_bounds((uintptr_t)frame, sizeof(*frame), bsa->ps)) {
131 return false;
132 }
133 #endif
134
135 return true;
136 }
137
xtensa_dump_stack(const void * stack)138 void xtensa_dump_stack(const void *stack)
139 {
140 _xtensa_irq_stack_frame_raw_t *frame = (void *)stack;
141 _xtensa_irq_bsa_t *bsa;
142 uintptr_t num_high_regs;
143 int reg_blks_remaining;
144
145 /* Don't dump stack if the stack pointer is invalid as any frame elements
146 * obtained via de-referencing the frame pointer are probably also invalid.
147 * Or worse, cause another access violation.
148 */
149 if (!xtensa_is_frame_pointer_valid(frame)) {
150 return;
151 }
152
153 bsa = frame->ptr_to_bsa;
154
155 /* Calculate number of high registers. */
156 num_high_regs = (uint8_t *)bsa - (uint8_t *)frame + sizeof(void *);
157 num_high_regs /= sizeof(uintptr_t);
158
159 /* And high registers are always comes in 4 in a block. */
160 reg_blks_remaining = (int)num_high_regs / 4;
161
162 LOG_ERR(" ** A0 %p SP %p A2 %p A3 %p",
163 (void *)bsa->a0,
164 (void *)((char *)bsa + sizeof(*bsa)),
165 (void *)bsa->a2, (void *)bsa->a3);
166
167 if (reg_blks_remaining > 0) {
168 reg_blks_remaining--;
169
170 LOG_ERR(" ** A4 %p A5 %p A6 %p A7 %p",
171 (void *)frame->blks[reg_blks_remaining].r0,
172 (void *)frame->blks[reg_blks_remaining].r1,
173 (void *)frame->blks[reg_blks_remaining].r2,
174 (void *)frame->blks[reg_blks_remaining].r3);
175 }
176
177 if (reg_blks_remaining > 0) {
178 reg_blks_remaining--;
179
180 LOG_ERR(" ** A8 %p A9 %p A10 %p A11 %p",
181 (void *)frame->blks[reg_blks_remaining].r0,
182 (void *)frame->blks[reg_blks_remaining].r1,
183 (void *)frame->blks[reg_blks_remaining].r2,
184 (void *)frame->blks[reg_blks_remaining].r3);
185 }
186
187 if (reg_blks_remaining > 0) {
188 reg_blks_remaining--;
189
190 LOG_ERR(" ** A12 %p A13 %p A14 %p A15 %p",
191 (void *)frame->blks[reg_blks_remaining].r0,
192 (void *)frame->blks[reg_blks_remaining].r1,
193 (void *)frame->blks[reg_blks_remaining].r2,
194 (void *)frame->blks[reg_blks_remaining].r3);
195 }
196
197 #if XCHAL_HAVE_LOOPS
198 LOG_ERR(" ** LBEG %p LEND %p LCOUNT %p",
199 (void *)bsa->lbeg,
200 (void *)bsa->lend,
201 (void *)bsa->lcount);
202 #endif
203
204 LOG_ERR(" ** SAR %p", (void *)bsa->sar);
205
206 #if XCHAL_HAVE_THREADPTR
207 LOG_ERR(" ** THREADPTR %p", (void *)bsa->threadptr);
208 #endif
209 }
210
get_bits(int offset,int num_bits,unsigned int val)211 static inline unsigned int get_bits(int offset, int num_bits, unsigned int val)
212 {
213 int mask;
214
215 mask = BIT(num_bits) - 1;
216 val = val >> offset;
217 return val & mask;
218 }
219
print_fatal_exception(void * print_stack,int cause,bool is_dblexc,uint32_t depc)220 static void print_fatal_exception(void *print_stack, int cause,
221 bool is_dblexc, uint32_t depc)
222 {
223 void *pc;
224 uint32_t ps, vaddr;
225 _xtensa_irq_bsa_t *bsa = (void *)*(int **)print_stack;
226
227 __asm__ volatile("rsr.excvaddr %0" : "=r"(vaddr));
228
229 if (is_dblexc) {
230 LOG_ERR(" ** FATAL EXCEPTION (DOUBLE)");
231 } else {
232 LOG_ERR(" ** FATAL EXCEPTION");
233 }
234
235 LOG_ERR(" ** CPU %d EXCCAUSE %d (%s)",
236 arch_curr_cpu()->id, cause,
237 xtensa_exccause(cause));
238
239 /* Don't print information if the BSA area is invalid as any elements
240 * obtained via de-referencing the pointer are probably also invalid.
241 * Or worse, cause another access violation.
242 */
243 if (xtensa_is_outside_stack_bounds((uintptr_t)bsa, sizeof(*bsa), UINT32_MAX)) {
244 LOG_ERR(" ** VADDR %p Invalid SP %p", (void *)vaddr, print_stack);
245 return;
246 }
247
248 ps = bsa->ps;
249 pc = (void *)bsa->pc;
250
251 LOG_ERR(" ** PC %p VADDR %p", pc, (void *)vaddr);
252
253 if (is_dblexc) {
254 LOG_ERR(" ** DEPC %p", (void *)depc);
255 }
256
257 LOG_ERR(" ** PS %p", (void *)bsa->ps);
258 LOG_ERR(" ** (INTLEVEL:%d EXCM: %d UM:%d RING:%d WOE:%d OWB:%d CALLINC:%d)",
259 get_bits(0, 4, ps), get_bits(4, 1, ps),
260 get_bits(5, 1, ps), get_bits(6, 2, ps),
261 get_bits(18, 1, ps),
262 get_bits(8, 4, ps), get_bits(16, 2, ps));
263 }
264
usage_stop(void)265 static ALWAYS_INLINE void usage_stop(void)
266 {
267 #ifdef CONFIG_SCHED_THREAD_USAGE
268 z_sched_usage_stop();
269 #endif
270 }
271
return_to(void * interrupted)272 static inline void *return_to(void *interrupted)
273 {
274 #ifdef CONFIG_MULTITHREADING
275 return _current_cpu->nested <= 1 ?
276 z_get_next_switch_handle(interrupted) : interrupted;
277 #else
278 return interrupted;
279 #endif /* CONFIG_MULTITHREADING */
280 }
281
282 /* The wrapper code lives here instead of in the python script that
283 * generates _xtensa_handle_one_int*(). Seems cleaner, still kind of
284 * ugly.
285 *
286 * This may be unused depending on number of interrupt levels
287 * supported by the SoC.
288 */
289 #define DEF_INT_C_HANDLER(l) \
290 __unused void *xtensa_int##l##_c(void *interrupted_stack) \
291 { \
292 uint32_t irqs, intenable, m; \
293 usage_stop(); \
294 __asm__ volatile("rsr.interrupt %0" : "=r"(irqs)); \
295 __asm__ volatile("rsr.intenable %0" : "=r"(intenable)); \
296 irqs &= intenable; \
297 while ((m = _xtensa_handle_one_int##l(irqs))) { \
298 irqs ^= m; \
299 __asm__ volatile("wsr.intclear %0" : : "r"(m)); \
300 } \
301 return return_to(interrupted_stack); \
302 }
303
304 #if XCHAL_HAVE_NMI
305 #define MAX_INTR_LEVEL XCHAL_NMILEVEL
306 #elif XCHAL_HAVE_INTERRUPTS
307 #define MAX_INTR_LEVEL XCHAL_NUM_INTLEVELS
308 #else
309 #error Xtensa core with no interrupt support is used
310 #define MAX_INTR_LEVEL 0
311 #endif
312
313 #if MAX_INTR_LEVEL >= 2
314 DEF_INT_C_HANDLER(2)
315 #endif
316
317 #if MAX_INTR_LEVEL >= 3
318 DEF_INT_C_HANDLER(3)
319 #endif
320
321 #if MAX_INTR_LEVEL >= 4
322 DEF_INT_C_HANDLER(4)
323 #endif
324
325 #if MAX_INTR_LEVEL >= 5
326 DEF_INT_C_HANDLER(5)
327 #endif
328
329 #if MAX_INTR_LEVEL >= 6
330 DEF_INT_C_HANDLER(6)
331 #endif
332
333 #if MAX_INTR_LEVEL >= 7
334 DEF_INT_C_HANDLER(7)
335 #endif
336
337 static inline DEF_INT_C_HANDLER(1)
338
339 /* C handler for level 1 exceptions/interrupts. Hooked from the
340 * DEF_EXCINT 1 vector declaration in assembly code. This one looks
341 * different because exceptions and interrupts land at the same
342 * vector; other interrupt levels have their own vectors.
343 */
xtensa_excint1_c(void * esf)344 void *xtensa_excint1_c(void *esf)
345 {
346 int cause, reason;
347 int *interrupted_stack = &((struct arch_esf *)esf)->dummy;
348 _xtensa_irq_bsa_t *bsa = (void *)*(int **)interrupted_stack;
349 bool is_fatal_error = false;
350 bool is_dblexc = false;
351 uint32_t ps;
352 void *pc, *print_stack = (void *)interrupted_stack;
353 uint32_t depc = 0;
354
355 #ifdef CONFIG_XTENSA_MMU
356 depc = XTENSA_RSR(ZSR_DEPC_SAVE_STR);
357 cause = XTENSA_RSR(ZSR_EXCCAUSE_SAVE_STR);
358
359 is_dblexc = (depc != 0U);
360 #else /* CONFIG_XTENSA_MMU */
361 __asm__ volatile("rsr.exccause %0" : "=r"(cause));
362 #endif /* CONFIG_XTENSA_MMU */
363
364 switch (cause) {
365 case EXCCAUSE_LEVEL1_INTERRUPT:
366 #ifdef CONFIG_XTENSA_MMU
367 if (!is_dblexc) {
368 return xtensa_int1_c(interrupted_stack);
369 }
370 #else
371 return xtensa_int1_c(interrupted_stack);
372 #endif /* CONFIG_XTENSA_MMU */
373 break;
374 #ifndef CONFIG_USERSPACE
375 /* Syscalls are handled earlier in assembly if MMU is enabled.
376 * So we don't need this here.
377 */
378 case EXCCAUSE_SYSCALL:
379 /* Just report it to the console for now */
380 LOG_ERR(" ** SYSCALL PS %p PC %p",
381 (void *)bsa->ps, (void *)bsa->pc);
382 xtensa_dump_stack(interrupted_stack);
383
384 /* Xtensa exceptions don't automatically advance PC,
385 * have to skip the SYSCALL instruction manually or
386 * else it will just loop forever
387 */
388 bsa->pc += 3;
389 break;
390 #endif /* !CONFIG_USERSPACE */
391 default:
392 reason = K_ERR_CPU_EXCEPTION;
393
394 /* If the BSA area is invalid, we cannot trust anything coming out of it. */
395 if (xtensa_is_outside_stack_bounds((uintptr_t)bsa, sizeof(*bsa), UINT32_MAX)) {
396 goto skip_checks;
397 }
398
399 ps = bsa->ps;
400 pc = (void *)bsa->pc;
401
402 /* Default for exception */
403 is_fatal_error = true;
404
405 /* We need to distinguish between an ill in xtensa_arch_except,
406 * e.g for k_panic, and any other ill. For exceptions caused by
407 * xtensa_arch_except calls, we also need to pass the reason_p
408 * to xtensa_fatal_error. Since the ARCH_EXCEPT frame is in the
409 * BSA, the first arg reason_p is stored at the A2 offset.
410 * We assign EXCCAUSE the unused, reserved code 63; this may be
411 * problematic if the app or new boards also decide to repurpose
412 * this code.
413 *
414 * Another intentionally ill is from xtensa_arch_kernel_oops.
415 * Kernel OOPS has to be explicity raised so we can simply
416 * set the reason and continue.
417 */
418 if (cause == EXCCAUSE_ILLEGAL) {
419 if (pc == (void *)&xtensa_arch_except_epc) {
420 cause = 63;
421 __asm__ volatile("wsr.exccause %0" : : "r"(cause));
422 reason = bsa->a2;
423 } else if (pc == (void *)&xtensa_arch_kernel_oops_epc) {
424 cause = 64; /* kernel oops */
425 reason = K_ERR_KERNEL_OOPS;
426
427 /* A3 contains the second argument to
428 * xtensa_arch_kernel_oops(reason, ssf)
429 * where ssf is the stack frame causing
430 * the kernel oops.
431 */
432 print_stack = (void *)bsa->a3;
433 }
434 }
435
436 skip_checks:
437 if (reason != K_ERR_KERNEL_OOPS) {
438 print_fatal_exception(print_stack, cause, is_dblexc, depc);
439 }
440
441 /* FIXME: legacy xtensa port reported "HW" exception
442 * for all unhandled exceptions, which seems incorrect
443 * as these are software errors. Should clean this
444 * up.
445 */
446 xtensa_fatal_error(reason, (void *)print_stack);
447 break;
448 }
449
450 #ifdef CONFIG_XTENSA_MMU
451 switch (cause) {
452 case EXCCAUSE_LEVEL1_INTERRUPT:
453 #ifndef CONFIG_USERSPACE
454 case EXCCAUSE_SYSCALL:
455 #endif /* !CONFIG_USERSPACE */
456 is_fatal_error = false;
457 break;
458 default:
459 is_fatal_error = true;
460 break;
461 }
462 #endif /* CONFIG_XTENSA_MMU */
463
464 if (is_dblexc || is_fatal_error) {
465 uint32_t ignore;
466
467 /* We are going to manipulate _current_cpu->nested manually.
468 * Since the error is fatal, for recoverable errors, code
469 * execution must not return back to the current thread as
470 * it is being terminated (via above xtensa_fatal_error()).
471 * So we need to prevent more interrupts coming in which
472 * will affect the nested value as we are going outside of
473 * normal interrupt handling procedure.
474 *
475 * Setting nested to 1 has two effects:
476 * 1. Force return_to() to choose a new thread.
477 * Since the current thread is being terminated, it will
478 * not be chosen again.
479 * 2. When context switches to the newly chosen thread,
480 * nested must be zero for normal code execution,
481 * as that is not in interrupt context at all.
482 * After returning from this function, the rest of
483 * interrupt handling code will decrement nested,
484 * resulting it being zero before switching to another
485 * thread.
486 */
487 __asm__ volatile("rsil %0, %1"
488 : "=r" (ignore) : "i"(XCHAL_EXCM_LEVEL));
489
490 _current_cpu->nested = 1;
491 }
492
493 #if defined(CONFIG_XTENSA_MMU)
494 if (is_dblexc) {
495 XTENSA_WSR(ZSR_DEPC_SAVE_STR, 0);
496 }
497 #endif /* CONFIG_XTENSA_MMU */
498
499 return return_to(interrupted_stack);
500 }
501
502 #if defined(CONFIG_GDBSTUB)
xtensa_debugint_c(int * interrupted_stack)503 void *xtensa_debugint_c(int *interrupted_stack)
504 {
505 extern void z_gdb_isr(struct arch_esf *esf);
506
507 z_gdb_isr((void *)interrupted_stack);
508
509 return return_to(interrupted_stack);
510 }
511 #endif
512