1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_helium_utils.h
4  * Description:  Utility functions for Helium development
5  *
6  * @version  V1.10.0
7  * @date     08 July 2021
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #ifndef _ARM_UTILS_HELIUM_H_
30 #define _ARM_UTILS_HELIUM_H_
31 
32 
33 #ifdef   __cplusplus
34 extern "C"
35 {
36 #endif
37 /***************************************
38 
39 Definitions available for MVEF and MVEI
40 
41 ***************************************/
42 #if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI))  && !defined(ARM_MATH_AUTOVECTORIZE)
43 
44 #define INACTIVELANE            0 /* inactive lane content */
45 
46 
47 #endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */
48 
49 /***************************************
50 
51 Definitions available for MVEF only
52 
53 ***************************************/
54 #if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF))  && !defined(ARM_MATH_AUTOVECTORIZE)
55 
vecAddAcrossF32Mve(float32x4_t in)56 __STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in)
57 {
58     float32_t acc;
59 
60     acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) +
61           vgetq_lane(in, 2) + vgetq_lane(in, 3);
62 
63     return acc;
64 }
65 
66 
67 
68 
69 /* newton initial guess */
70 #define INVSQRT_MAGIC_F32           0x5f3759df
71 #define INV_NEWTON_INIT_F32         0x7EF127EA
72 
73 
74 #define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\
75 {                                                     \
76     float32x4_t tmp;                                  \
77                                                       \
78     /* tmp = xhalf * x * x */                         \
79     tmp = vmulq(xStart, xStart);                      \
80     tmp = vmulq(tmp, xHalf);                          \
81     /* (1.5f - xhalf * x * x) */                      \
82     tmp = vsubq(vdupq_n_f32(1.5f), tmp);              \
83     /* x = x*(1.5f-xhalf*x*x); */                     \
84     invSqrt = vmulq(tmp, xStart);                     \
85 }
86 #endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */
87 
88 
89 /***************************************
90 
91 Definitions available for f16 datatype with HW acceleration only
92 
93 ***************************************/
94 #if defined(ARM_FLOAT16_SUPPORTED)
95 #if defined (ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
96 
vecAddAcrossF16Mve(float16x8_t in)97 __STATIC_FORCEINLINE float16_t vecAddAcrossF16Mve(float16x8_t in)
98 {
99     float16x8_t tmpVec;
100     _Float16 acc;
101 
102     tmpVec = (float16x8_t) vrev32q_s16((int16x8_t) in);
103     in = vaddq_f16(tmpVec, in);
104     tmpVec = (float16x8_t) vrev64q_s32((int32x4_t) in);
105     in = vaddq_f16(tmpVec, in);
106     acc = (_Float16)vgetq_lane_f16(in, 0) + (_Float16)vgetq_lane_f16(in, 4);
107 
108     return acc;
109 }
110 
__mve_cmplx_sum_intra_vec_f16(float16x8_t vecIn)111 __STATIC_FORCEINLINE float16x8_t __mve_cmplx_sum_intra_vec_f16(
112     float16x8_t   vecIn)
113 {
114     float16x8_t   vecTmp, vecOut;
115     uint32_t    tmp = 0;
116 
117     vecTmp = (float16x8_t) vrev64q_s32((int32x4_t) vecIn);
118     // TO TRACK : using canonical addition leads to unefficient code generation for f16
119     // vecTmp = vecTmp + vecAccCpx0;
120     /*
121      * Compute
122      *  re0+re1 | im0+im1 | re0+re1 | im0+im1
123      *  re2+re3 | im2+im3 | re2+re3 | im2+im3
124      */
125     vecTmp = vaddq_f16(vecTmp, vecIn);
126     vecOut = vecTmp;
127     /*
128      * shift left, random tmp insertion in bottom
129      */
130     vecOut = vreinterpretq_f16_s32(vshlcq_s32(vreinterpretq_s32_f16(vecOut)   , &tmp, 32));
131     /*
132      * Compute:
133      *    DONTCARE     |    DONTCARE     | re0+re1+re0+re1 |im0+im1+im0+im1
134      * re0+re1+re2+re3 | im0+im1+im2+im3 | re2+re3+re2+re3 |im2+im3+im2+im3
135      */
136     vecOut = vaddq_f16(vecOut, vecTmp);
137     /*
138      * Cmplx sum is in 4rd & 5th f16 elt
139      * return full vector
140      */
141     return vecOut;
142 }
143 
144 
145 #define mve_cmplx_sum_intra_r_i_f16(vec, Re, Im)                \
146 {                                                               \
147     float16x8_t   vecOut = __mve_cmplx_sum_intra_vec_f16(vec);    \
148     Re = vgetq_lane(vecOut, 4);                                 \
149     Im = vgetq_lane(vecOut, 5);                                 \
150 }
151 
mve_cmplx_sum_intra_vec_f16(float16x8_t vecIn,float16_t * pOut)152 __STATIC_FORCEINLINE void mve_cmplx_sum_intra_vec_f16(
153     float16x8_t   vecIn,
154     float16_t  *pOut)
155 {
156     float16x8_t   vecOut = __mve_cmplx_sum_intra_vec_f16(vecIn);
157     /*
158      * Cmplx sum is in 4rd & 5th f16 elt
159      * use 32-bit extraction
160      */
161     *(float32_t *) pOut = ((float32x4_t) vecOut)[2];
162 }
163 
164 
165 #define INVSQRT_MAGIC_F16           0x59ba      /*  ( 0x1ba = 0x3759df >> 13) */
166 
167 /* canonical version of INVSQRT_NEWTON_MVE_F16 leads to bad performance */
168 #define INVSQRT_NEWTON_MVE_F16(invSqrt, xHalf, xStart)                  \
169 {                                                                       \
170     float16x8_t tmp;                                                      \
171                                                                         \
172     /* tmp = xhalf * x * x */                                           \
173     tmp = vmulq(xStart, xStart);                                        \
174     tmp = vmulq(tmp, xHalf);                                            \
175     /* (1.5f - xhalf * x * x) */                                        \
176     tmp = vsubq(vdupq_n_f16((float16_t)1.5), tmp);                      \
177     /* x = x*(1.5f-xhalf*x*x); */                                       \
178     invSqrt = vmulq(tmp, xStart);                                       \
179 }
180 
181 #endif
182 #endif
183 
184 /***************************************
185 
186 Definitions available for MVEI and MVEF only
187 
188 ***************************************/
189 #if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI))  && !defined(ARM_MATH_AUTOVECTORIZE)
190 /* Following functions are used to transpose matrix in f32 and q31 cases */
arm_mat_trans_32bit_2x2_mve(uint32_t * pDataSrc,uint32_t * pDataDest)191 __STATIC_INLINE arm_status arm_mat_trans_32bit_2x2_mve(
192     uint32_t * pDataSrc,
193     uint32_t * pDataDest)
194 {
195     static const uint32x4_t vecOffs = { 0, 2, 1, 3 };
196     /*
197      *
198      * | 0   1 |   =>  |  0   2 |
199      * | 2   3 |       |  1   3 |
200      *
201      */
202     uint32x4_t vecIn = vldrwq_u32((uint32_t const *)pDataSrc);
203     vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs, vecIn);
204 
205     return (ARM_MATH_SUCCESS);
206 }
207 
arm_mat_trans_32bit_3x3_mve(uint32_t * pDataSrc,uint32_t * pDataDest)208 __STATIC_INLINE arm_status arm_mat_trans_32bit_3x3_mve(
209     uint32_t * pDataSrc,
210     uint32_t * pDataDest)
211 {
212     const uint32x4_t vecOffs1 = { 0, 3, 6, 1};
213     const uint32x4_t vecOffs2 = { 4, 7, 2, 5};
214     /*
215      *
216      *  | 0   1   2 |       | 0   3   6 |  4 x 32 flattened version | 0   3   6   1 |
217      *  | 3   4   5 |   =>  | 1   4   7 |            =>             | 4   7   2   5 |
218      *  | 6   7   8 |       | 2   5   8 |       (row major)         | 8   .   .   . |
219      *
220      */
221     uint32x4_t vecIn1 = vldrwq_u32((uint32_t const *) pDataSrc);
222     uint32x4_t vecIn2 = vldrwq_u32((uint32_t const *) &pDataSrc[4]);
223 
224     vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs1, vecIn1);
225     vstrwq_scatter_shifted_offset_u32(pDataDest, vecOffs2, vecIn2);
226 
227     pDataDest[8] = pDataSrc[8];
228 
229     return (ARM_MATH_SUCCESS);
230 }
231 
arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc,uint32_t * pDataDest)232 __STATIC_INLINE arm_status arm_mat_trans_32bit_4x4_mve(uint32_t * pDataSrc, uint32_t * pDataDest)
233 {
234     /*
235      * 4x4 Matrix transposition
236      * is 4 x de-interleave operation
237      *
238      * 0   1   2   3       0   4   8   12
239      * 4   5   6   7       1   5   9   13
240      * 8   9   10  11      2   6   10  14
241      * 12  13  14  15      3   7   11  15
242      */
243 
244     uint32x4x4_t vecIn;
245 
246     vecIn = vld4q((uint32_t const *) pDataSrc);
247     vstrwq(pDataDest, vecIn.val[0]);
248     pDataDest += 4;
249     vstrwq(pDataDest, vecIn.val[1]);
250     pDataDest += 4;
251     vstrwq(pDataDest, vecIn.val[2]);
252     pDataDest += 4;
253     vstrwq(pDataDest, vecIn.val[3]);
254 
255     return (ARM_MATH_SUCCESS);
256 }
257 
258 
arm_mat_trans_32bit_generic_mve(uint16_t srcRows,uint16_t srcCols,uint32_t * pDataSrc,uint32_t * pDataDest)259 __STATIC_INLINE arm_status arm_mat_trans_32bit_generic_mve(
260     uint16_t    srcRows,
261     uint16_t    srcCols,
262     uint32_t  * pDataSrc,
263     uint32_t  * pDataDest)
264 {
265     uint32x4_t vecOffs;
266     uint32_t  i;
267     uint32_t  blkCnt;
268     uint32_t const *pDataC;
269     uint32_t *pDataDestR;
270     uint32x4_t vecIn;
271 
272     vecOffs = vidupq_u32((uint32_t)0, 1);
273     vecOffs = vecOffs * srcCols;
274 
275     i = srcCols;
276     do
277     {
278         pDataC = (uint32_t const *) pDataSrc;
279         pDataDestR = pDataDest;
280 
281         blkCnt = srcRows >> 2;
282         while (blkCnt > 0U)
283         {
284             vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
285             vstrwq(pDataDestR, vecIn);
286             pDataDestR += 4;
287             pDataC = pDataC + srcCols * 4;
288             /*
289              * Decrement the blockSize loop counter
290              */
291             blkCnt--;
292         }
293 
294         /*
295          * tail
296          */
297         blkCnt = srcRows & 3;
298         if (blkCnt > 0U)
299         {
300             mve_pred16_t p0 = vctp32q(blkCnt);
301             vecIn = vldrwq_gather_shifted_offset_u32(pDataC, vecOffs);
302             vstrwq_p(pDataDestR, vecIn, p0);
303         }
304 
305         pDataSrc += 1;
306         pDataDest += srcRows;
307     }
308     while (--i);
309 
310     return (ARM_MATH_SUCCESS);
311 }
312 
arm_mat_cmplx_trans_32bit(uint16_t srcRows,uint16_t srcCols,uint32_t * pDataSrc,uint16_t dstRows,uint16_t dstCols,uint32_t * pDataDest)313 __STATIC_INLINE arm_status arm_mat_cmplx_trans_32bit(
314     uint16_t    srcRows,
315     uint16_t    srcCols,
316     uint32_t   *pDataSrc,
317     uint16_t    dstRows,
318     uint16_t    dstCols,
319     uint32_t   *pDataDest)
320 {
321     uint32_t        i;
322     uint32_t const *pDataC;
323     uint32_t       *pDataRow;
324     uint32_t       *pDataDestR, *pDataDestRow;
325     uint32x4_t      vecOffsRef, vecOffsCur;
326     uint32_t        blkCnt;
327     uint32x4_t      vecIn;
328 
329 #ifdef ARM_MATH_MATRIX_CHECK
330     /*
331      * Check for matrix mismatch condition
332      */
333     if ((srcRows != dstCols) || (srcCols != dstRows))
334     {
335         /*
336          * Set status as ARM_MATH_SIZE_MISMATCH
337          */
338         return ARM_MATH_SIZE_MISMATCH;
339     }
340 #else
341     (void)dstRows;
342     (void)dstCols;
343 #endif
344 
345     /* 2x2, 3x3 and 4x4 specialization to be added */
346 
347     vecOffsRef[0] = 0;
348     vecOffsRef[1] = 1;
349     vecOffsRef[2] = srcCols << 1;
350     vecOffsRef[3] = (srcCols << 1) + 1;
351 
352     pDataRow = pDataSrc;
353     pDataDestRow = pDataDest;
354     i = srcCols;
355     do
356     {
357         pDataC = (uint32_t const *) pDataRow;
358         pDataDestR = pDataDestRow;
359         vecOffsCur = vecOffsRef;
360 
361         blkCnt = (srcRows * CMPLX_DIM) >> 2;
362         while (blkCnt > 0U)
363         {
364             vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
365             vstrwq(pDataDestR, vecIn);
366             pDataDestR += 4;
367             vecOffsCur = vaddq(vecOffsCur, (srcCols << 2));
368             /*
369              * Decrement the blockSize loop counter
370              */
371              blkCnt--;
372         }
373         /*
374          * tail
375          * (will be merged thru tail predication)
376          */
377         blkCnt = (srcRows * CMPLX_DIM) & 3;
378         if (blkCnt > 0U)
379         {
380             mve_pred16_t p0 = vctp32q(blkCnt);
381             vecIn = vldrwq_gather_shifted_offset(pDataC, vecOffsCur);
382             vstrwq_p(pDataDestR, vecIn, p0);
383         }
384 
385         pDataRow += CMPLX_DIM;
386         pDataDestRow += (srcRows * CMPLX_DIM);
387     }
388     while (--i);
389 
390     return (ARM_MATH_SUCCESS);
391 }
392 
arm_mat_trans_16bit_2x2(uint16_t * pDataSrc,uint16_t * pDataDest)393 __STATIC_INLINE arm_status arm_mat_trans_16bit_2x2(uint16_t * pDataSrc, uint16_t * pDataDest)
394 {
395     pDataDest[0] = pDataSrc[0];
396     pDataDest[3] = pDataSrc[3];
397     pDataDest[2] = pDataSrc[1];
398     pDataDest[1] = pDataSrc[2];
399 
400     return (ARM_MATH_SUCCESS);
401 }
402 
arm_mat_trans_16bit_3x3_mve(uint16_t * pDataSrc,uint16_t * pDataDest)403 __STATIC_INLINE arm_status arm_mat_trans_16bit_3x3_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
404 {
405     static const uint16_t stridesTr33[8] = { 0, 3, 6, 1, 4, 7, 2, 5 };
406     uint16x8_t    vecOffs1;
407     uint16x8_t    vecIn1;
408     /*
409      *
410      *  | 0   1   2 |       | 0   3   6 |  8 x 16 flattened version | 0   3   6   1   4   7   2   5 |
411      *  | 3   4   5 | =>    | 1   4   7 |            =>             | 8   .   .   .   .   .   .   . |
412      *  | 6   7   8 |       | 2   5   8 |       (row major)
413      *
414      */
415     vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr33);
416     vecIn1 = vldrhq_u16((uint16_t const *) pDataSrc);
417 
418     vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
419 
420     pDataDest[8] = pDataSrc[8];
421 
422     return (ARM_MATH_SUCCESS);
423 }
424 
425 
arm_mat_trans_16bit_4x4_mve(uint16_t * pDataSrc,uint16_t * pDataDest)426 __STATIC_INLINE arm_status arm_mat_trans_16bit_4x4_mve(uint16_t * pDataSrc, uint16_t * pDataDest)
427 {
428     static const uint16_t stridesTr44_1[8] = { 0, 4, 8, 12, 1, 5, 9, 13 };
429     static const uint16_t stridesTr44_2[8] = { 2, 6, 10, 14, 3, 7, 11, 15 };
430     uint16x8_t    vecOffs1, vecOffs2;
431     uint16x8_t    vecIn1, vecIn2;
432     uint16_t const * pDataSrcVec = (uint16_t const *) pDataSrc;
433 
434     /*
435      * 4x4 Matrix transposition
436      *
437      * | 0   1   2   3  |       | 0   4   8   12 |   8 x 16 flattened version
438      * | 4   5   6   7  |  =>   | 1   5   9   13 |   =>      [0   4   8   12  1   5   9   13]
439      * | 8   9   10  11 |       | 2   6   10  14 |           [2   6   10  14  3   7   11  15]
440      * | 12  13  14  15 |       | 3   7   11  15 |
441      */
442 
443     vecOffs1 = vldrhq_u16((uint16_t const *) stridesTr44_1);
444     vecOffs2 = vldrhq_u16((uint16_t const *) stridesTr44_2);
445     vecIn1 = vldrhq_u16(pDataSrcVec);
446     pDataSrcVec += 8;
447     vecIn2 = vldrhq_u16(pDataSrcVec);
448 
449     vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs1, vecIn1);
450     vstrhq_scatter_shifted_offset_u16(pDataDest, vecOffs2, vecIn2);
451 
452 
453     return (ARM_MATH_SUCCESS);
454 }
455 
456 
457 
arm_mat_trans_16bit_generic(uint16_t srcRows,uint16_t srcCols,uint16_t * pDataSrc,uint16_t * pDataDest)458 __STATIC_INLINE arm_status arm_mat_trans_16bit_generic(
459     uint16_t    srcRows,
460     uint16_t    srcCols,
461     uint16_t  * pDataSrc,
462     uint16_t  * pDataDest)
463 {
464     uint16x8_t    vecOffs;
465     uint32_t        i;
466     uint32_t        blkCnt;
467     uint16_t const *pDataC;
468     uint16_t       *pDataDestR;
469     uint16x8_t    vecIn;
470 
471     vecOffs = vidupq_u16((uint32_t)0, 1);
472     vecOffs = vecOffs * srcCols;
473 
474     i = srcCols;
475     while(i > 0U)
476     {
477         pDataC = (uint16_t const *) pDataSrc;
478         pDataDestR = pDataDest;
479 
480         blkCnt = srcRows >> 3;
481         while (blkCnt > 0U)
482         {
483             vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
484             vstrhq_u16(pDataDestR, vecIn);
485             pDataDestR += 8;
486             pDataC = pDataC + srcCols * 8;
487             /*
488              * Decrement the blockSize loop counter
489              */
490             blkCnt--;
491         }
492 
493         /*
494          * tail
495          */
496         blkCnt = srcRows & 7;
497         if (blkCnt > 0U)
498         {
499             mve_pred16_t p0 = vctp16q(blkCnt);
500             vecIn = vldrhq_gather_shifted_offset_u16(pDataC, vecOffs);
501             vstrhq_p_u16(pDataDestR, vecIn, p0);
502         }
503         pDataSrc += 1;
504         pDataDest += srcRows;
505         i--;
506     }
507 
508     return (ARM_MATH_SUCCESS);
509 }
510 
511 
arm_mat_cmplx_trans_16bit(uint16_t srcRows,uint16_t srcCols,uint16_t * pDataSrc,uint16_t dstRows,uint16_t dstCols,uint16_t * pDataDest)512 __STATIC_INLINE arm_status arm_mat_cmplx_trans_16bit(
513     uint16_t    srcRows,
514     uint16_t    srcCols,
515     uint16_t   *pDataSrc,
516     uint16_t    dstRows,
517     uint16_t    dstCols,
518     uint16_t   *pDataDest)
519 {
520     static const uint16_t loadCmplxCol[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
521     int             i;
522     uint16x8_t    vecOffsRef, vecOffsCur;
523     uint16_t const *pDataC;
524     uint16_t       *pDataRow;
525     uint16_t       *pDataDestR, *pDataDestRow;
526     uint32_t        blkCnt;
527     uint16x8_t    vecIn;
528 
529 #ifdef ARM_MATH_MATRIX_CHECK
530     /*
531      * Check for matrix mismatch condition
532      */
533     if ((srcRows != dstCols) || (srcCols != dstRows))
534     {
535         /*
536          * Set status as ARM_MATH_SIZE_MISMATCH
537          */
538         return ARM_MATH_SIZE_MISMATCH;
539     }
540 #else
541     (void)dstRows;
542     (void)dstCols;
543 #endif
544 
545     /*
546      * 2x2, 3x3 and 4x4 specialization to be added
547      */
548 
549 
550     /*
551      * build  [0, 1, 2xcol, 2xcol+1, 4xcol, 4xcol+1, 6xcol, 6xcol+1]
552      */
553     vecOffsRef = vldrhq_u16((uint16_t const *) loadCmplxCol);
554     vecOffsRef = vmulq(vecOffsRef, (uint16_t) (srcCols * CMPLX_DIM))
555                     + viwdupq_u16((uint32_t)0, (uint16_t) 2, 1);
556 
557     pDataRow = pDataSrc;
558     pDataDestRow = pDataDest;
559     i = srcCols;
560     do
561     {
562         pDataC = (uint16_t const *) pDataRow;
563         pDataDestR = pDataDestRow;
564         vecOffsCur = vecOffsRef;
565 
566         blkCnt = (srcRows * CMPLX_DIM) >> 3;
567         while (blkCnt > 0U)
568         {
569             vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
570             vstrhq(pDataDestR, vecIn);
571             pDataDestR+= 8; // VEC_LANES_U16
572             vecOffsCur = vaddq(vecOffsCur, (srcCols << 3));
573             /*
574              * Decrement the blockSize loop counter
575              */
576             blkCnt--;
577         }
578         /*
579          * tail
580          * (will be merged thru tail predication)
581          */
582         blkCnt = (srcRows * CMPLX_DIM) & 0x7;
583         if (blkCnt > 0U)
584         {
585             mve_pred16_t p0 = vctp16q(blkCnt);
586             vecIn = vldrhq_gather_shifted_offset(pDataC, vecOffsCur);
587             vstrhq_p(pDataDestR, vecIn, p0);
588         }
589 
590         pDataRow += CMPLX_DIM;
591         pDataDestRow += (srcRows * CMPLX_DIM);
592     }
593     while (--i);
594 
595     return (ARM_MATH_SUCCESS);
596 }
597 #endif /* MVEF and MVEI */
598 
599 /***************************************
600 
601 Definitions available for MVEI only
602 
603 ***************************************/
604 #if (defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI))  && !defined(ARM_MATH_AUTOVECTORIZE)
605 
606 #include "arm_common_tables.h"
607 
608 #define MVE_ASRL_SAT16(acc, shift)          ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
609 #define MVE_ASRL_SAT32(acc, shift)          ((sqrshrl(acc, -(32-shift)) >> 32) & 0xffffffff)
610 
611 
FAST_VSQRT_Q31(q31x4_t vecIn)612 __STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn)
613 {
614     q63x2_t         vecTmpLL;
615     q31x4_t         vecTmp0, vecTmp1;
616     q31_t           scale;
617     q63_t           tmp64;
618     q31x4_t         vecNrm, vecDst, vecIdx, vecSignBits;
619 
620 
621     vecSignBits = vclsq(vecIn);
622     vecSignBits = vbicq_n_s32(vecSignBits, 1);
623     /*
624      * in = in << no_of_sign_bits;
625      */
626     vecNrm = vshlq(vecIn, vecSignBits);
627     /*
628      * index = in >> 24;
629      */
630     vecIdx = vecNrm >> 24;
631     vecIdx = vecIdx << 1;
632 
633     vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
634 
635     vecIdx = vecIdx + 1;
636 
637     vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, (uint32x4_t)vecIdx);
638 
639     vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
640     vecTmp0 = vecTmp0 - vecTmp1;
641     vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
642     vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
643     vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1;
644     vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
645     vecTmpLL = vmullbq_int(vecNrm, vecTmp0);
646 
647     /*
648      * scale elements 0, 2
649      */
650     scale = 26 + (vecSignBits[0] >> 1);
651     tmp64 = asrl(vecTmpLL[0], scale);
652     vecDst[0] = (q31_t) tmp64;
653 
654     scale = 26 + (vecSignBits[2] >> 1);
655     tmp64 = asrl(vecTmpLL[1], scale);
656     vecDst[2] = (q31_t) tmp64;
657 
658     vecTmpLL = vmulltq_int(vecNrm, vecTmp0);
659 
660     /*
661      * scale elements 1, 3
662      */
663     scale = 26 + (vecSignBits[1] >> 1);
664     tmp64 = asrl(vecTmpLL[0], scale);
665     vecDst[1] = (q31_t) tmp64;
666 
667     scale = 26 + (vecSignBits[3] >> 1);
668     tmp64 = asrl(vecTmpLL[1], scale);
669     vecDst[3] = (q31_t) tmp64;
670     /*
671      * set negative values to 0
672      */
673     vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0));
674 
675     return vecDst;
676 }
677 
FAST_VSQRT_Q15(q15x8_t vecIn)678 __STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn)
679 {
680     q31x4_t         vecTmpLev, vecTmpLodd, vecSignL;
681     q15x8_t         vecTmp0, vecTmp1;
682     q15x8_t         vecNrm, vecDst, vecIdx, vecSignBits;
683 
684     vecDst = vuninitializedq_s16();
685 
686     vecSignBits = vclsq(vecIn);
687     vecSignBits = vbicq_n_s16(vecSignBits, 1);
688     /*
689      * in = in << no_of_sign_bits;
690      */
691     vecNrm = vshlq(vecIn, vecSignBits);
692 
693     vecIdx = vecNrm >> 8;
694     vecIdx = vecIdx << 1;
695 
696     vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
697 
698     vecIdx = vecIdx + 1;
699 
700     vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, (uint16x8_t)vecIdx);
701 
702     vecTmp1 = vqrdmulhq(vecTmp1, vecNrm);
703     vecTmp0 = vecTmp0 - vecTmp1;
704     vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0);
705     vecTmp1 = vqrdmulhq(vecNrm, vecTmp1);
706     vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1;
707     vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1);
708 
709     vecSignBits = vecSignBits >> 1;
710 
711     vecTmpLev = vmullbq_int(vecNrm, vecTmp0);
712     vecTmpLodd = vmulltq_int(vecNrm, vecTmp0);
713 
714     vecTmp0 = vecSignBits + 10;
715     /*
716      * negate sign to apply register based vshl
717      */
718     vecTmp0 = -vecTmp0;
719 
720     /*
721      * shift even elements
722      */
723     vecSignL = vmovlbq(vecTmp0);
724     vecTmpLev = vshlq(vecTmpLev, vecSignL);
725     /*
726      * shift odd elements
727      */
728     vecSignL = vmovltq(vecTmp0);
729     vecTmpLodd = vshlq(vecTmpLodd, vecSignL);
730     /*
731      * merge and narrow odd and even parts
732      */
733     vecDst = vmovnbq_s32(vecDst, vecTmpLev);
734     vecDst = vmovntq_s32(vecDst, vecTmpLodd);
735     /*
736      * set negative values to 0
737      */
738     vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0));
739 
740     return vecDst;
741 }
742 
743 #endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */
744 
745 #ifdef   __cplusplus
746 }
747 #endif
748 
749 #endif
750