1 /*
2 * FreeRTOS Kernel V10.4.3
3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
6 * this software and associated documentation files (the "Software"), to deal in
7 * the Software without restriction, including without limitation the rights to
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9 * the Software, and to permit persons to whom the Software is furnished to do so,
10 * subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in all
13 * copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * https://www.FreeRTOS.org
23 * https://github.com/FreeRTOS
24 *
25 */
26
27 #include <stdlib.h>
28 #include <string.h>
29
30 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
31 * all the API functions to use the MPU wrappers. That should only be done when
32 * task.h is included from an application file. */
33 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
34
35 #include "FreeRTOS.h"
36 #include "task.h"
37 #include "queue.h"
38
39 #if ( configUSE_CO_ROUTINES == 1 )
40 #include "croutine.h"
41 #endif
42
43 #ifdef ESP_PLATFORM
44 #define taskCRITICAL_MUX &((Queue_t *)pxQueue)->mux
45 #undef taskENTER_CRITICAL
46 #undef taskEXIT_CRITICAL
47 #undef taskENTER_CRITICAL_ISR
48 #undef taskEXIT_CRITICAL_ISR
49 #define taskENTER_CRITICAL( ) portENTER_CRITICAL( taskCRITICAL_MUX )
50 #define taskEXIT_CRITICAL( ) portEXIT_CRITICAL( taskCRITICAL_MUX )
51 #define taskENTER_CRITICAL_ISR( ) portENTER_CRITICAL_ISR( taskCRITICAL_MUX )
52 #define taskEXIT_CRITICAL_ISR( ) portEXIT_CRITICAL_ISR( taskCRITICAL_MUX )
53 #endif
54
55 /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
56 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
57 * for the header files above, but not in this file, in order to generate the
58 * correct privileged Vs unprivileged linkage and placement. */
59 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
60
61
62 /* Constants used with the cRxLock and cTxLock structure members. */
63 #define queueUNLOCKED ( ( int8_t ) -1 )
64 #define queueLOCKED_UNMODIFIED ( ( int8_t ) 0 )
65 #define queueINT8_MAX ( ( int8_t ) 127 )
66
67 /* When the Queue_t structure is used to represent a base queue its pcHead and
68 * pcTail members are used as pointers into the queue storage area. When the
69 * Queue_t structure is used to represent a mutex pcHead and pcTail pointers are
70 * not necessary, and the pcHead pointer is set to NULL to indicate that the
71 * structure instead holds a pointer to the mutex holder (if any). Map alternative
72 * names to the pcHead and structure member to ensure the readability of the code
73 * is maintained. The QueuePointers_t and SemaphoreData_t types are used to form
74 * a union as their usage is mutually exclusive dependent on what the queue is
75 * being used for. */
76 #define uxQueueType pcHead
77 #define queueQUEUE_IS_MUTEX NULL
78
79 typedef struct QueuePointers
80 {
81 int8_t * pcTail; /*< Points to the byte at the end of the queue storage area. Once more byte is allocated than necessary to store the queue items, this is used as a marker. */
82 int8_t * pcReadFrom; /*< Points to the last place that a queued item was read from when the structure is used as a queue. */
83 } QueuePointers_t;
84
85 typedef struct SemaphoreData
86 {
87 TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex. */
88 UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a recursive mutex has been recursively 'taken' when the structure is used as a mutex. */
89 } SemaphoreData_t;
90
91 /* Semaphores do not actually store or copy data, so have an item size of
92 * zero. */
93 #define queueSEMAPHORE_QUEUE_ITEM_LENGTH ( ( UBaseType_t ) 0 )
94 #define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) 0U )
95
96 #if ( configUSE_PREEMPTION == 0 )
97
98 /* If the cooperative scheduler is being used then a yield should not be
99 * performed just because a higher priority task has been woken. */
100 #define queueYIELD_IF_USING_PREEMPTION()
101 #else
102 #define queueYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
103 #endif
104
105 /*
106 * Definition of the queue used by the scheduler.
107 * Items are queued by copy, not reference. See the following link for the
108 * rationale: https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
109 */
110 typedef struct QueueDefinition /* The old naming convention is used to prevent breaking kernel aware debuggers. */
111 {
112 int8_t * pcHead; /*< Points to the beginning of the queue storage area. */
113 int8_t * pcWriteTo; /*< Points to the free next place in the storage area. */
114
115 union
116 {
117 QueuePointers_t xQueue; /*< Data required exclusively when this structure is used as a queue. */
118 SemaphoreData_t xSemaphore; /*< Data required exclusively when this structure is used as a semaphore. */
119 } u;
120
121 List_t xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue. Stored in priority order. */
122 List_t xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to read from this queue. Stored in priority order. */
123
124 volatile UBaseType_t uxMessagesWaiting; /*< The number of items currently in the queue. */
125 UBaseType_t uxLength; /*< The length of the queue defined as the number of items it will hold, not the number of bytes. */
126 UBaseType_t uxItemSize; /*< The size of each items that the queue will hold. */
127
128 volatile int8_t cRxLock; /*< Stores the number of items received from the queue (removed from the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
129 volatile int8_t cTxLock; /*< Stores the number of items transmitted to the queue (added to the queue) while the queue was locked. Set to queueUNLOCKED when the queue is not locked. */
130
131 #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
132 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the memory used by the queue was statically allocated to ensure no attempt is made to free the memory. */
133 #endif
134
135 #if ( configUSE_QUEUE_SETS == 1 )
136 struct QueueDefinition * pxQueueSetContainer;
137 #endif
138
139 #if ( configUSE_TRACE_FACILITY == 1 )
140 UBaseType_t uxQueueNumber;
141 uint8_t ucQueueType;
142 #endif
143 #ifdef ESP_PLATFORM
144 portMUX_TYPE mux; //Mutex required due to SMP
145 #endif // ESP_PLATFORM
146 } xQUEUE;
147
148 /* The old xQUEUE name is maintained above then typedefed to the new Queue_t
149 * name below to enable the use of older kernel aware debuggers. */
150 typedef xQUEUE Queue_t;
151
152 /*-----------------------------------------------------------*/
153
154 /*
155 * The queue registry is just a means for kernel aware debuggers to locate
156 * queue structures. It has no other purpose so is an optional component.
157 */
158 #if ( configQUEUE_REGISTRY_SIZE > 0 )
159
160 /* The type stored within the queue registry array. This allows a name
161 * to be assigned to each queue making kernel aware debugging a little
162 * more user friendly. */
163 typedef struct QUEUE_REGISTRY_ITEM
164 {
165 const char * pcQueueName; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
166 QueueHandle_t xHandle;
167 } xQueueRegistryItem;
168
169 /* The old xQueueRegistryItem name is maintained above then typedefed to the
170 * new xQueueRegistryItem name below to enable the use of older kernel aware
171 * debuggers. */
172 typedef xQueueRegistryItem QueueRegistryItem_t;
173
174 /* The queue registry is simply an array of QueueRegistryItem_t structures.
175 * The pcQueueName member of a structure being NULL is indicative of the
176 * array position being vacant. */
177 PRIVILEGED_DATA QueueRegistryItem_t xQueueRegistry[ configQUEUE_REGISTRY_SIZE ];
178 #ifdef ESP_PLATFORM
179 //Need to add queue registry mutex to protect against simultaneous access
180 static portMUX_TYPE queue_registry_spinlock = portMUX_INITIALIZER_UNLOCKED;
181 #endif // ESP_PLATFORM
182 #endif /* configQUEUE_REGISTRY_SIZE */
183
184 /*
185 * Unlocks a queue locked by a call to prvLockQueue. Locking a queue does not
186 * prevent an ISR from adding or removing items to the queue, but does prevent
187 * an ISR from removing tasks from the queue event lists. If an ISR finds a
188 * queue is locked it will instead increment the appropriate queue lock count
189 * to indicate that a task may require unblocking. When the queue in unlocked
190 * these lock counts are inspected, and the appropriate action taken.
191 */
192 static void prvUnlockQueue( Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
193
194 /*
195 * Uses a critical section to determine if there is any data in a queue.
196 *
197 * @return pdTRUE if the queue contains no items, otherwise pdFALSE.
198 */
199 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
200
201 /*
202 * Uses a critical section to determine if there is any space in a queue.
203 *
204 * @return pdTRUE if there is no space, otherwise pdFALSE;
205 */
206 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue ) PRIVILEGED_FUNCTION;
207
208 /*
209 * Copies an item into the queue, either at the front of the queue or the
210 * back of the queue.
211 */
212 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
213 const void * pvItemToQueue,
214 const BaseType_t xPosition ) PRIVILEGED_FUNCTION;
215
216 /*
217 * Copies an item out of a queue.
218 */
219 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
220 void * const pvBuffer ) PRIVILEGED_FUNCTION;
221
222 #if ( configUSE_QUEUE_SETS == 1 )
223
224 /*
225 * Checks to see if a queue is a member of a queue set, and if so, notifies
226 * the queue set that the queue contains data.
227 */
228 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue, const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
229 #endif
230
231 /*
232 * Called after a Queue_t structure has been allocated either statically or
233 * dynamically to fill in the structure's members.
234 */
235 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
236 const UBaseType_t uxItemSize,
237 uint8_t * pucQueueStorage,
238 const uint8_t ucQueueType,
239 Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
240
241 /*
242 * Mutexes are a special type of queue. When a mutex is created, first the
243 * queue is created, then prvInitialiseMutex() is called to configure the queue
244 * as a mutex.
245 */
246 #if ( configUSE_MUTEXES == 1 )
247 static void prvInitialiseMutex( Queue_t * pxNewQueue ) PRIVILEGED_FUNCTION;
248 #endif
249
250 #if ( configUSE_MUTEXES == 1 )
251
252 /*
253 * If a task waiting for a mutex causes the mutex holder to inherit a
254 * priority, but the waiting task times out, then the holder should
255 * disinherit the priority - but only down to the highest priority of any
256 * other tasks that are waiting for the same mutex. This function returns
257 * that priority.
258 */
259 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue ) PRIVILEGED_FUNCTION;
260 #endif
261 /*-----------------------------------------------------------*/
262
263 /*
264 * Macro to mark a queue as locked. Locking a queue prevents an ISR from
265 * accessing the queue event lists.
266 */
267 #define prvLockQueue( pxQueue ) \
268 taskENTER_CRITICAL(); \
269 { \
270 if( ( pxQueue )->cRxLock == queueUNLOCKED ) \
271 { \
272 ( pxQueue )->cRxLock = queueLOCKED_UNMODIFIED; \
273 } \
274 if( ( pxQueue )->cTxLock == queueUNLOCKED ) \
275 { \
276 ( pxQueue )->cTxLock = queueLOCKED_UNMODIFIED; \
277 } \
278 } \
279 taskEXIT_CRITICAL()
280 /*-----------------------------------------------------------*/
281
xQueueGenericReset(QueueHandle_t xQueue,BaseType_t xNewQueue)282 BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
283 BaseType_t xNewQueue )
284 {
285 Queue_t * const pxQueue = xQueue;
286
287 configASSERT( pxQueue );
288
289 #ifdef ESP_PLATFORM
290 if( xNewQueue == pdTRUE )
291 {
292 portMUX_INITIALIZE(&pxQueue->mux);
293 }
294 #endif // ESP_PLATFORM
295
296 taskENTER_CRITICAL();
297 {
298 pxQueue->u.xQueue.pcTail = pxQueue->pcHead + ( pxQueue->uxLength * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
299 pxQueue->uxMessagesWaiting = ( UBaseType_t ) 0U;
300 pxQueue->pcWriteTo = pxQueue->pcHead;
301 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead + ( ( pxQueue->uxLength - 1U ) * pxQueue->uxItemSize ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
302 pxQueue->cRxLock = queueUNLOCKED;
303 pxQueue->cTxLock = queueUNLOCKED;
304
305 if( xNewQueue == pdFALSE )
306 {
307 /* If there are tasks blocked waiting to read from the queue, then
308 * the tasks will remain blocked as after this function exits the queue
309 * will still be empty. If there are tasks blocked waiting to write to
310 * the queue, then one should be unblocked as after this function exits
311 * it will be possible to write to it. */
312 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
313 {
314 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
315 {
316 queueYIELD_IF_USING_PREEMPTION();
317 }
318 else
319 {
320 mtCOVERAGE_TEST_MARKER();
321 }
322 }
323 else
324 {
325 mtCOVERAGE_TEST_MARKER();
326 }
327 }
328 else
329 {
330 /* Ensure the event queues start in the correct state. */
331 vListInitialise( &( pxQueue->xTasksWaitingToSend ) );
332 vListInitialise( &( pxQueue->xTasksWaitingToReceive ) );
333 }
334 }
335 taskEXIT_CRITICAL();
336
337 /* A value is returned for calling semantic consistency with previous
338 * versions. */
339 return pdPASS;
340 }
341 /*-----------------------------------------------------------*/
342
343 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
344
xQueueGenericCreateStatic(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,uint8_t * pucQueueStorage,StaticQueue_t * pxStaticQueue,const uint8_t ucQueueType)345 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
346 const UBaseType_t uxItemSize,
347 uint8_t * pucQueueStorage,
348 StaticQueue_t * pxStaticQueue,
349 const uint8_t ucQueueType )
350 {
351 Queue_t * pxNewQueue;
352
353 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
354
355 /* The StaticQueue_t structure and the queue storage area must be
356 * supplied. */
357 configASSERT( pxStaticQueue != NULL );
358
359 /* A queue storage area should be provided if the item size is not 0, and
360 * should not be provided if the item size is 0. */
361 configASSERT( !( ( pucQueueStorage != NULL ) && ( uxItemSize == 0 ) ) );
362 configASSERT( !( ( pucQueueStorage == NULL ) && ( uxItemSize != 0 ) ) );
363
364 #if ( configASSERT_DEFINED == 1 )
365 {
366 /* Sanity check that the size of the structure used to declare a
367 * variable of type StaticQueue_t or StaticSemaphore_t equals the size of
368 * the real queue and semaphore structures. */
369 volatile size_t xSize = sizeof( StaticQueue_t );
370
371 /* This assertion cannot be branch covered in unit tests */
372 configASSERT( xSize == sizeof( Queue_t ) ); /* LCOV_EXCL_BR_LINE */
373 ( void ) xSize; /* Keeps lint quiet when configASSERT() is not defined. */
374 }
375 #endif /* configASSERT_DEFINED */
376
377 /* The address of a statically allocated queue was passed in, use it.
378 * The address of a statically allocated storage area was also passed in
379 * but is already set. */
380 pxNewQueue = ( Queue_t * ) pxStaticQueue; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
381
382 if( pxNewQueue != NULL )
383 {
384 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
385 {
386 /* Queues can be allocated wither statically or dynamically, so
387 * note this queue was allocated statically in case the queue is
388 * later deleted. */
389 pxNewQueue->ucStaticallyAllocated = pdTRUE;
390 }
391 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
392
393 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
394 }
395 else
396 {
397 traceQUEUE_CREATE_FAILED( ucQueueType );
398 mtCOVERAGE_TEST_MARKER();
399 }
400
401 return pxNewQueue;
402 }
403
404 #endif /* configSUPPORT_STATIC_ALLOCATION */
405 /*-----------------------------------------------------------*/
406
407 #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
408
xQueueGenericCreate(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,const uint8_t ucQueueType)409 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
410 const UBaseType_t uxItemSize,
411 const uint8_t ucQueueType )
412 {
413 Queue_t * pxNewQueue = NULL;
414 size_t xQueueSizeInBytes;
415 uint8_t * pucQueueStorage;
416
417 configASSERT( uxQueueLength > ( UBaseType_t ) 0 );
418
419 if( uxItemSize == ( UBaseType_t ) 0 )
420 {
421 /* There is not going to be a queue storage area. */
422 xQueueSizeInBytes = ( size_t ) 0;
423 }
424 else
425 {
426 /* Allocate enough space to hold the maximum number of items that
427 * can be in the queue at any time. It is valid for uxItemSize to be
428 * zero in the case the queue is used as a semaphore. */
429 xQueueSizeInBytes = ( size_t ) ( uxQueueLength * uxItemSize ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
430 }
431
432 /* Check for multiplication overflow. */
433 configASSERT( ( uxItemSize == 0 ) || ( uxQueueLength == ( xQueueSizeInBytes / uxItemSize ) ) );
434
435 /* Check for addition overflow. */
436 configASSERT( ( sizeof( Queue_t ) + xQueueSizeInBytes ) > xQueueSizeInBytes );
437
438 /* Allocate the queue and storage area. Justification for MISRA
439 * deviation as follows: pvPortMalloc() always ensures returned memory
440 * blocks are aligned per the requirements of the MCU stack. In this case
441 * pvPortMalloc() must return a pointer that is guaranteed to meet the
442 * alignment requirements of the Queue_t structure - which in this case
443 * is an int8_t *. Therefore, whenever the stack alignment requirements
444 * are greater than or equal to the pointer to char requirements the cast
445 * is safe. In other cases alignment requirements are not strict (one or
446 * two bytes). */
447 pxNewQueue = ( Queue_t * ) pvPortMalloc( sizeof( Queue_t ) + xQueueSizeInBytes ); /*lint !e9087 !e9079 see comment above. */
448
449 if( pxNewQueue != NULL )
450 {
451 /* Jump past the queue structure to find the location of the queue
452 * storage area. */
453 pucQueueStorage = ( uint8_t * ) pxNewQueue;
454 pucQueueStorage += sizeof( Queue_t ); /*lint !e9016 Pointer arithmetic allowed on char types, especially when it assists conveying intent. */
455
456 #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
457 {
458 /* Queues can be created either statically or dynamically, so
459 * note this task was created dynamically in case it is later
460 * deleted. */
461 pxNewQueue->ucStaticallyAllocated = pdFALSE;
462 }
463 #endif /* configSUPPORT_STATIC_ALLOCATION */
464
465 prvInitialiseNewQueue( uxQueueLength, uxItemSize, pucQueueStorage, ucQueueType, pxNewQueue );
466 }
467 else
468 {
469 traceQUEUE_CREATE_FAILED( ucQueueType );
470 mtCOVERAGE_TEST_MARKER();
471 }
472
473 return pxNewQueue;
474 }
475
476 #endif /* configSUPPORT_STATIC_ALLOCATION */
477 /*-----------------------------------------------------------*/
478
prvInitialiseNewQueue(const UBaseType_t uxQueueLength,const UBaseType_t uxItemSize,uint8_t * pucQueueStorage,const uint8_t ucQueueType,Queue_t * pxNewQueue)479 static void prvInitialiseNewQueue( const UBaseType_t uxQueueLength,
480 const UBaseType_t uxItemSize,
481 uint8_t * pucQueueStorage,
482 const uint8_t ucQueueType,
483 Queue_t * pxNewQueue )
484 {
485 /* Remove compiler warnings about unused parameters should
486 * configUSE_TRACE_FACILITY not be set to 1. */
487 ( void ) ucQueueType;
488
489 if( uxItemSize == ( UBaseType_t ) 0 )
490 {
491 /* No RAM was allocated for the queue storage area, but PC head cannot
492 * be set to NULL because NULL is used as a key to say the queue is used as
493 * a mutex. Therefore just set pcHead to point to the queue as a benign
494 * value that is known to be within the memory map. */
495 pxNewQueue->pcHead = ( int8_t * ) pxNewQueue;
496 }
497 else
498 {
499 /* Set the head to the start of the queue storage area. */
500 pxNewQueue->pcHead = ( int8_t * ) pucQueueStorage;
501 }
502
503 /* Initialise the queue members as described where the queue type is
504 * defined. */
505 pxNewQueue->uxLength = uxQueueLength;
506 pxNewQueue->uxItemSize = uxItemSize;
507 ( void ) xQueueGenericReset( pxNewQueue, pdTRUE );
508
509 #if ( configUSE_TRACE_FACILITY == 1 )
510 {
511 pxNewQueue->ucQueueType = ucQueueType;
512 }
513 #endif /* configUSE_TRACE_FACILITY */
514
515 #if ( configUSE_QUEUE_SETS == 1 )
516 {
517 pxNewQueue->pxQueueSetContainer = NULL;
518 }
519 #endif /* configUSE_QUEUE_SETS */
520
521 traceQUEUE_CREATE( pxNewQueue );
522 }
523 /*-----------------------------------------------------------*/
524
525 #if ( configUSE_MUTEXES == 1 )
526
prvInitialiseMutex(Queue_t * pxNewQueue)527 static void prvInitialiseMutex( Queue_t * pxNewQueue )
528 {
529 if( pxNewQueue != NULL )
530 {
531 /* The queue create function will set all the queue structure members
532 * correctly for a generic queue, but this function is creating a
533 * mutex. Overwrite those members that need to be set differently -
534 * in particular the information required for priority inheritance. */
535 pxNewQueue->u.xSemaphore.xMutexHolder = NULL;
536 pxNewQueue->uxQueueType = queueQUEUE_IS_MUTEX;
537
538 /* In case this is a recursive mutex. */
539 pxNewQueue->u.xSemaphore.uxRecursiveCallCount = 0;
540 #ifdef ESP_PLATFORM
541 portMUX_INITIALIZE(&pxNewQueue->mux);
542 #endif // ESP_PLATFORM
543 traceCREATE_MUTEX( pxNewQueue );
544
545 /* Start with the semaphore in the expected state. */
546 ( void ) xQueueGenericSend( pxNewQueue, NULL, ( TickType_t ) 0U, queueSEND_TO_BACK );
547 }
548 else
549 {
550 traceCREATE_MUTEX_FAILED();
551 }
552 }
553
554 #endif /* configUSE_MUTEXES */
555 /*-----------------------------------------------------------*/
556
557 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
558
xQueueCreateMutex(const uint8_t ucQueueType)559 QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType )
560 {
561 QueueHandle_t xNewQueue;
562 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
563
564 xNewQueue = xQueueGenericCreate( uxMutexLength, uxMutexSize, ucQueueType );
565 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
566
567 return xNewQueue;
568 }
569
570 #endif /* configUSE_MUTEXES */
571 /*-----------------------------------------------------------*/
572
573 #if ( ( configUSE_MUTEXES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
574
xQueueCreateMutexStatic(const uint8_t ucQueueType,StaticQueue_t * pxStaticQueue)575 QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
576 StaticQueue_t * pxStaticQueue )
577 {
578 QueueHandle_t xNewQueue;
579 const UBaseType_t uxMutexLength = ( UBaseType_t ) 1, uxMutexSize = ( UBaseType_t ) 0;
580
581 /* Prevent compiler warnings about unused parameters if
582 * configUSE_TRACE_FACILITY does not equal 1. */
583 ( void ) ucQueueType;
584
585 xNewQueue = xQueueGenericCreateStatic( uxMutexLength, uxMutexSize, NULL, pxStaticQueue, ucQueueType );
586 prvInitialiseMutex( ( Queue_t * ) xNewQueue );
587
588 return xNewQueue;
589 }
590
591 #endif /* configUSE_MUTEXES */
592 /*-----------------------------------------------------------*/
593
594 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
595
xQueueGetMutexHolder(QueueHandle_t xSemaphore)596 TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore )
597 {
598 TaskHandle_t pxReturn;
599 Queue_t * const pxSemaphore = ( Queue_t * ) xSemaphore;
600
601 /* This function is called by xSemaphoreGetMutexHolder(), and should not
602 * be called directly. Note: This is a good way of determining if the
603 * calling task is the mutex holder, but not a good way of determining the
604 * identity of the mutex holder, as the holder may change between the
605 * following critical section exiting and the function returning. */
606 #ifdef ESP_PLATFORM
607 Queue_t * const pxQueue = (Queue_t *)pxSemaphore;
608 #endif
609 taskENTER_CRITICAL();
610 {
611 if( pxSemaphore->uxQueueType == queueQUEUE_IS_MUTEX )
612 {
613 pxReturn = pxSemaphore->u.xSemaphore.xMutexHolder;
614 }
615 else
616 {
617 pxReturn = NULL;
618 }
619 }
620 taskEXIT_CRITICAL();
621
622 return pxReturn;
623 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
624
625 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
626 /*-----------------------------------------------------------*/
627
628 #if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) )
629
xQueueGetMutexHolderFromISR(QueueHandle_t xSemaphore)630 TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore )
631 {
632 TaskHandle_t pxReturn;
633
634 configASSERT( xSemaphore );
635
636 /* Mutexes cannot be used in interrupt service routines, so the mutex
637 * holder should not change in an ISR, and therefore a critical section is
638 * not required here. */
639 if( ( ( Queue_t * ) xSemaphore )->uxQueueType == queueQUEUE_IS_MUTEX )
640 {
641 pxReturn = ( ( Queue_t * ) xSemaphore )->u.xSemaphore.xMutexHolder;
642 }
643 else
644 {
645 pxReturn = NULL;
646 }
647
648 return pxReturn;
649 } /*lint !e818 xSemaphore cannot be a pointer to const because it is a typedef. */
650
651 #endif /* if ( ( configUSE_MUTEXES == 1 ) && ( INCLUDE_xSemaphoreGetMutexHolder == 1 ) ) */
652 /*-----------------------------------------------------------*/
653
654 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
655
xQueueGiveMutexRecursive(QueueHandle_t xMutex)656 BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex )
657 {
658 BaseType_t xReturn;
659 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
660
661 configASSERT( pxMutex );
662
663 /* If this is the task that holds the mutex then xMutexHolder will not
664 * change outside of this task. If this task does not hold the mutex then
665 * pxMutexHolder can never coincidentally equal the tasks handle, and as
666 * this is the only condition we are interested in it does not matter if
667 * pxMutexHolder is accessed simultaneously by another task. Therefore no
668 * mutual exclusion is required to test the pxMutexHolder variable. */
669 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
670 {
671 traceGIVE_MUTEX_RECURSIVE( pxMutex );
672
673 /* uxRecursiveCallCount cannot be zero if xMutexHolder is equal to
674 * the task handle, therefore no underflow check is required. Also,
675 * uxRecursiveCallCount is only modified by the mutex holder, and as
676 * there can only be one, no mutual exclusion is required to modify the
677 * uxRecursiveCallCount member. */
678 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )--;
679
680 /* Has the recursive call count unwound to 0? */
681 if( pxMutex->u.xSemaphore.uxRecursiveCallCount == ( UBaseType_t ) 0 )
682 {
683 /* Return the mutex. This will automatically unblock any other
684 * task that might be waiting to access the mutex. */
685 ( void ) xQueueGenericSend( pxMutex, NULL, queueMUTEX_GIVE_BLOCK_TIME, queueSEND_TO_BACK );
686 }
687 else
688 {
689 mtCOVERAGE_TEST_MARKER();
690 }
691
692 xReturn = pdPASS;
693 }
694 else
695 {
696 /* The mutex cannot be given because the calling task is not the
697 * holder. */
698 xReturn = pdFAIL;
699
700 traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex );
701 }
702
703 return xReturn;
704 }
705
706 #endif /* configUSE_RECURSIVE_MUTEXES */
707 /*-----------------------------------------------------------*/
708
709 #if ( configUSE_RECURSIVE_MUTEXES == 1 )
710
xQueueTakeMutexRecursive(QueueHandle_t xMutex,TickType_t xTicksToWait)711 BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
712 TickType_t xTicksToWait )
713 {
714 BaseType_t xReturn;
715 Queue_t * const pxMutex = ( Queue_t * ) xMutex;
716
717 configASSERT( pxMutex );
718
719 /* Comments regarding mutual exclusion as per those within
720 * xQueueGiveMutexRecursive(). */
721
722 traceTAKE_MUTEX_RECURSIVE( pxMutex );
723
724 if( pxMutex->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle() )
725 {
726 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
727 xReturn = pdPASS;
728 }
729 else
730 {
731 xReturn = xQueueSemaphoreTake( pxMutex, xTicksToWait );
732
733 /* pdPASS will only be returned if the mutex was successfully
734 * obtained. The calling task may have entered the Blocked state
735 * before reaching here. */
736 if( xReturn != pdFAIL )
737 {
738 ( pxMutex->u.xSemaphore.uxRecursiveCallCount )++;
739 }
740 else
741 {
742 traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex );
743 }
744 }
745
746 return xReturn;
747 }
748
749 #endif /* configUSE_RECURSIVE_MUTEXES */
750 /*-----------------------------------------------------------*/
751
752 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
753
xQueueCreateCountingSemaphoreStatic(const UBaseType_t uxMaxCount,const UBaseType_t uxInitialCount,StaticQueue_t * pxStaticQueue)754 QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
755 const UBaseType_t uxInitialCount,
756 StaticQueue_t * pxStaticQueue )
757 {
758 QueueHandle_t xHandle = NULL;
759
760 configASSERT( uxMaxCount != 0 );
761 configASSERT( uxInitialCount <= uxMaxCount );
762
763 xHandle = xQueueGenericCreateStatic( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticQueue, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
764
765 if( xHandle != NULL )
766 {
767 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
768
769 traceCREATE_COUNTING_SEMAPHORE();
770 }
771 else
772 {
773 traceCREATE_COUNTING_SEMAPHORE_FAILED();
774 }
775
776 return xHandle;
777 }
778
779 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
780 /*-----------------------------------------------------------*/
781
782 #if ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
783
xQueueCreateCountingSemaphore(const UBaseType_t uxMaxCount,const UBaseType_t uxInitialCount)784 QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
785 const UBaseType_t uxInitialCount )
786 {
787 QueueHandle_t xHandle = NULL;
788
789 configASSERT( uxMaxCount != 0 );
790 configASSERT( uxInitialCount <= uxMaxCount );
791
792 xHandle = xQueueGenericCreate( uxMaxCount, queueSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_COUNTING_SEMAPHORE );
793
794 if( xHandle != NULL )
795 {
796 ( ( Queue_t * ) xHandle )->uxMessagesWaiting = uxInitialCount;
797
798 traceCREATE_COUNTING_SEMAPHORE();
799 }
800 else
801 {
802 traceCREATE_COUNTING_SEMAPHORE_FAILED();
803 }
804
805 return xHandle;
806 }
807
808 #endif /* ( ( configUSE_COUNTING_SEMAPHORES == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
809 /*-----------------------------------------------------------*/
810
xQueueGenericSend(QueueHandle_t xQueue,const void * const pvItemToQueue,TickType_t xTicksToWait,const BaseType_t xCopyPosition)811 BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
812 const void * const pvItemToQueue,
813 TickType_t xTicksToWait,
814 const BaseType_t xCopyPosition )
815 {
816 BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
817 TimeOut_t xTimeOut;
818 Queue_t * const pxQueue = xQueue;
819
820 configASSERT( pxQueue );
821 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
822 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
823 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
824 {
825 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
826 }
827 #endif
828
829 #if ( configUSE_MUTEXES == 1 && configCHECK_MUTEX_GIVEN_BY_OWNER == 1)
830 configASSERT(pxQueue->uxQueueType != queueQUEUE_IS_MUTEX
831 || pxQueue->u.xSemaphore.xMutexHolder == NULL
832 || pxQueue->u.xSemaphore.xMutexHolder == xTaskGetCurrentTaskHandle());
833 #endif
834
835 /*lint -save -e904 This function relaxes the coding standard somewhat to
836 * allow return statements within the function itself. This is done in the
837 * interest of execution time efficiency. */
838 for( ; ; )
839 {
840 taskENTER_CRITICAL();
841 {
842 /* Is there room on the queue now? The running task must be the
843 * highest priority task wanting to access the queue. If the head item
844 * in the queue is to be overwritten then it does not matter if the
845 * queue is full. */
846 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
847 {
848 traceQUEUE_SEND( pxQueue );
849
850 #if ( configUSE_QUEUE_SETS == 1 )
851 {
852 UBaseType_t uxPreviousMessagesWaiting = pxQueue->uxMessagesWaiting;
853
854 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
855
856 if( pxQueue->pxQueueSetContainer != NULL )
857 {
858 if( ( xCopyPosition == queueOVERWRITE ) && ( uxPreviousMessagesWaiting != ( UBaseType_t ) 0 ) )
859 {
860 /* Do not notify the queue set as an existing item
861 * was overwritten in the queue so the number of items
862 * in the queue has not changed. */
863 mtCOVERAGE_TEST_MARKER();
864 }
865 else if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
866 {
867 /* The queue is a member of a queue set, and posting
868 * to the queue set caused a higher priority task to
869 * unblock. A context switch is required. */
870 queueYIELD_IF_USING_PREEMPTION();
871 }
872 else
873 {
874 mtCOVERAGE_TEST_MARKER();
875 }
876 }
877 else
878 {
879 /* If there was a task waiting for data to arrive on the
880 * queue then unblock it now. */
881 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
882 {
883 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
884 {
885 /* The unblocked task has a priority higher than
886 * our own so yield immediately. Yes it is ok to
887 * do this from within the critical section - the
888 * kernel takes care of that. */
889 queueYIELD_IF_USING_PREEMPTION();
890 }
891 else
892 {
893 mtCOVERAGE_TEST_MARKER();
894 }
895 }
896 else if( xYieldRequired != pdFALSE )
897 {
898 /* This path is a special case that will only get
899 * executed if the task was holding multiple mutexes
900 * and the mutexes were given back in an order that is
901 * different to that in which they were taken. */
902 queueYIELD_IF_USING_PREEMPTION();
903 }
904 else
905 {
906 mtCOVERAGE_TEST_MARKER();
907 }
908 }
909 }
910 #else /* configUSE_QUEUE_SETS */
911 {
912 xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
913
914 /* If there was a task waiting for data to arrive on the
915 * queue then unblock it now. */
916 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
917 {
918 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
919 {
920 /* The unblocked task has a priority higher than
921 * our own so yield immediately. Yes it is ok to do
922 * this from within the critical section - the kernel
923 * takes care of that. */
924 queueYIELD_IF_USING_PREEMPTION();
925 }
926 else
927 {
928 mtCOVERAGE_TEST_MARKER();
929 }
930 }
931 else if( xYieldRequired != pdFALSE )
932 {
933 /* This path is a special case that will only get
934 * executed if the task was holding multiple mutexes and
935 * the mutexes were given back in an order that is
936 * different to that in which they were taken. */
937 queueYIELD_IF_USING_PREEMPTION();
938 }
939 else
940 {
941 mtCOVERAGE_TEST_MARKER();
942 }
943 }
944 #endif /* configUSE_QUEUE_SETS */
945
946 taskEXIT_CRITICAL();
947 return pdPASS;
948 }
949 else
950 {
951 if( xTicksToWait == ( TickType_t ) 0 )
952 {
953 /* The queue was full and no block time is specified (or
954 * the block time has expired) so leave now. */
955 taskEXIT_CRITICAL();
956
957 /* Return to the original privilege level before exiting
958 * the function. */
959 traceQUEUE_SEND_FAILED( pxQueue );
960 return errQUEUE_FULL;
961 }
962 else if( xEntryTimeSet == pdFALSE )
963 {
964 /* The queue was full and a block time was specified so
965 * configure the timeout structure. */
966 vTaskInternalSetTimeOutState( &xTimeOut );
967 xEntryTimeSet = pdTRUE;
968 }
969 else
970 {
971 /* Entry time was already set. */
972 mtCOVERAGE_TEST_MARKER();
973 }
974 }
975 }
976 taskEXIT_CRITICAL();
977
978 /* Interrupts and other tasks can send to and receive from the queue
979 * now the critical section has been exited. */
980
981 #ifdef ESP_PLATFORM // IDF-3755
982 taskENTER_CRITICAL();
983 #else
984 vTaskSuspendAll();
985 #endif // ESP_PLATFORM
986 prvLockQueue( pxQueue );
987
988 /* Update the timeout state to see if it has expired yet. */
989 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
990 {
991 if( prvIsQueueFull( pxQueue ) != pdFALSE )
992 {
993 traceBLOCKING_ON_QUEUE_SEND( pxQueue );
994 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
995
996 /* Unlocking the queue means queue events can effect the
997 * event list. It is possible that interrupts occurring now
998 * remove this task from the event list again - but as the
999 * scheduler is suspended the task will go onto the pending
1000 * ready list instead of the actual ready list. */
1001 prvUnlockQueue( pxQueue );
1002
1003 /* Resuming the scheduler will move tasks from the pending
1004 * ready list into the ready list - so it is feasible that this
1005 * task is already in the ready list before it yields - in which
1006 * case the yield will not cause a context switch unless there
1007 * is also a higher priority task in the pending ready list. */
1008 #ifdef ESP_PLATFORM // IDF-3755
1009 taskEXIT_CRITICAL();
1010 #else
1011 if( xTaskResumeAll() == pdFALSE )
1012 #endif // ESP_PLATFORM
1013 {
1014 portYIELD_WITHIN_API();
1015 }
1016
1017 }
1018 else
1019 {
1020 /* Try again. */
1021 prvUnlockQueue( pxQueue );
1022 #ifdef ESP_PLATFORM // IDF-3755
1023 taskEXIT_CRITICAL();
1024 #else
1025 ( void ) xTaskResumeAll();
1026 #endif // ESP_PLATFORM
1027 }
1028 }
1029 else
1030 {
1031 /* The timeout has expired. */
1032 prvUnlockQueue( pxQueue );
1033 #ifdef ESP_PLATFORM // IDF-3755
1034 taskEXIT_CRITICAL();
1035 #else
1036 ( void ) xTaskResumeAll();
1037 #endif // ESP_PLATFORM
1038
1039 traceQUEUE_SEND_FAILED( pxQueue );
1040 return errQUEUE_FULL;
1041 }
1042 } /*lint -restore */
1043 }
1044 /*-----------------------------------------------------------*/
1045
xQueueGenericSendFromISR(QueueHandle_t xQueue,const void * const pvItemToQueue,BaseType_t * const pxHigherPriorityTaskWoken,const BaseType_t xCopyPosition)1046 BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
1047 const void * const pvItemToQueue,
1048 BaseType_t * const pxHigherPriorityTaskWoken,
1049 const BaseType_t xCopyPosition )
1050 {
1051 BaseType_t xReturn;
1052 UBaseType_t uxSavedInterruptStatus;
1053 Queue_t * const pxQueue = xQueue;
1054
1055 configASSERT( pxQueue );
1056 configASSERT( !( ( pvItemToQueue == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
1057 configASSERT( !( ( xCopyPosition == queueOVERWRITE ) && ( pxQueue->uxLength != 1 ) ) );
1058
1059 /* RTOS ports that support interrupt nesting have the concept of a maximum
1060 * system call (or maximum API call) interrupt priority. Interrupts that are
1061 * above the maximum system call priority are kept permanently enabled, even
1062 * when the RTOS kernel is in a critical section, but cannot make any calls to
1063 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1064 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1065 * failure if a FreeRTOS API function is called from an interrupt that has been
1066 * assigned a priority above the configured maximum system call priority.
1067 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1068 * that have been assigned a priority at or (logically) below the maximum
1069 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1070 * safe API to ensure interrupt entry is as fast and as simple as possible.
1071 * More information (albeit Cortex-M specific) is provided on the following
1072 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1073 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1074
1075 /* Similar to xQueueGenericSend, except without blocking if there is no room
1076 * in the queue. Also don't directly wake a task that was blocked on a queue
1077 * read, instead return a flag to say whether a context switch is required or
1078 * not (i.e. has a task with a higher priority than us been woken by this
1079 * post). */
1080 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
1081 {
1082 taskENTER_CRITICAL_ISR();
1083
1084 if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
1085 {
1086 const int8_t cTxLock = pxQueue->cTxLock;
1087
1088 traceQUEUE_SEND_FROM_ISR( pxQueue );
1089
1090 /* Semaphores use xQueueGiveFromISR(), so pxQueue will not be a
1091 * semaphore or mutex. That means prvCopyDataToQueue() cannot result
1092 * in a task disinheriting a priority and prvCopyDataToQueue() can be
1093 * called here even though the disinherit function does not check if
1094 * the scheduler is suspended before accessing the ready lists. */
1095 ( void ) prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
1096
1097 /* The event list is not altered if the queue is locked. This will
1098 * be done when the queue is unlocked later. */
1099 if( cTxLock == queueUNLOCKED )
1100 {
1101 #if ( configUSE_QUEUE_SETS == 1 )
1102 {
1103 if( pxQueue->pxQueueSetContainer != NULL )
1104 {
1105 if( prvNotifyQueueSetContainer( pxQueue, xCopyPosition ) != pdFALSE )
1106 {
1107 /* The queue is a member of a queue set, and posting
1108 * to the queue set caused a higher priority task to
1109 * unblock. A context switch is required. */
1110 if( pxHigherPriorityTaskWoken != NULL )
1111 {
1112 *pxHigherPriorityTaskWoken = pdTRUE;
1113 }
1114 else
1115 {
1116 mtCOVERAGE_TEST_MARKER();
1117 }
1118 }
1119 else
1120 {
1121 mtCOVERAGE_TEST_MARKER();
1122 }
1123 }
1124 else
1125 {
1126 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1127 {
1128 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1129 {
1130 /* The task waiting has a higher priority so
1131 * record that a context switch is required. */
1132 if( pxHigherPriorityTaskWoken != NULL )
1133 {
1134 *pxHigherPriorityTaskWoken = pdTRUE;
1135 }
1136 else
1137 {
1138 mtCOVERAGE_TEST_MARKER();
1139 }
1140 }
1141 else
1142 {
1143 mtCOVERAGE_TEST_MARKER();
1144 }
1145 }
1146 else
1147 {
1148 mtCOVERAGE_TEST_MARKER();
1149 }
1150 }
1151 }
1152 #else /* configUSE_QUEUE_SETS */
1153 {
1154 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1155 {
1156 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1157 {
1158 /* The task waiting has a higher priority so record that a
1159 * context switch is required. */
1160 if( pxHigherPriorityTaskWoken != NULL )
1161 {
1162 *pxHigherPriorityTaskWoken = pdTRUE;
1163 }
1164 else
1165 {
1166 mtCOVERAGE_TEST_MARKER();
1167 }
1168 }
1169 else
1170 {
1171 mtCOVERAGE_TEST_MARKER();
1172 }
1173 }
1174 else
1175 {
1176 mtCOVERAGE_TEST_MARKER();
1177 }
1178 }
1179 #endif /* configUSE_QUEUE_SETS */
1180 }
1181 else
1182 {
1183 /* Increment the lock count so the task that unlocks the queue
1184 * knows that data was posted while it was locked. */
1185 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
1186 }
1187
1188 xReturn = pdPASS;
1189 }
1190 else
1191 {
1192 traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue );
1193 xReturn = errQUEUE_FULL;
1194 }
1195
1196 taskEXIT_CRITICAL_ISR();
1197 }
1198 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
1199
1200 return xReturn;
1201 }
1202 /*-----------------------------------------------------------*/
1203
xQueueGiveFromISR(QueueHandle_t xQueue,BaseType_t * const pxHigherPriorityTaskWoken)1204 BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
1205 BaseType_t * const pxHigherPriorityTaskWoken )
1206 {
1207 BaseType_t xReturn;
1208 UBaseType_t uxSavedInterruptStatus;
1209 Queue_t * const pxQueue = xQueue;
1210
1211 /* Similar to xQueueGenericSendFromISR() but used with semaphores where the
1212 * item size is 0. Don't directly wake a task that was blocked on a queue
1213 * read, instead return a flag to say whether a context switch is required or
1214 * not (i.e. has a task with a higher priority than us been woken by this
1215 * post). */
1216
1217 configASSERT( pxQueue );
1218
1219 /* xQueueGenericSendFromISR() should be used instead of xQueueGiveFromISR()
1220 * if the item size is not 0. */
1221 configASSERT( pxQueue->uxItemSize == 0 );
1222
1223 /* Normally a mutex would not be given from an interrupt, especially if
1224 * there is a mutex holder, as priority inheritance makes no sense for an
1225 * interrupts, only tasks. */
1226 configASSERT( !( ( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX ) && ( pxQueue->u.xSemaphore.xMutexHolder != NULL ) ) );
1227
1228 /* RTOS ports that support interrupt nesting have the concept of a maximum
1229 * system call (or maximum API call) interrupt priority. Interrupts that are
1230 * above the maximum system call priority are kept permanently enabled, even
1231 * when the RTOS kernel is in a critical section, but cannot make any calls to
1232 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1233 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1234 * failure if a FreeRTOS API function is called from an interrupt that has been
1235 * assigned a priority above the configured maximum system call priority.
1236 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1237 * that have been assigned a priority at or (logically) below the maximum
1238 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1239 * safe API to ensure interrupt entry is as fast and as simple as possible.
1240 * More information (albeit Cortex-M specific) is provided on the following
1241 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1242 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1243
1244 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
1245 {
1246 taskENTER_CRITICAL_ISR();
1247
1248 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1249
1250 /* When the queue is used to implement a semaphore no data is ever
1251 * moved through the queue but it is still valid to see if the queue 'has
1252 * space'. */
1253 if( uxMessagesWaiting < pxQueue->uxLength )
1254 {
1255 const int8_t cTxLock = pxQueue->cTxLock;
1256
1257 traceQUEUE_GIVE_FROM_ISR( pxQueue );
1258
1259 /* A task can only have an inherited priority if it is a mutex
1260 * holder - and if there is a mutex holder then the mutex cannot be
1261 * given from an ISR. As this is the ISR version of the function it
1262 * can be assumed there is no mutex holder and no need to determine if
1263 * priority disinheritance is needed. Simply increase the count of
1264 * messages (semaphores) available. */
1265 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
1266
1267 /* The event list is not altered if the queue is locked. This will
1268 * be done when the queue is unlocked later. */
1269 if( cTxLock == queueUNLOCKED )
1270 {
1271 #if ( configUSE_QUEUE_SETS == 1 )
1272 {
1273 if( pxQueue->pxQueueSetContainer != NULL )
1274 {
1275 if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
1276 {
1277 /* The semaphore is a member of a queue set, and
1278 * posting to the queue set caused a higher priority
1279 * task to unblock. A context switch is required. */
1280 if( pxHigherPriorityTaskWoken != NULL )
1281 {
1282 *pxHigherPriorityTaskWoken = pdTRUE;
1283 }
1284 else
1285 {
1286 mtCOVERAGE_TEST_MARKER();
1287 }
1288 }
1289 else
1290 {
1291 mtCOVERAGE_TEST_MARKER();
1292 }
1293 }
1294 else
1295 {
1296 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1297 {
1298 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1299 {
1300 /* The task waiting has a higher priority so
1301 * record that a context switch is required. */
1302 if( pxHigherPriorityTaskWoken != NULL )
1303 {
1304 *pxHigherPriorityTaskWoken = pdTRUE;
1305 }
1306 else
1307 {
1308 mtCOVERAGE_TEST_MARKER();
1309 }
1310 }
1311 else
1312 {
1313 mtCOVERAGE_TEST_MARKER();
1314 }
1315 }
1316 else
1317 {
1318 mtCOVERAGE_TEST_MARKER();
1319 }
1320 }
1321 }
1322 #else /* configUSE_QUEUE_SETS */
1323 {
1324 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1325 {
1326 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1327 {
1328 /* The task waiting has a higher priority so record that a
1329 * context switch is required. */
1330 if( pxHigherPriorityTaskWoken != NULL )
1331 {
1332 *pxHigherPriorityTaskWoken = pdTRUE;
1333 }
1334 else
1335 {
1336 mtCOVERAGE_TEST_MARKER();
1337 }
1338 }
1339 else
1340 {
1341 mtCOVERAGE_TEST_MARKER();
1342 }
1343 }
1344 else
1345 {
1346 mtCOVERAGE_TEST_MARKER();
1347 }
1348 }
1349 #endif /* configUSE_QUEUE_SETS */
1350 }
1351 else
1352 {
1353 /* Increment the lock count so the task that unlocks the queue
1354 * knows that data was posted while it was locked. */
1355 pxQueue->cTxLock = ( int8_t ) ( cTxLock + 1 );
1356 }
1357
1358 xReturn = pdPASS;
1359 }
1360 else
1361 {
1362 traceQUEUE_GIVE_FROM_ISR_FAILED( pxQueue );
1363 xReturn = errQUEUE_FULL;
1364 }
1365 taskEXIT_CRITICAL_ISR();
1366 }
1367 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
1368
1369 return xReturn;
1370 }
1371 /*-----------------------------------------------------------*/
1372
xQueueReceive(QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait)1373 BaseType_t xQueueReceive( QueueHandle_t xQueue,
1374 void * const pvBuffer,
1375 TickType_t xTicksToWait )
1376 {
1377 BaseType_t xEntryTimeSet = pdFALSE;
1378 TimeOut_t xTimeOut;
1379 Queue_t * const pxQueue = xQueue;
1380
1381 /* Check the pointer is not NULL. */
1382 configASSERT( ( pxQueue ) );
1383
1384 /* The buffer into which data is received can only be NULL if the data size
1385 * is zero (so no data is copied into the buffer). */
1386 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1387
1388 /* Cannot block if the scheduler is suspended. */
1389 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1390 {
1391 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1392 }
1393 #endif
1394
1395 /*lint -save -e904 This function relaxes the coding standard somewhat to
1396 * allow return statements within the function itself. This is done in the
1397 * interest of execution time efficiency. */
1398 for( ; ; )
1399 {
1400 taskENTER_CRITICAL();
1401 {
1402 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1403
1404 /* Is there data in the queue now? To be running the calling task
1405 * must be the highest priority task wanting to access the queue. */
1406 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1407 {
1408 /* Data available, remove one item. */
1409 prvCopyDataFromQueue( pxQueue, pvBuffer );
1410 traceQUEUE_RECEIVE( pxQueue );
1411 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
1412
1413 /* There is now space in the queue, were any tasks waiting to
1414 * post to the queue? If so, unblock the highest priority waiting
1415 * task. */
1416 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1417 {
1418 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1419 {
1420 queueYIELD_IF_USING_PREEMPTION();
1421 }
1422 else
1423 {
1424 mtCOVERAGE_TEST_MARKER();
1425 }
1426 }
1427 else
1428 {
1429 mtCOVERAGE_TEST_MARKER();
1430 }
1431
1432 taskEXIT_CRITICAL();
1433 return pdPASS;
1434 }
1435 else
1436 {
1437 if( xTicksToWait == ( TickType_t ) 0 )
1438 {
1439 /* The queue was empty and no block time is specified (or
1440 * the block time has expired) so leave now. */
1441 taskEXIT_CRITICAL();
1442 traceQUEUE_RECEIVE_FAILED( pxQueue );
1443 return errQUEUE_EMPTY;
1444 }
1445 else if( xEntryTimeSet == pdFALSE )
1446 {
1447 /* The queue was empty and a block time was specified so
1448 * configure the timeout structure. */
1449 vTaskInternalSetTimeOutState( &xTimeOut );
1450 xEntryTimeSet = pdTRUE;
1451 }
1452 else
1453 {
1454 /* Entry time was already set. */
1455 mtCOVERAGE_TEST_MARKER();
1456 }
1457 }
1458 }
1459 taskEXIT_CRITICAL();
1460
1461 /* Interrupts and other tasks can send to and receive from the queue
1462 * now the critical section has been exited. */
1463
1464 #ifdef ESP_PLATFORM // IDF-3755
1465 taskENTER_CRITICAL();
1466 #else
1467 vTaskSuspendAll();
1468 #endif // ESP_PLATFORM
1469 prvLockQueue( pxQueue );
1470
1471 /* Update the timeout state to see if it has expired yet. */
1472 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1473 {
1474 /* The timeout has not expired. If the queue is still empty place
1475 * the task on the list of tasks waiting to receive from the queue. */
1476 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1477 {
1478 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1479 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1480 prvUnlockQueue( pxQueue );
1481 #ifdef ESP_PLATFORM // IDF-3755
1482 taskEXIT_CRITICAL();
1483 #else
1484 if( xTaskResumeAll() == pdFALSE )
1485 #endif // ESP_PLATFORM
1486 {
1487 portYIELD_WITHIN_API();
1488 }
1489 #ifndef ESP_PLATFORM
1490 else
1491 {
1492 mtCOVERAGE_TEST_MARKER();
1493 }
1494 #endif // ESP_PLATFORM
1495 }
1496 else
1497 {
1498 /* The queue contains data again. Loop back to try and read the
1499 * data. */
1500 prvUnlockQueue( pxQueue );
1501 #ifdef ESP_PLATFORM // IDF-3755
1502 taskEXIT_CRITICAL();
1503 #else
1504 ( void ) xTaskResumeAll();
1505 #endif // ESP_PLATFORM
1506 }
1507 }
1508 else
1509 {
1510 /* Timed out. If there is no data in the queue exit, otherwise loop
1511 * back and attempt to read the data. */
1512 prvUnlockQueue( pxQueue );
1513 #ifdef ESP_PLATFORM // IDF-3755
1514 taskEXIT_CRITICAL();
1515 #else
1516 ( void ) xTaskResumeAll();
1517 #endif // ESP_PLATFORM
1518
1519 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1520 {
1521 traceQUEUE_RECEIVE_FAILED( pxQueue );
1522 return errQUEUE_EMPTY;
1523 }
1524 else
1525 {
1526 mtCOVERAGE_TEST_MARKER();
1527 }
1528 }
1529 } /*lint -restore */
1530 }
1531 /*-----------------------------------------------------------*/
1532
xQueueSemaphoreTake(QueueHandle_t xQueue,TickType_t xTicksToWait)1533 BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
1534 TickType_t xTicksToWait )
1535 {
1536 BaseType_t xEntryTimeSet = pdFALSE;
1537 TimeOut_t xTimeOut;
1538 Queue_t * const pxQueue = xQueue;
1539
1540 #if ( configUSE_MUTEXES == 1 )
1541 BaseType_t xInheritanceOccurred = pdFALSE;
1542 #endif
1543
1544 /* Check the queue pointer is not NULL. */
1545 configASSERT( ( pxQueue ) );
1546
1547 /* Check this really is a semaphore, in which case the item size will be
1548 * 0. */
1549 configASSERT( pxQueue->uxItemSize == 0 );
1550
1551 /* Cannot block if the scheduler is suspended. */
1552 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1553 {
1554 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1555 }
1556 #endif
1557
1558 /*lint -save -e904 This function relaxes the coding standard somewhat to allow return
1559 * statements within the function itself. This is done in the interest
1560 * of execution time efficiency. */
1561 for( ; ; )
1562 {
1563 taskENTER_CRITICAL();
1564 {
1565 /* Semaphores are queues with an item size of 0, and where the
1566 * number of messages in the queue is the semaphore's count value. */
1567 const UBaseType_t uxSemaphoreCount = pxQueue->uxMessagesWaiting;
1568
1569 /* Is there data in the queue now? To be running the calling task
1570 * must be the highest priority task wanting to access the queue. */
1571 if( uxSemaphoreCount > ( UBaseType_t ) 0 )
1572 {
1573 traceQUEUE_SEMAPHORE_RECEIVE( pxQueue );
1574
1575 /* Semaphores are queues with a data size of zero and where the
1576 * messages waiting is the semaphore's count. Reduce the count. */
1577 pxQueue->uxMessagesWaiting = uxSemaphoreCount - ( UBaseType_t ) 1;
1578
1579 #if ( configUSE_MUTEXES == 1 )
1580 {
1581 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1582 {
1583 /* Record the information required to implement
1584 * priority inheritance should it become necessary. */
1585 pxQueue->u.xSemaphore.xMutexHolder = pvTaskIncrementMutexHeldCount();
1586 }
1587 else
1588 {
1589 mtCOVERAGE_TEST_MARKER();
1590 }
1591 }
1592 #endif /* configUSE_MUTEXES */
1593
1594 /* Check to see if other tasks are blocked waiting to give the
1595 * semaphore, and if so, unblock the highest priority such task. */
1596 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1597 {
1598 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1599 {
1600 queueYIELD_IF_USING_PREEMPTION();
1601 }
1602 else
1603 {
1604 mtCOVERAGE_TEST_MARKER();
1605 }
1606 }
1607 else
1608 {
1609 mtCOVERAGE_TEST_MARKER();
1610 }
1611
1612 taskEXIT_CRITICAL();
1613 return pdPASS;
1614 }
1615 else
1616 {
1617 if( xTicksToWait == ( TickType_t ) 0 )
1618 {
1619 /* For inheritance to have occurred there must have been an
1620 * initial timeout, and an adjusted timeout cannot become 0, as
1621 * if it were 0 the function would have exited. */
1622 #if ( configUSE_MUTEXES == 1 )
1623 {
1624 configASSERT( xInheritanceOccurred == pdFALSE );
1625 }
1626 #endif /* configUSE_MUTEXES */
1627
1628 /* The semaphore count was 0 and no block time is specified
1629 * (or the block time has expired) so exit now. */
1630 taskEXIT_CRITICAL();
1631 traceQUEUE_RECEIVE_FAILED( pxQueue );
1632 return errQUEUE_EMPTY;
1633 }
1634 else if( xEntryTimeSet == pdFALSE )
1635 {
1636 /* The semaphore count was 0 and a block time was specified
1637 * so configure the timeout structure ready to block. */
1638 vTaskInternalSetTimeOutState( &xTimeOut );
1639 xEntryTimeSet = pdTRUE;
1640 }
1641 else
1642 {
1643 /* Entry time was already set. */
1644 mtCOVERAGE_TEST_MARKER();
1645 }
1646 }
1647 }
1648 taskEXIT_CRITICAL();
1649
1650 /* Interrupts and other tasks can give to and take from the semaphore
1651 * now the critical section has been exited. */
1652
1653 #ifdef ESP_PLATFORM // IDF-3755
1654 taskENTER_CRITICAL();
1655 #else
1656 vTaskSuspendAll();
1657 #endif // ESP_PLATFORM
1658 prvLockQueue( pxQueue );
1659
1660 /* Update the timeout state to see if it has expired yet. */
1661 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1662 {
1663 /* A block time is specified and not expired. If the semaphore
1664 * count is 0 then enter the Blocked state to wait for a semaphore to
1665 * become available. As semaphores are implemented with queues the
1666 * queue being empty is equivalent to the semaphore count being 0. */
1667 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1668 {
1669 traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue );
1670
1671 #if ( configUSE_MUTEXES == 1 )
1672 {
1673 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
1674 {
1675 taskENTER_CRITICAL();
1676 {
1677 xInheritanceOccurred = xTaskPriorityInherit( pxQueue->u.xSemaphore.xMutexHolder );
1678 }
1679 taskEXIT_CRITICAL();
1680 }
1681 else
1682 {
1683 mtCOVERAGE_TEST_MARKER();
1684 }
1685 }
1686 #endif /* if ( configUSE_MUTEXES == 1 ) */
1687
1688 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1689 prvUnlockQueue( pxQueue );
1690 #ifdef ESP_PLATFORM // IDF-3755
1691 taskEXIT_CRITICAL();
1692 #else
1693 if( xTaskResumeAll() == pdFALSE )
1694 #endif // ESP_PLATFORM
1695 {
1696 portYIELD_WITHIN_API();
1697 }
1698 #ifndef ESP_PLATFORM
1699 else
1700 {
1701 mtCOVERAGE_TEST_MARKER();
1702 }
1703 #endif // ESP_PLATFORM
1704 }
1705 else
1706 {
1707 /* There was no timeout and the semaphore count was not 0, so
1708 * attempt to take the semaphore again. */
1709 prvUnlockQueue( pxQueue );
1710 #ifdef ESP_PLATFORM // IDF-3755
1711 taskEXIT_CRITICAL();
1712 #else
1713 ( void ) xTaskResumeAll();
1714 #endif // ESP_PLATFORM
1715 }
1716 }
1717 else
1718 {
1719 /* Timed out. */
1720 prvUnlockQueue( pxQueue );
1721 #ifdef ESP_PLATFORM // IDF-3755
1722 taskEXIT_CRITICAL();
1723 #else
1724 ( void ) xTaskResumeAll();
1725 #endif // ESP_PLATFORM
1726
1727 /* If the semaphore count is 0 exit now as the timeout has
1728 * expired. Otherwise return to attempt to take the semaphore that is
1729 * known to be available. As semaphores are implemented by queues the
1730 * queue being empty is equivalent to the semaphore count being 0. */
1731 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1732 {
1733 #if ( configUSE_MUTEXES == 1 )
1734 {
1735 /* xInheritanceOccurred could only have be set if
1736 * pxQueue->uxQueueType == queueQUEUE_IS_MUTEX so no need to
1737 * test the mutex type again to check it is actually a mutex. */
1738 if( xInheritanceOccurred != pdFALSE )
1739 {
1740 taskENTER_CRITICAL();
1741 {
1742 UBaseType_t uxHighestWaitingPriority;
1743
1744 /* This task blocking on the mutex caused another
1745 * task to inherit this task's priority. Now this task
1746 * has timed out the priority should be disinherited
1747 * again, but only as low as the next highest priority
1748 * task that is waiting for the same mutex. */
1749 uxHighestWaitingPriority = prvGetDisinheritPriorityAfterTimeout( pxQueue );
1750 vTaskPriorityDisinheritAfterTimeout( pxQueue->u.xSemaphore.xMutexHolder, uxHighestWaitingPriority );
1751 }
1752 taskEXIT_CRITICAL();
1753 }
1754 }
1755 #endif /* configUSE_MUTEXES */
1756
1757 traceQUEUE_RECEIVE_FAILED( pxQueue );
1758 return errQUEUE_EMPTY;
1759 }
1760 else
1761 {
1762 mtCOVERAGE_TEST_MARKER();
1763 }
1764 }
1765 } /*lint -restore */
1766 }
1767 /*-----------------------------------------------------------*/
1768
xQueuePeek(QueueHandle_t xQueue,void * const pvBuffer,TickType_t xTicksToWait)1769 BaseType_t xQueuePeek( QueueHandle_t xQueue,
1770 void * const pvBuffer,
1771 TickType_t xTicksToWait )
1772 {
1773 BaseType_t xEntryTimeSet = pdFALSE;
1774 TimeOut_t xTimeOut;
1775 int8_t * pcOriginalReadPosition;
1776 Queue_t * const pxQueue = xQueue;
1777
1778 /* Check the pointer is not NULL. */
1779 configASSERT( ( pxQueue ) );
1780
1781 /* The buffer into which data is received can only be NULL if the data size
1782 * is zero (so no data is copied into the buffer. */
1783 configASSERT( !( ( ( pvBuffer ) == NULL ) && ( ( pxQueue )->uxItemSize != ( UBaseType_t ) 0U ) ) );
1784
1785 /* Cannot block if the scheduler is suspended. */
1786 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
1787 {
1788 configASSERT( !( ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) && ( xTicksToWait != 0 ) ) );
1789 }
1790 #endif
1791
1792 /*lint -save -e904 This function relaxes the coding standard somewhat to
1793 * allow return statements within the function itself. This is done in the
1794 * interest of execution time efficiency. */
1795 for( ; ; )
1796 {
1797 taskENTER_CRITICAL();
1798 {
1799 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1800
1801 /* Is there data in the queue now? To be running the calling task
1802 * must be the highest priority task wanting to access the queue. */
1803 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1804 {
1805 /* Remember the read position so it can be reset after the data
1806 * is read from the queue as this function is only peeking the
1807 * data, not removing it. */
1808 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
1809
1810 prvCopyDataFromQueue( pxQueue, pvBuffer );
1811 traceQUEUE_PEEK( pxQueue );
1812
1813 /* The data is not being removed, so reset the read pointer. */
1814 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
1815
1816 /* The data is being left in the queue, so see if there are
1817 * any other tasks waiting for the data. */
1818 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
1819 {
1820 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
1821 {
1822 /* The task waiting has a higher priority than this task. */
1823 queueYIELD_IF_USING_PREEMPTION();
1824 }
1825 else
1826 {
1827 mtCOVERAGE_TEST_MARKER();
1828 }
1829 }
1830 else
1831 {
1832 mtCOVERAGE_TEST_MARKER();
1833 }
1834
1835 taskEXIT_CRITICAL();
1836 return pdPASS;
1837 }
1838 else
1839 {
1840 if( xTicksToWait == ( TickType_t ) 0 )
1841 {
1842 /* The queue was empty and no block time is specified (or
1843 * the block time has expired) so leave now. */
1844 taskEXIT_CRITICAL();
1845 traceQUEUE_PEEK_FAILED( pxQueue );
1846 return errQUEUE_EMPTY;
1847 }
1848 else if( xEntryTimeSet == pdFALSE )
1849 {
1850 /* The queue was empty and a block time was specified so
1851 * configure the timeout structure ready to enter the blocked
1852 * state. */
1853 vTaskInternalSetTimeOutState( &xTimeOut );
1854 xEntryTimeSet = pdTRUE;
1855 }
1856 else
1857 {
1858 /* Entry time was already set. */
1859 mtCOVERAGE_TEST_MARKER();
1860 }
1861 }
1862 }
1863 taskEXIT_CRITICAL();
1864
1865 /* Interrupts and other tasks can send to and receive from the queue
1866 * now the critical section has been exited. */
1867
1868 #ifdef ESP_PLATFORM // IDF-3755
1869 taskENTER_CRITICAL();
1870 #else
1871 vTaskSuspendAll();
1872 #endif // ESP_PLATFORM
1873 prvLockQueue( pxQueue );
1874
1875 /* Update the timeout state to see if it has expired yet. */
1876 if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
1877 {
1878 /* Timeout has not expired yet, check to see if there is data in the
1879 * queue now, and if not enter the Blocked state to wait for data. */
1880 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1881 {
1882 traceBLOCKING_ON_QUEUE_PEEK( pxQueue );
1883 vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait );
1884 prvUnlockQueue( pxQueue );
1885 #ifdef ESP_PLATFORM // IDF-3755
1886 taskEXIT_CRITICAL();
1887 #else
1888 if( xTaskResumeAll() == pdFALSE )
1889 #endif // ESP_PLATFORM
1890 {
1891 portYIELD_WITHIN_API();
1892 }
1893 #ifndef ESP_PLATFORM
1894 else
1895 {
1896 mtCOVERAGE_TEST_MARKER();
1897 }
1898 #endif // ESP_PLATFORM
1899 }
1900 else
1901 {
1902 /* There is data in the queue now, so don't enter the blocked
1903 * state, instead return to try and obtain the data. */
1904 prvUnlockQueue( pxQueue );
1905 #ifdef ESP_PLATFORM // IDF-3755
1906 taskEXIT_CRITICAL();
1907 #else
1908 ( void ) xTaskResumeAll();
1909 #endif // ESP_PLATFORM
1910 }
1911 }
1912 else
1913 {
1914 /* The timeout has expired. If there is still no data in the queue
1915 * exit, otherwise go back and try to read the data again. */
1916 prvUnlockQueue( pxQueue );
1917 #ifdef ESP_PLATFORM // IDF-3755
1918 taskEXIT_CRITICAL();
1919 #else
1920 ( void ) xTaskResumeAll();
1921 #endif // ESP_PLATFORM
1922
1923 if( prvIsQueueEmpty( pxQueue ) != pdFALSE )
1924 {
1925 traceQUEUE_PEEK_FAILED( pxQueue );
1926 return errQUEUE_EMPTY;
1927 }
1928 else
1929 {
1930 mtCOVERAGE_TEST_MARKER();
1931 }
1932 }
1933 } /*lint -restore */
1934 }
1935 /*-----------------------------------------------------------*/
1936
xQueueReceiveFromISR(QueueHandle_t xQueue,void * const pvBuffer,BaseType_t * const pxHigherPriorityTaskWoken)1937 BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
1938 void * const pvBuffer,
1939 BaseType_t * const pxHigherPriorityTaskWoken )
1940 {
1941 BaseType_t xReturn;
1942 UBaseType_t uxSavedInterruptStatus;
1943 Queue_t * const pxQueue = xQueue;
1944
1945 configASSERT( pxQueue );
1946 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
1947
1948 /* RTOS ports that support interrupt nesting have the concept of a maximum
1949 * system call (or maximum API call) interrupt priority. Interrupts that are
1950 * above the maximum system call priority are kept permanently enabled, even
1951 * when the RTOS kernel is in a critical section, but cannot make any calls to
1952 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
1953 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
1954 * failure if a FreeRTOS API function is called from an interrupt that has been
1955 * assigned a priority above the configured maximum system call priority.
1956 * Only FreeRTOS functions that end in FromISR can be called from interrupts
1957 * that have been assigned a priority at or (logically) below the maximum
1958 * system call interrupt priority. FreeRTOS maintains a separate interrupt
1959 * safe API to ensure interrupt entry is as fast and as simple as possible.
1960 * More information (albeit Cortex-M specific) is provided on the following
1961 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
1962 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
1963
1964 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
1965 {
1966 taskENTER_CRITICAL_ISR();
1967
1968 const UBaseType_t uxMessagesWaiting = pxQueue->uxMessagesWaiting;
1969
1970 /* Cannot block in an ISR, so check there is data available. */
1971 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
1972 {
1973 const int8_t cRxLock = pxQueue->cRxLock;
1974
1975 traceQUEUE_RECEIVE_FROM_ISR( pxQueue );
1976
1977 prvCopyDataFromQueue( pxQueue, pvBuffer );
1978 pxQueue->uxMessagesWaiting = uxMessagesWaiting - ( UBaseType_t ) 1;
1979
1980 /* If the queue is locked the event list will not be modified.
1981 * Instead update the lock count so the task that unlocks the queue
1982 * will know that an ISR has removed data while the queue was
1983 * locked. */
1984 if( cRxLock == queueUNLOCKED )
1985 {
1986 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
1987 {
1988 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
1989 {
1990 /* The task waiting has a higher priority than us so
1991 * force a context switch. */
1992 if( pxHigherPriorityTaskWoken != NULL )
1993 {
1994 *pxHigherPriorityTaskWoken = pdTRUE;
1995 }
1996 else
1997 {
1998 mtCOVERAGE_TEST_MARKER();
1999 }
2000 }
2001 else
2002 {
2003 mtCOVERAGE_TEST_MARKER();
2004 }
2005 }
2006 else
2007 {
2008 mtCOVERAGE_TEST_MARKER();
2009 }
2010 }
2011 else
2012 {
2013 /* Increment the lock count so the task that unlocks the queue
2014 * knows that data was removed while it was locked. */
2015 pxQueue->cRxLock = ( int8_t ) ( cRxLock + 1 );
2016 }
2017
2018 xReturn = pdPASS;
2019 }
2020 else
2021 {
2022 xReturn = pdFAIL;
2023 traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue );
2024 }
2025 taskEXIT_CRITICAL_ISR();
2026 }
2027 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
2028
2029 return xReturn;
2030 }
2031 /*-----------------------------------------------------------*/
2032
xQueuePeekFromISR(QueueHandle_t xQueue,void * const pvBuffer)2033 BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
2034 void * const pvBuffer )
2035 {
2036 BaseType_t xReturn;
2037 UBaseType_t uxSavedInterruptStatus;
2038 int8_t * pcOriginalReadPosition;
2039 Queue_t * const pxQueue = xQueue;
2040
2041 configASSERT( pxQueue );
2042 configASSERT( !( ( pvBuffer == NULL ) && ( pxQueue->uxItemSize != ( UBaseType_t ) 0U ) ) );
2043 configASSERT( pxQueue->uxItemSize != 0 ); /* Can't peek a semaphore. */
2044
2045 /* RTOS ports that support interrupt nesting have the concept of a maximum
2046 * system call (or maximum API call) interrupt priority. Interrupts that are
2047 * above the maximum system call priority are kept permanently enabled, even
2048 * when the RTOS kernel is in a critical section, but cannot make any calls to
2049 * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
2050 * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
2051 * failure if a FreeRTOS API function is called from an interrupt that has been
2052 * assigned a priority above the configured maximum system call priority.
2053 * Only FreeRTOS functions that end in FromISR can be called from interrupts
2054 * that have been assigned a priority at or (logically) below the maximum
2055 * system call interrupt priority. FreeRTOS maintains a separate interrupt
2056 * safe API to ensure interrupt entry is as fast and as simple as possible.
2057 * More information (albeit Cortex-M specific) is provided on the following
2058 * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
2059 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
2060
2061 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
2062 taskENTER_CRITICAL_ISR();
2063 {
2064 /* Cannot block in an ISR, so check there is data available. */
2065 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2066 {
2067 traceQUEUE_PEEK_FROM_ISR( pxQueue );
2068
2069 /* Remember the read position so it can be reset as nothing is
2070 * actually being removed from the queue. */
2071 pcOriginalReadPosition = pxQueue->u.xQueue.pcReadFrom;
2072 prvCopyDataFromQueue( pxQueue, pvBuffer );
2073 pxQueue->u.xQueue.pcReadFrom = pcOriginalReadPosition;
2074
2075 xReturn = pdPASS;
2076 }
2077 else
2078 {
2079 xReturn = pdFAIL;
2080 traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue );
2081 }
2082 }
2083 taskEXIT_CRITICAL_ISR();
2084 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
2085
2086 return xReturn;
2087 }
2088 /*-----------------------------------------------------------*/
2089
uxQueueMessagesWaiting(const QueueHandle_t xQueue)2090 UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue )
2091 {
2092 UBaseType_t uxReturn;
2093 Queue_t * const pxQueue = ( Queue_t * ) xQueue;
2094
2095 configASSERT( xQueue );
2096
2097 taskENTER_CRITICAL();
2098 {
2099 uxReturn = ( ( Queue_t * ) xQueue )->uxMessagesWaiting;
2100 }
2101 taskEXIT_CRITICAL();
2102
2103 return uxReturn;
2104 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
2105 /*-----------------------------------------------------------*/
2106
uxQueueSpacesAvailable(const QueueHandle_t xQueue)2107 UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue )
2108 {
2109 UBaseType_t uxReturn;
2110 Queue_t * const pxQueue = xQueue;
2111
2112 configASSERT( pxQueue );
2113
2114 taskENTER_CRITICAL();
2115 {
2116 uxReturn = pxQueue->uxLength - pxQueue->uxMessagesWaiting;
2117 }
2118 taskEXIT_CRITICAL();
2119
2120 return uxReturn;
2121 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
2122 /*-----------------------------------------------------------*/
2123
uxQueueMessagesWaitingFromISR(const QueueHandle_t xQueue)2124 UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue )
2125 {
2126 UBaseType_t uxReturn;
2127 Queue_t * const pxQueue = xQueue;
2128
2129 configASSERT( pxQueue );
2130 uxReturn = pxQueue->uxMessagesWaiting;
2131
2132 return uxReturn;
2133 } /*lint !e818 Pointer cannot be declared const as xQueue is a typedef not pointer. */
2134 /*-----------------------------------------------------------*/
2135
vQueueDelete(QueueHandle_t xQueue)2136 void vQueueDelete( QueueHandle_t xQueue )
2137 {
2138 Queue_t * const pxQueue = xQueue;
2139
2140 configASSERT( pxQueue );
2141 traceQUEUE_DELETE( pxQueue );
2142
2143 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2144 {
2145 vQueueUnregisterQueue( pxQueue );
2146 }
2147 #endif
2148
2149 #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) )
2150 {
2151 /* The queue can only have been allocated dynamically - free it
2152 * again. */
2153 vPortFree( pxQueue );
2154 }
2155 #elif ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
2156 {
2157 /* The queue could have been allocated statically or dynamically, so
2158 * check before attempting to free the memory. */
2159 if( pxQueue->ucStaticallyAllocated == ( uint8_t ) pdFALSE )
2160 {
2161 vPortFree( pxQueue );
2162 }
2163 else
2164 {
2165 mtCOVERAGE_TEST_MARKER();
2166 }
2167 }
2168 #else /* if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) ) */
2169 {
2170 /* The queue must have been statically allocated, so is not going to be
2171 * deleted. Avoid compiler warnings about the unused parameter. */
2172 ( void ) pxQueue;
2173 }
2174 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
2175 }
2176 /*-----------------------------------------------------------*/
2177
2178 #if ( configUSE_TRACE_FACILITY == 1 )
2179
uxQueueGetQueueNumber(QueueHandle_t xQueue)2180 UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue )
2181 {
2182 return ( ( Queue_t * ) xQueue )->uxQueueNumber;
2183 }
2184
2185 #endif /* configUSE_TRACE_FACILITY */
2186 /*-----------------------------------------------------------*/
2187
2188 #if ( configUSE_TRACE_FACILITY == 1 )
2189
vQueueSetQueueNumber(QueueHandle_t xQueue,UBaseType_t uxQueueNumber)2190 void vQueueSetQueueNumber( QueueHandle_t xQueue,
2191 UBaseType_t uxQueueNumber )
2192 {
2193 ( ( Queue_t * ) xQueue )->uxQueueNumber = uxQueueNumber;
2194 }
2195
2196 #endif /* configUSE_TRACE_FACILITY */
2197 /*-----------------------------------------------------------*/
2198
2199 #if ( configUSE_TRACE_FACILITY == 1 )
2200
ucQueueGetQueueType(QueueHandle_t xQueue)2201 uint8_t ucQueueGetQueueType( QueueHandle_t xQueue )
2202 {
2203 return ( ( Queue_t * ) xQueue )->ucQueueType;
2204 }
2205
2206 #endif /* configUSE_TRACE_FACILITY */
2207 /*-----------------------------------------------------------*/
2208
2209 #if ( configUSE_MUTEXES == 1 )
2210
prvGetDisinheritPriorityAfterTimeout(const Queue_t * const pxQueue)2211 static UBaseType_t prvGetDisinheritPriorityAfterTimeout( const Queue_t * const pxQueue )
2212 {
2213 UBaseType_t uxHighestPriorityOfWaitingTasks;
2214
2215 /* If a task waiting for a mutex causes the mutex holder to inherit a
2216 * priority, but the waiting task times out, then the holder should
2217 * disinherit the priority - but only down to the highest priority of any
2218 * other tasks that are waiting for the same mutex. For this purpose,
2219 * return the priority of the highest priority task that is waiting for the
2220 * mutex. */
2221 if( listCURRENT_LIST_LENGTH( &( pxQueue->xTasksWaitingToReceive ) ) > 0U )
2222 {
2223 uxHighestPriorityOfWaitingTasks = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) listGET_ITEM_VALUE_OF_HEAD_ENTRY( &( pxQueue->xTasksWaitingToReceive ) );
2224 }
2225 else
2226 {
2227 uxHighestPriorityOfWaitingTasks = tskIDLE_PRIORITY;
2228 }
2229
2230 return uxHighestPriorityOfWaitingTasks;
2231 }
2232
2233 #endif /* configUSE_MUTEXES */
2234 /*-----------------------------------------------------------*/
2235
prvCopyDataToQueue(Queue_t * const pxQueue,const void * pvItemToQueue,const BaseType_t xPosition)2236 static BaseType_t prvCopyDataToQueue( Queue_t * const pxQueue,
2237 const void * pvItemToQueue,
2238 const BaseType_t xPosition )
2239 {
2240 BaseType_t xReturn = pdFALSE;
2241 UBaseType_t uxMessagesWaiting;
2242
2243 /* This function is called from a critical section. */
2244
2245 uxMessagesWaiting = pxQueue->uxMessagesWaiting;
2246
2247 if( pxQueue->uxItemSize == ( UBaseType_t ) 0 )
2248 {
2249 #if ( configUSE_MUTEXES == 1 )
2250 {
2251 if( pxQueue->uxQueueType == queueQUEUE_IS_MUTEX )
2252 {
2253 /* The mutex is no longer being held. */
2254 xReturn = xTaskPriorityDisinherit( pxQueue->u.xSemaphore.xMutexHolder );
2255 pxQueue->u.xSemaphore.xMutexHolder = NULL;
2256 }
2257 else
2258 {
2259 mtCOVERAGE_TEST_MARKER();
2260 }
2261 }
2262 #endif /* configUSE_MUTEXES */
2263 }
2264 else if( xPosition == queueSEND_TO_BACK )
2265 {
2266 ( void ) memcpy( ( void * ) pxQueue->pcWriteTo, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports, plus previous logic ensures a null pointer can only be passed to memcpy() if the copy size is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
2267 pxQueue->pcWriteTo += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
2268
2269 if( pxQueue->pcWriteTo >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
2270 {
2271 pxQueue->pcWriteTo = pxQueue->pcHead;
2272 }
2273 else
2274 {
2275 mtCOVERAGE_TEST_MARKER();
2276 }
2277 }
2278 else
2279 {
2280 ( void ) memcpy( ( void * ) pxQueue->u.xQueue.pcReadFrom, pvItemToQueue, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e9087 !e418 MISRA exception as the casts are only redundant for some ports. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. Assert checks null pointer only used when length is 0. */
2281 pxQueue->u.xQueue.pcReadFrom -= pxQueue->uxItemSize;
2282
2283 if( pxQueue->u.xQueue.pcReadFrom < pxQueue->pcHead ) /*lint !e946 MISRA exception justified as comparison of pointers is the cleanest solution. */
2284 {
2285 pxQueue->u.xQueue.pcReadFrom = ( pxQueue->u.xQueue.pcTail - pxQueue->uxItemSize );
2286 }
2287 else
2288 {
2289 mtCOVERAGE_TEST_MARKER();
2290 }
2291
2292 if( xPosition == queueOVERWRITE )
2293 {
2294 if( uxMessagesWaiting > ( UBaseType_t ) 0 )
2295 {
2296 /* An item is not being added but overwritten, so subtract
2297 * one from the recorded number of items in the queue so when
2298 * one is added again below the number of recorded items remains
2299 * correct. */
2300 --uxMessagesWaiting;
2301 }
2302 else
2303 {
2304 mtCOVERAGE_TEST_MARKER();
2305 }
2306 }
2307 else
2308 {
2309 mtCOVERAGE_TEST_MARKER();
2310 }
2311 }
2312
2313 pxQueue->uxMessagesWaiting = uxMessagesWaiting + ( UBaseType_t ) 1;
2314
2315 return xReturn;
2316 }
2317 /*-----------------------------------------------------------*/
2318
prvCopyDataFromQueue(Queue_t * const pxQueue,void * const pvBuffer)2319 static void prvCopyDataFromQueue( Queue_t * const pxQueue,
2320 void * const pvBuffer )
2321 {
2322 if( pxQueue->uxItemSize != ( UBaseType_t ) 0 )
2323 {
2324 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize; /*lint !e9016 Pointer arithmetic on char types ok, especially in this use case where it is the clearest way of conveying intent. */
2325
2326 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail ) /*lint !e946 MISRA exception justified as use of the relational operator is the cleanest solutions. */
2327 {
2328 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2329 }
2330 else
2331 {
2332 mtCOVERAGE_TEST_MARKER();
2333 }
2334
2335 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( size_t ) pxQueue->uxItemSize ); /*lint !e961 !e418 !e9087 MISRA exception as the casts are only redundant for some ports. Also previous logic ensures a null pointer can only be passed to memcpy() when the count is 0. Cast to void required by function signature and safe as no alignment requirement and copy length specified in bytes. */
2336 }
2337 }
2338 /*-----------------------------------------------------------*/
2339
prvUnlockQueue(Queue_t * const pxQueue)2340 static void prvUnlockQueue( Queue_t * const pxQueue )
2341 {
2342 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */
2343
2344 /* The lock counts contains the number of extra data items placed or
2345 * removed from the queue while the queue was locked. When a queue is
2346 * locked items can be added or removed, but the event lists cannot be
2347 * updated. */
2348 taskENTER_CRITICAL();
2349 {
2350 int8_t cTxLock = pxQueue->cTxLock;
2351
2352 /* See if data was added to the queue while it was locked. */
2353 while( cTxLock > queueLOCKED_UNMODIFIED )
2354 {
2355 /* Data was posted while the queue was locked. Are any tasks
2356 * blocked waiting for data to become available? */
2357 #if ( configUSE_QUEUE_SETS == 1 )
2358 {
2359 if( pxQueue->pxQueueSetContainer != NULL )
2360 {
2361 if( prvNotifyQueueSetContainer( pxQueue, queueSEND_TO_BACK ) != pdFALSE )
2362 {
2363 /* The queue is a member of a queue set, and posting to
2364 * the queue set caused a higher priority task to unblock.
2365 * A context switch is required. */
2366 vTaskMissedYield();
2367 }
2368 else
2369 {
2370 mtCOVERAGE_TEST_MARKER();
2371 }
2372 }
2373 else
2374 {
2375 /* Tasks that are removed from the event list will get
2376 * added to the pending ready list as the scheduler is still
2377 * suspended. */
2378 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2379 {
2380 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2381 {
2382 /* The task waiting has a higher priority so record that a
2383 * context switch is required. */
2384 vTaskMissedYield();
2385 }
2386 else
2387 {
2388 mtCOVERAGE_TEST_MARKER();
2389 }
2390 }
2391 else
2392 {
2393 break;
2394 }
2395 }
2396 }
2397 #else /* configUSE_QUEUE_SETS */
2398 {
2399 /* Tasks that are removed from the event list will get added to
2400 * the pending ready list as the scheduler is still suspended. */
2401 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2402 {
2403 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2404 {
2405 /* The task waiting has a higher priority so record that
2406 * a context switch is required. */
2407 vTaskMissedYield();
2408 }
2409 else
2410 {
2411 mtCOVERAGE_TEST_MARKER();
2412 }
2413 }
2414 else
2415 {
2416 break;
2417 }
2418 }
2419 #endif /* configUSE_QUEUE_SETS */
2420
2421 --cTxLock;
2422 }
2423
2424 pxQueue->cTxLock = queueUNLOCKED;
2425 }
2426 taskEXIT_CRITICAL();
2427
2428 /* Do the same for the Rx lock. */
2429 taskENTER_CRITICAL();
2430 {
2431 int8_t cRxLock = pxQueue->cRxLock;
2432
2433 while( cRxLock > queueLOCKED_UNMODIFIED )
2434 {
2435 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2436 {
2437 if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2438 {
2439 vTaskMissedYield();
2440 }
2441 else
2442 {
2443 mtCOVERAGE_TEST_MARKER();
2444 }
2445
2446 --cRxLock;
2447 }
2448 else
2449 {
2450 break;
2451 }
2452 }
2453
2454 pxQueue->cRxLock = queueUNLOCKED;
2455 }
2456 taskEXIT_CRITICAL();
2457 }
2458 /*-----------------------------------------------------------*/
2459
prvIsQueueEmpty(const Queue_t * pxQueue)2460 static BaseType_t prvIsQueueEmpty( const Queue_t * pxQueue )
2461 {
2462 BaseType_t xReturn;
2463 taskENTER_CRITICAL();
2464 {
2465 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2466 {
2467 xReturn = pdTRUE;
2468 }
2469 else
2470 {
2471 xReturn = pdFALSE;
2472 }
2473 }
2474 taskEXIT_CRITICAL();
2475
2476 return xReturn;
2477 }
2478 /*-----------------------------------------------------------*/
2479
xQueueIsQueueEmptyFromISR(const QueueHandle_t xQueue)2480 BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue )
2481 {
2482 BaseType_t xReturn;
2483 Queue_t * const pxQueue = xQueue;
2484
2485 configASSERT( pxQueue );
2486
2487 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2488 {
2489 xReturn = pdTRUE;
2490 }
2491 else
2492 {
2493 xReturn = pdFALSE;
2494 }
2495
2496 return xReturn;
2497 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
2498 /*-----------------------------------------------------------*/
2499
prvIsQueueFull(const Queue_t * pxQueue)2500 static BaseType_t prvIsQueueFull( const Queue_t * pxQueue )
2501 {
2502 BaseType_t xReturn;
2503
2504 {
2505 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2506 {
2507 xReturn = pdTRUE;
2508 }
2509 else
2510 {
2511 xReturn = pdFALSE;
2512 }
2513 }
2514
2515 return xReturn;
2516 }
2517 /*-----------------------------------------------------------*/
2518
xQueueIsQueueFullFromISR(const QueueHandle_t xQueue)2519 BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue )
2520 {
2521 BaseType_t xReturn;
2522 Queue_t * const pxQueue = xQueue;
2523
2524 configASSERT( pxQueue );
2525
2526 if( pxQueue->uxMessagesWaiting == pxQueue->uxLength )
2527 {
2528 xReturn = pdTRUE;
2529 }
2530 else
2531 {
2532 xReturn = pdFALSE;
2533 }
2534
2535 return xReturn;
2536 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
2537 /*-----------------------------------------------------------*/
2538
2539 #if ( configUSE_CO_ROUTINES == 1 )
2540
xQueueCRSend(QueueHandle_t xQueue,const void * pvItemToQueue,TickType_t xTicksToWait)2541 BaseType_t xQueueCRSend( QueueHandle_t xQueue,
2542 const void * pvItemToQueue,
2543 TickType_t xTicksToWait )
2544 {
2545 BaseType_t xReturn;
2546 Queue_t * const pxQueue = xQueue;
2547
2548 /* If the queue is already full we may have to block. A critical section
2549 * is required to prevent an interrupt removing something from the queue
2550 * between the check to see if the queue is full and blocking on the queue. */
2551 portDISABLE_INTERRUPTS();
2552 {
2553 if( prvIsQueueFull( pxQueue ) != pdFALSE )
2554 {
2555 /* The queue is full - do we want to block or just leave without
2556 * posting? */
2557 if( xTicksToWait > ( TickType_t ) 0 )
2558 {
2559 /* As this is called from a coroutine we cannot block directly, but
2560 * return indicating that we need to block. */
2561 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToSend ) );
2562 portENABLE_INTERRUPTS();
2563 return errQUEUE_BLOCKED;
2564 }
2565 else
2566 {
2567 portENABLE_INTERRUPTS();
2568 return errQUEUE_FULL;
2569 }
2570 }
2571 }
2572 portENABLE_INTERRUPTS();
2573
2574 portDISABLE_INTERRUPTS();
2575 {
2576 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2577 {
2578 /* There is room in the queue, copy the data into the queue. */
2579 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2580 xReturn = pdPASS;
2581
2582 /* Were any co-routines waiting for data to become available? */
2583 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2584 {
2585 /* In this instance the co-routine could be placed directly
2586 * into the ready list as we are within a critical section.
2587 * Instead the same pending ready list mechanism is used as if
2588 * the event were caused from within an interrupt. */
2589 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2590 {
2591 /* The co-routine waiting has a higher priority so record
2592 * that a yield might be appropriate. */
2593 xReturn = errQUEUE_YIELD;
2594 }
2595 else
2596 {
2597 mtCOVERAGE_TEST_MARKER();
2598 }
2599 }
2600 else
2601 {
2602 mtCOVERAGE_TEST_MARKER();
2603 }
2604 }
2605 else
2606 {
2607 xReturn = errQUEUE_FULL;
2608 }
2609 }
2610 portENABLE_INTERRUPTS();
2611
2612 return xReturn;
2613 }
2614
2615 #endif /* configUSE_CO_ROUTINES */
2616 /*-----------------------------------------------------------*/
2617
2618 #if ( configUSE_CO_ROUTINES == 1 )
2619
xQueueCRReceive(QueueHandle_t xQueue,void * pvBuffer,TickType_t xTicksToWait)2620 BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
2621 void * pvBuffer,
2622 TickType_t xTicksToWait )
2623 {
2624 BaseType_t xReturn;
2625 Queue_t * const pxQueue = xQueue;
2626
2627 /* If the queue is already empty we may have to block. A critical section
2628 * is required to prevent an interrupt adding something to the queue
2629 * between the check to see if the queue is empty and blocking on the queue. */
2630 portDISABLE_INTERRUPTS();
2631 {
2632 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0 )
2633 {
2634 /* There are no messages in the queue, do we want to block or just
2635 * leave with nothing? */
2636 if( xTicksToWait > ( TickType_t ) 0 )
2637 {
2638 /* As this is a co-routine we cannot block directly, but return
2639 * indicating that we need to block. */
2640 vCoRoutineAddToDelayedList( xTicksToWait, &( pxQueue->xTasksWaitingToReceive ) );
2641 portENABLE_INTERRUPTS();
2642 return errQUEUE_BLOCKED;
2643 }
2644 else
2645 {
2646 portENABLE_INTERRUPTS();
2647 return errQUEUE_FULL;
2648 }
2649 }
2650 else
2651 {
2652 mtCOVERAGE_TEST_MARKER();
2653 }
2654 }
2655 portENABLE_INTERRUPTS();
2656
2657 portDISABLE_INTERRUPTS();
2658 {
2659 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2660 {
2661 /* Data is available from the queue. */
2662 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2663
2664 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2665 {
2666 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2667 }
2668 else
2669 {
2670 mtCOVERAGE_TEST_MARKER();
2671 }
2672
2673 --( pxQueue->uxMessagesWaiting );
2674 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2675
2676 xReturn = pdPASS;
2677
2678 /* Were any co-routines waiting for space to become available? */
2679 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2680 {
2681 /* In this instance the co-routine could be placed directly
2682 * into the ready list as we are within a critical section.
2683 * Instead the same pending ready list mechanism is used as if
2684 * the event were caused from within an interrupt. */
2685 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2686 {
2687 xReturn = errQUEUE_YIELD;
2688 }
2689 else
2690 {
2691 mtCOVERAGE_TEST_MARKER();
2692 }
2693 }
2694 else
2695 {
2696 mtCOVERAGE_TEST_MARKER();
2697 }
2698 }
2699 else
2700 {
2701 xReturn = pdFAIL;
2702 }
2703 }
2704 portENABLE_INTERRUPTS();
2705
2706 return xReturn;
2707 }
2708
2709 #endif /* configUSE_CO_ROUTINES */
2710 /*-----------------------------------------------------------*/
2711
2712 #if ( configUSE_CO_ROUTINES == 1 )
2713
xQueueCRSendFromISR(QueueHandle_t xQueue,const void * pvItemToQueue,BaseType_t xCoRoutinePreviouslyWoken)2714 BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
2715 const void * pvItemToQueue,
2716 BaseType_t xCoRoutinePreviouslyWoken )
2717 {
2718 Queue_t * const pxQueue = xQueue;
2719
2720 /* Cannot block within an ISR so if there is no space on the queue then
2721 * exit without doing anything. */
2722 if( pxQueue->uxMessagesWaiting < pxQueue->uxLength )
2723 {
2724 prvCopyDataToQueue( pxQueue, pvItemToQueue, queueSEND_TO_BACK );
2725
2726 /* We only want to wake one co-routine per ISR, so check that a
2727 * co-routine has not already been woken. */
2728 if( xCoRoutinePreviouslyWoken == pdFALSE )
2729 {
2730 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
2731 {
2732 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
2733 {
2734 return pdTRUE;
2735 }
2736 else
2737 {
2738 mtCOVERAGE_TEST_MARKER();
2739 }
2740 }
2741 else
2742 {
2743 mtCOVERAGE_TEST_MARKER();
2744 }
2745 }
2746 else
2747 {
2748 mtCOVERAGE_TEST_MARKER();
2749 }
2750 }
2751 else
2752 {
2753 mtCOVERAGE_TEST_MARKER();
2754 }
2755
2756 return xCoRoutinePreviouslyWoken;
2757 }
2758
2759 #endif /* configUSE_CO_ROUTINES */
2760 /*-----------------------------------------------------------*/
2761
2762 #if ( configUSE_CO_ROUTINES == 1 )
2763
xQueueCRReceiveFromISR(QueueHandle_t xQueue,void * pvBuffer,BaseType_t * pxCoRoutineWoken)2764 BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
2765 void * pvBuffer,
2766 BaseType_t * pxCoRoutineWoken )
2767 {
2768 BaseType_t xReturn;
2769 Queue_t * const pxQueue = xQueue;
2770
2771 /* We cannot block from an ISR, so check there is data available. If
2772 * not then just leave without doing anything. */
2773 if( pxQueue->uxMessagesWaiting > ( UBaseType_t ) 0 )
2774 {
2775 /* Copy the data from the queue. */
2776 pxQueue->u.xQueue.pcReadFrom += pxQueue->uxItemSize;
2777
2778 if( pxQueue->u.xQueue.pcReadFrom >= pxQueue->u.xQueue.pcTail )
2779 {
2780 pxQueue->u.xQueue.pcReadFrom = pxQueue->pcHead;
2781 }
2782 else
2783 {
2784 mtCOVERAGE_TEST_MARKER();
2785 }
2786
2787 --( pxQueue->uxMessagesWaiting );
2788 ( void ) memcpy( ( void * ) pvBuffer, ( void * ) pxQueue->u.xQueue.pcReadFrom, ( unsigned ) pxQueue->uxItemSize );
2789
2790 if( ( *pxCoRoutineWoken ) == pdFALSE )
2791 {
2792 if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToSend ) ) == pdFALSE )
2793 {
2794 if( xCoRoutineRemoveFromEventList( &( pxQueue->xTasksWaitingToSend ) ) != pdFALSE )
2795 {
2796 *pxCoRoutineWoken = pdTRUE;
2797 }
2798 else
2799 {
2800 mtCOVERAGE_TEST_MARKER();
2801 }
2802 }
2803 else
2804 {
2805 mtCOVERAGE_TEST_MARKER();
2806 }
2807 }
2808 else
2809 {
2810 mtCOVERAGE_TEST_MARKER();
2811 }
2812
2813 xReturn = pdPASS;
2814 }
2815 else
2816 {
2817 xReturn = pdFAIL;
2818 }
2819
2820 return xReturn;
2821 }
2822
2823 #endif /* configUSE_CO_ROUTINES */
2824 /*-----------------------------------------------------------*/
2825
2826 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2827
vQueueAddToRegistry(QueueHandle_t xQueue,const char * pcQueueName)2828 void vQueueAddToRegistry( QueueHandle_t xQueue,
2829 const char * pcQueueName ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2830 {
2831 UBaseType_t ux;
2832
2833 portENTER_CRITICAL(&queue_registry_spinlock);
2834 /* See if there is an empty space in the registry. A NULL name denotes
2835 * a free slot. */
2836 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
2837 {
2838 if( xQueueRegistry[ ux ].pcQueueName == NULL )
2839 {
2840 /* Store the information on this queue. */
2841 xQueueRegistry[ ux ].pcQueueName = pcQueueName;
2842 xQueueRegistry[ ux ].xHandle = xQueue;
2843
2844 traceQUEUE_REGISTRY_ADD( xQueue, pcQueueName );
2845 break;
2846 }
2847 else
2848 {
2849 mtCOVERAGE_TEST_MARKER();
2850 }
2851 }
2852 portEXIT_CRITICAL(&queue_registry_spinlock);
2853 }
2854
2855 #endif /* configQUEUE_REGISTRY_SIZE */
2856 /*-----------------------------------------------------------*/
2857
2858 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2859
pcQueueGetName(QueueHandle_t xQueue)2860 const char * pcQueueGetName( QueueHandle_t xQueue ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2861 {
2862 UBaseType_t ux;
2863 const char * pcReturn = NULL; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
2864
2865 portENTER_CRITICAL(&queue_registry_spinlock);
2866
2867 /* Note there is nothing here to protect against another task adding or
2868 * removing entries from the registry while it is being searched. */
2869
2870 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
2871 {
2872 if( xQueueRegistry[ ux ].xHandle == xQueue )
2873 {
2874 pcReturn = xQueueRegistry[ ux ].pcQueueName;
2875 break;
2876 }
2877 else
2878 {
2879 mtCOVERAGE_TEST_MARKER();
2880 }
2881 }
2882 portEXIT_CRITICAL(&queue_registry_spinlock);
2883
2884 return pcReturn;
2885 } /*lint !e818 xQueue cannot be a pointer to const because it is a typedef. */
2886
2887 #endif /* configQUEUE_REGISTRY_SIZE */
2888 /*-----------------------------------------------------------*/
2889
2890 #if ( configQUEUE_REGISTRY_SIZE > 0 )
2891
vQueueUnregisterQueue(QueueHandle_t xQueue)2892 void vQueueUnregisterQueue( QueueHandle_t xQueue )
2893 {
2894 UBaseType_t ux;
2895
2896 portENTER_CRITICAL(&queue_registry_spinlock);
2897
2898 /* See if the handle of the queue being unregistered in actually in the
2899 * registry. */
2900 for( ux = ( UBaseType_t ) 0U; ux < ( UBaseType_t ) configQUEUE_REGISTRY_SIZE; ux++ )
2901 {
2902 if( xQueueRegistry[ ux ].xHandle == xQueue )
2903 {
2904 /* Set the name to NULL to show that this slot if free again. */
2905 xQueueRegistry[ ux ].pcQueueName = NULL;
2906
2907 /* Set the handle to NULL to ensure the same queue handle cannot
2908 * appear in the registry twice if it is added, removed, then
2909 * added again. */
2910 xQueueRegistry[ ux ].xHandle = ( QueueHandle_t ) 0;
2911 break;
2912 }
2913 else
2914 {
2915 mtCOVERAGE_TEST_MARKER();
2916 }
2917 }
2918 portEXIT_CRITICAL(&queue_registry_spinlock);
2919
2920 } /*lint !e818 xQueue could not be pointer to const because it is a typedef. */
2921
2922 #endif /* configQUEUE_REGISTRY_SIZE */
2923 /*-----------------------------------------------------------*/
2924
2925 #if ( configUSE_TIMERS == 1 )
2926
vQueueWaitForMessageRestricted(QueueHandle_t xQueue,TickType_t xTicksToWait,const BaseType_t xWaitIndefinitely)2927 void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
2928 TickType_t xTicksToWait,
2929 const BaseType_t xWaitIndefinitely )
2930 {
2931 Queue_t * const pxQueue = xQueue;
2932
2933 /* This function should not be called by application code hence the
2934 * 'Restricted' in its name. It is not part of the public API. It is
2935 * designed for use by kernel code, and has special calling requirements.
2936 * It can result in vListInsert() being called on a list that can only
2937 * possibly ever have one item in it, so the list will be fast, but even
2938 * so it should be called with the scheduler locked and not from a critical
2939 * section. */
2940
2941 /* Only do anything if there are no messages in the queue. This function
2942 * will not actually cause the task to block, just place it on a blocked
2943 * list. It will not block until the scheduler is unlocked - at which
2944 * time a yield will be performed. If an item is added to the queue while
2945 * the queue is locked, and the calling task blocks on the queue, then the
2946 * calling task will be immediately unblocked when the queue is unlocked. */
2947 prvLockQueue( pxQueue );
2948
2949 if( pxQueue->uxMessagesWaiting == ( UBaseType_t ) 0U )
2950 {
2951 /* There is nothing in the queue, block for the specified period. */
2952 vTaskPlaceOnEventListRestricted( &( pxQueue->xTasksWaitingToReceive ), xTicksToWait, xWaitIndefinitely );
2953 }
2954 else
2955 {
2956 mtCOVERAGE_TEST_MARKER();
2957 }
2958
2959 prvUnlockQueue( pxQueue );
2960 }
2961
2962 #endif /* configUSE_TIMERS */
2963 /*-----------------------------------------------------------*/
2964
2965 #if ( ( configUSE_QUEUE_SETS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
2966
xQueueCreateSet(const UBaseType_t uxEventQueueLength)2967 QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength )
2968 {
2969 QueueSetHandle_t pxQueue;
2970
2971 pxQueue = xQueueGenericCreate( uxEventQueueLength, ( UBaseType_t ) sizeof( Queue_t * ), queueQUEUE_TYPE_SET );
2972
2973 return pxQueue;
2974 }
2975
2976 #endif /* configUSE_QUEUE_SETS */
2977 /*-----------------------------------------------------------*/
2978
2979 #if ( configUSE_QUEUE_SETS == 1 )
2980
xQueueAddToSet(QueueSetMemberHandle_t xQueueOrSemaphore,QueueSetHandle_t xQueueSet)2981 BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
2982 QueueSetHandle_t xQueueSet )
2983 {
2984 BaseType_t xReturn;
2985 #ifdef ESP_PLATFORM
2986 Queue_t * pxQueue = (Queue_t * )xQueueOrSemaphore;
2987 #endif
2988
2989 taskENTER_CRITICAL();
2990 {
2991 if( ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer != NULL )
2992 {
2993 /* Cannot add a queue/semaphore to more than one queue set. */
2994 xReturn = pdFAIL;
2995 }
2996 else if( ( ( Queue_t * ) xQueueOrSemaphore )->uxMessagesWaiting != ( UBaseType_t ) 0 )
2997 {
2998 /* Cannot add a queue/semaphore to a queue set if there are already
2999 * items in the queue/semaphore. */
3000 xReturn = pdFAIL;
3001 }
3002 else
3003 {
3004 ( ( Queue_t * ) xQueueOrSemaphore )->pxQueueSetContainer = xQueueSet;
3005 xReturn = pdPASS;
3006 }
3007 }
3008 taskEXIT_CRITICAL();
3009
3010 return xReturn;
3011 }
3012
3013 #endif /* configUSE_QUEUE_SETS */
3014 /*-----------------------------------------------------------*/
3015
3016 #if ( configUSE_QUEUE_SETS == 1 )
3017
xQueueRemoveFromSet(QueueSetMemberHandle_t xQueueOrSemaphore,QueueSetHandle_t xQueueSet)3018 BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
3019 QueueSetHandle_t xQueueSet )
3020 {
3021 BaseType_t xReturn;
3022 Queue_t * const pxQueueOrSemaphore = ( Queue_t * ) xQueueOrSemaphore;
3023
3024 if( pxQueueOrSemaphore->pxQueueSetContainer != xQueueSet )
3025 {
3026 /* The queue was not a member of the set. */
3027 xReturn = pdFAIL;
3028 }
3029 else if( pxQueueOrSemaphore->uxMessagesWaiting != ( UBaseType_t ) 0 )
3030 {
3031 /* It is dangerous to remove a queue from a set when the queue is
3032 * not empty because the queue set will still hold pending events for
3033 * the queue. */
3034 xReturn = pdFAIL;
3035 }
3036 else
3037 {
3038 #ifdef ESP_PLATFORM
3039 Queue_t* pxQueue = (Queue_t*)pxQueueOrSemaphore;
3040 #endif
3041 taskENTER_CRITICAL();
3042 {
3043 /* The queue is no longer contained in the set. */
3044 pxQueueOrSemaphore->pxQueueSetContainer = NULL;
3045 }
3046 taskEXIT_CRITICAL();
3047 xReturn = pdPASS;
3048 }
3049
3050 return xReturn;
3051 } /*lint !e818 xQueueSet could not be declared as pointing to const as it is a typedef. */
3052
3053 #endif /* configUSE_QUEUE_SETS */
3054 /*-----------------------------------------------------------*/
3055
3056 #if ( configUSE_QUEUE_SETS == 1 )
3057
xQueueSelectFromSet(QueueSetHandle_t xQueueSet,TickType_t const xTicksToWait)3058 QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
3059 TickType_t const xTicksToWait )
3060 {
3061 QueueSetMemberHandle_t xReturn = NULL;
3062
3063 ( void ) xQueueReceive( ( QueueHandle_t ) xQueueSet, &xReturn, xTicksToWait ); /*lint !e961 Casting from one typedef to another is not redundant. */
3064 return xReturn;
3065 }
3066
3067 #endif /* configUSE_QUEUE_SETS */
3068 /*-----------------------------------------------------------*/
3069
3070 #if ( configUSE_QUEUE_SETS == 1 )
3071
xQueueSelectFromSetFromISR(QueueSetHandle_t xQueueSet)3072 QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet )
3073 {
3074 QueueSetMemberHandle_t xReturn = NULL;
3075
3076 ( void ) xQueueReceiveFromISR( ( QueueHandle_t ) xQueueSet, &xReturn, NULL ); /*lint !e961 Casting from one typedef to another is not redundant. */
3077 return xReturn;
3078 }
3079
3080 #endif /* configUSE_QUEUE_SETS */
3081 /*-----------------------------------------------------------*/
3082
3083 #if ( configUSE_QUEUE_SETS == 1 )
3084
prvNotifyQueueSetContainer(const Queue_t * const pxQueue,const BaseType_t xCopyPosition)3085 static BaseType_t prvNotifyQueueSetContainer( const Queue_t * const pxQueue,
3086 const BaseType_t xCopyPosition )
3087 {
3088 Queue_t * pxQueueSetContainer = pxQueue->pxQueueSetContainer;
3089 BaseType_t xReturn = pdFALSE;
3090
3091 /* This function must be called form a critical section. */
3092
3093 /* The following line is not reachable in unit tests because every call
3094 * to prvNotifyQueueSetContainer is preceded by a check that
3095 * pxQueueSetContainer != NULL */
3096 configASSERT( pxQueueSetContainer ); /* LCOV_EXCL_BR_LINE */
3097
3098 //Acquire the Queue set's spinlock
3099 portENTER_CRITICAL(&(pxQueueSetContainer->mux));
3100
3101 configASSERT( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength );
3102
3103 if( pxQueueSetContainer->uxMessagesWaiting < pxQueueSetContainer->uxLength )
3104 {
3105 const int8_t cTxLock = pxQueueSetContainer->cTxLock;
3106
3107 traceQUEUE_SEND( pxQueueSetContainer );
3108
3109 /* The data copied is the handle of the queue that contains data. */
3110 xReturn = prvCopyDataToQueue( pxQueueSetContainer, &pxQueue, xCopyPosition );
3111
3112 if( cTxLock == queueUNLOCKED )
3113 {
3114 if( listLIST_IS_EMPTY( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) == pdFALSE )
3115 {
3116 if( xTaskRemoveFromEventList( &( pxQueueSetContainer->xTasksWaitingToReceive ) ) != pdFALSE )
3117 {
3118 /* The task waiting has a higher priority. */
3119 xReturn = pdTRUE;
3120 }
3121 else
3122 {
3123 mtCOVERAGE_TEST_MARKER();
3124 }
3125 }
3126 else
3127 {
3128 mtCOVERAGE_TEST_MARKER();
3129 }
3130 }
3131 else
3132 {
3133 pxQueueSetContainer->cTxLock = ( int8_t ) ( cTxLock + 1 );
3134 }
3135 }
3136 else
3137 {
3138 mtCOVERAGE_TEST_MARKER();
3139 }
3140
3141 //Release the Queue set's spinlock
3142 portEXIT_CRITICAL(&(pxQueueSetContainer->mux));
3143
3144 return xReturn;
3145 }
3146
3147 #endif /* configUSE_QUEUE_SETS */
3148