1 /*
2  * FreeRTOS Kernel V10.4.3
3  * Copyright (C) 2020 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9  * the Software, and to permit persons to whom the Software is furnished to do so,
10  * subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * https://www.FreeRTOS.org
23  * https://github.com/FreeRTOS
24  *
25  */
26 
27 #ifndef CO_ROUTINE_H
28 #define CO_ROUTINE_H
29 
30 #ifndef INC_FREERTOS_H
31     #error "include FreeRTOS.h must appear in source files before include croutine.h"
32 #endif
33 
34 #include "list.h"
35 
36 /* *INDENT-OFF* */
37 #ifdef __cplusplus
38     extern "C" {
39 #endif
40 /* *INDENT-ON* */
41 
42 /* Used to hide the implementation of the co-routine control block.  The
43  * control block structure however has to be included in the header due to
44  * the macro implementation of the co-routine functionality. */
45 typedef void * CoRoutineHandle_t;
46 
47 /* Defines the prototype to which co-routine functions must conform. */
48 typedef void (* crCOROUTINE_CODE)( CoRoutineHandle_t,
49                                    UBaseType_t );
50 
51 typedef struct corCoRoutineControlBlock
52 {
53     crCOROUTINE_CODE pxCoRoutineFunction;
54     ListItem_t xGenericListItem; /*< List item used to place the CRCB in ready and blocked queues. */
55     ListItem_t xEventListItem;   /*< List item used to place the CRCB in event lists. */
56     UBaseType_t uxPriority;      /*< The priority of the co-routine in relation to other co-routines. */
57     UBaseType_t uxIndex;         /*< Used to distinguish between co-routines when multiple co-routines use the same co-routine function. */
58     uint16_t uxState;            /*< Used internally by the co-routine implementation. */
59 } CRCB_t;                        /* Co-routine control block.  Note must be identical in size down to uxPriority with TCB_t. */
60 
61 /**
62  * @cond
63  * croutine. h
64  * @code{c}
65  * BaseType_t xCoRoutineCreate(
66  *                               crCOROUTINE_CODE pxCoRoutineCode,
67  *                               UBaseType_t uxPriority,
68  *                               UBaseType_t uxIndex
69  *                             );
70  * @endcode
71  * @endcond
72  *
73  * Create a new co-routine and add it to the list of co-routines that are
74  * ready to run.
75  *
76  * @param pxCoRoutineCode Pointer to the co-routine function.  Co-routine
77  * functions require special syntax - see the co-routine section of the WEB
78  * documentation for more information.
79  *
80  * @param uxPriority The priority with respect to other co-routines at which
81  *  the co-routine will run.
82  *
83  * @param uxIndex Used to distinguish between different co-routines that
84  * execute the same function.  See the example below and the co-routine section
85  * of the WEB documentation for further information.
86  *
87  * @return pdPASS if the co-routine was successfully created and added to a ready
88  * list, otherwise an error code defined with ProjDefs.h.
89  *
90  * Example usage:
91  * @code{c}
92  * // Co-routine to be created.
93  * void vFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
94  * {
95  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
96  * // This may not be necessary for const variables.
97  * static const char cLedToFlash[ 2 ] = { 5, 6 };
98  * static const TickType_t uxFlashRates[ 2 ] = { 200, 400 };
99  *
100  *   // Must start every co-routine with a call to crSTART();
101  *   crSTART( xHandle );
102  *
103  *   for( ;; )
104  *   {
105  *       // This co-routine just delays for a fixed period, then toggles
106  *       // an LED.  Two co-routines are created using this function, so
107  *       // the uxIndex parameter is used to tell the co-routine which
108  *       // LED to flash and how int32_t to delay.  This assumes xQueue has
109  *       // already been created.
110  *       vParTestToggleLED( cLedToFlash[ uxIndex ] );
111  *       crDELAY( xHandle, uxFlashRates[ uxIndex ] );
112  *   }
113  *
114  *   // Must end every co-routine with a call to crEND();
115  *   crEND();
116  * }
117  *
118  * // Function that creates two co-routines.
119  * void vOtherFunction( void )
120  * {
121  * uint8_t ucParameterToPass;
122  * TaskHandle_t xHandle;
123  *
124  *   // Create two co-routines at priority 0.  The first is given index 0
125  *   // so (from the code above) toggles LED 5 every 200 ticks.  The second
126  *   // is given index 1 so toggles LED 6 every 400 ticks.
127  *   for( uxIndex = 0; uxIndex < 2; uxIndex++ )
128  *   {
129  *       xCoRoutineCreate( vFlashCoRoutine, 0, uxIndex );
130  *   }
131  * }
132  * @endcode
133  * @cond
134  * \defgroup xCoRoutineCreate xCoRoutineCreate
135  * @endcond
136  * \ingroup Tasks
137  */
138 BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode,
139                              UBaseType_t uxPriority,
140                              UBaseType_t uxIndex );
141 
142 
143 /**
144  * @cond
145  * croutine. h
146  * @code{c}
147  * void vCoRoutineSchedule( void );
148  * @endcode
149  * @endcond
150  * Run a co-routine.
151  *
152  * vCoRoutineSchedule() executes the highest priority co-routine that is able
153  * to run.  The co-routine will execute until it either blocks, yields or is
154  * preempted by a task.  Co-routines execute cooperatively so one
155  * co-routine cannot be preempted by another, but can be preempted by a task.
156  *
157  * If an application comprises of both tasks and co-routines then
158  * vCoRoutineSchedule should be called from the idle task (in an idle task
159  * hook).
160  *
161  * Example usage:
162  * @code{c}
163  * // This idle task hook will schedule a co-routine each time it is called.
164  * // The rest of the idle task will execute between co-routine calls.
165  * void vApplicationIdleHook( void )
166  * {
167  *  vCoRoutineSchedule();
168  * }
169  *
170  * // Alternatively, if you do not require any other part of the idle task to
171  * // execute, the idle task hook can call vCoRoutineScheduler() within an
172  * // infinite loop.
173  * void vApplicationIdleHook( void )
174  * {
175  *  for( ;; )
176  *  {
177  *      vCoRoutineSchedule();
178  *  }
179  * }
180  * @endcode
181  * @endcode
182  * @cond
183  * \defgroup vCoRoutineSchedule vCoRoutineSchedule
184  * @endcond
185  * \ingroup Tasks
186  */
187 void vCoRoutineSchedule( void );
188 
189 /**
190  * @cond
191  * croutine. h
192  * @code{c}
193  * crSTART( CoRoutineHandle_t xHandle );
194  * @endcode
195  * @endcond
196  *
197  * This macro MUST always be called at the start of a co-routine function.
198  *
199  * Example usage:
200  * @code{c}
201  * // Co-routine to be created.
202  * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
203  * {
204  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
205  * static int32_t ulAVariable;
206  *
207  *   // Must start every co-routine with a call to crSTART();
208  *   crSTART( xHandle );
209  *
210  *   for( ;; )
211  *   {
212  *        // Co-routine functionality goes here.
213  *   }
214  *
215  *   // Must end every co-routine with a call to crEND();
216  *   crEND();
217  * }
218  * @endcode
219  * @cond
220  * \defgroup crSTART crSTART
221  * @endcond
222  * \ingroup Tasks
223  */
224 #define crSTART( pxCRCB )                            \
225     switch( ( ( CRCB_t * ) ( pxCRCB ) )->uxState ) { \
226         case 0:
227 
228 /**
229  * @cond
230  * croutine. h
231  * @code{c}
232  * crEND();
233  * @endcode
234  * @endcond
235  *
236  * This macro MUST always be called at the end of a co-routine function.
237  *
238  * Example usage:
239  * @code{c}
240  * // Co-routine to be created.
241  * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
242  * {
243  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
244  * static int32_t ulAVariable;
245  *
246  *   // Must start every co-routine with a call to crSTART();
247  *   crSTART( xHandle );
248  *
249  *   for( ;; )
250  *   {
251  *        // Co-routine functionality goes here.
252  *   }
253  *
254  *   // Must end every co-routine with a call to crEND();
255  *   crEND();
256  * }
257  * @endcode
258  * @cond
259  * \defgroup crSTART crSTART
260  * @endcond
261  * \ingroup Tasks
262  */
263 #define crEND()    }
264 
265 /*
266  * These macros are intended for internal use by the co-routine implementation
267  * only.  The macros should not be used directly by application writers.
268  */
269 #define crSET_STATE0( xHandle )                                       \
270     ( ( CRCB_t * ) ( xHandle ) )->uxState = ( __LINE__ * 2 ); return; \
271     case ( __LINE__ * 2 ):
272 #define crSET_STATE1( xHandle )                                               \
273     ( ( CRCB_t * ) ( xHandle ) )->uxState = ( ( __LINE__ * 2 ) + 1 ); return; \
274     case ( ( __LINE__ * 2 ) + 1 ):
275 
276 /**
277  * @cond
278  * croutine. h
279  * @code{c}
280  * crDELAY( CoRoutineHandle_t xHandle, TickType_t xTicksToDelay );
281  * @endcode
282  * @endcond
283  *
284  * Delay a co-routine for a fixed period of time.
285  *
286  * crDELAY can only be called from the co-routine function itself - not
287  * from within a function called by the co-routine function.  This is because
288  * co-routines do not maintain their own stack.
289  *
290  * @param xHandle The handle of the co-routine to delay.  This is the xHandle
291  * parameter of the co-routine function.
292  *
293  * @param xTickToDelay The number of ticks that the co-routine should delay
294  * for.  The actual amount of time this equates to is defined by
295  * configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant portTICK_PERIOD_MS
296  * can be used to convert ticks to milliseconds.
297  *
298  * Example usage:
299  * @code{c}
300  * // Co-routine to be created.
301  * void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
302  * {
303  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
304  * // This may not be necessary for const variables.
305  * // We are to delay for 200ms.
306  * static const xTickType xDelayTime = 200 / portTICK_PERIOD_MS;
307  *
308  *   // Must start every co-routine with a call to crSTART();
309  *   crSTART( xHandle );
310  *
311  *   for( ;; )
312  *   {
313  *      // Delay for 200ms.
314  *      crDELAY( xHandle, xDelayTime );
315  *
316  *      // Do something here.
317  *   }
318  *
319  *   // Must end every co-routine with a call to crEND();
320  *   crEND();
321  * }
322  * @endcode
323  * @cond
324  * \defgroup crDELAY crDELAY
325  * @endcond
326  * \ingroup Tasks
327  */
328 #define crDELAY( xHandle, xTicksToDelay )                      \
329     if( ( xTicksToDelay ) > 0 )                                \
330     {                                                          \
331         vCoRoutineAddToDelayedList( ( xTicksToDelay ), NULL ); \
332     }                                                          \
333     crSET_STATE0( ( xHandle ) );
334 
335 /**
336  * @cond
337  * @code{c}
338  * crQUEUE_SEND(
339  *                CoRoutineHandle_t xHandle,
340  *                QueueHandle_t pxQueue,
341  *                void *pvItemToQueue,
342  *                TickType_t xTicksToWait,
343  *                BaseType_t *pxResult
344  *           )
345  * @endcode
346  * @endcond
347  *
348  * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
349  * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
350  *
351  * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
352  * xQueueSend() and xQueueReceive() can only be used from tasks.
353  *
354  * crQUEUE_SEND can only be called from the co-routine function itself - not
355  * from within a function called by the co-routine function.  This is because
356  * co-routines do not maintain their own stack.
357  *
358  * See the co-routine section of the WEB documentation for information on
359  * passing data between tasks and co-routines and between ISR's and
360  * co-routines.
361  *
362  * @param xHandle The handle of the calling co-routine.  This is the xHandle
363  * parameter of the co-routine function.
364  *
365  * @param pxQueue The handle of the queue on which the data will be posted.
366  * The handle is obtained as the return value when the queue is created using
367  * the xQueueCreate() API function.
368  *
369  * @param pvItemToQueue A pointer to the data being posted onto the queue.
370  * The number of bytes of each queued item is specified when the queue is
371  * created.  This number of bytes is copied from pvItemToQueue into the queue
372  * itself.
373  *
374  * @param xTickToDelay The number of ticks that the co-routine should block
375  * to wait for space to become available on the queue, should space not be
376  * available immediately. The actual amount of time this equates to is defined
377  * by configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant
378  * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see example
379  * below).
380  *
381  * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
382  * data was successfully posted onto the queue, otherwise it will be set to an
383  * error defined within ProjDefs.h.
384  *
385  * Example usage:
386  * @code{c}
387  * // Co-routine function that blocks for a fixed period then posts a number onto
388  * // a queue.
389  * static void prvCoRoutineFlashTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
390  * {
391  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
392  * static BaseType_t xNumberToPost = 0;
393  * static BaseType_t xResult;
394  *
395  *  // Co-routines must begin with a call to crSTART().
396  *  crSTART( xHandle );
397  *
398  *  for( ;; )
399  *  {
400  *      // This assumes the queue has already been created.
401  *      crQUEUE_SEND( xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult );
402  *
403  *      if( xResult != pdPASS )
404  *      {
405  *          // The message was not posted!
406  *      }
407  *
408  *      // Increment the number to be posted onto the queue.
409  *      xNumberToPost++;
410  *
411  *      // Delay for 100 ticks.
412  *      crDELAY( xHandle, 100 );
413  *  }
414  *
415  *  // Co-routines must end with a call to crEND().
416  *  crEND();
417  * }
418  * @endcode
419  * @cond
420  * \defgroup crQUEUE_SEND crQUEUE_SEND
421  * @endcond
422  * \ingroup Tasks
423  */
424 #define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult )           \
425     {                                                                                     \
426         *( pxResult ) = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), ( xTicksToWait ) ); \
427         if( *( pxResult ) == errQUEUE_BLOCKED )                                           \
428         {                                                                                 \
429             crSET_STATE0( ( xHandle ) );                                                  \
430             *pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 );                \
431         }                                                                                 \
432         if( *pxResult == errQUEUE_YIELD )                                                 \
433         {                                                                                 \
434             crSET_STATE1( ( xHandle ) );                                                  \
435             *pxResult = pdPASS;                                                           \
436         }                                                                                 \
437     }
438 
439 /**
440  * @cond
441  * croutine. h
442  * @code{c}
443  * crQUEUE_RECEIVE(
444  *                   CoRoutineHandle_t xHandle,
445  *                   QueueHandle_t pxQueue,
446  *                   void *pvBuffer,
447  *                   TickType_t xTicksToWait,
448  *                   BaseType_t *pxResult
449  *               )
450  * @endcode
451  * @endcond
452  *
453  * The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
454  * equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
455  *
456  * crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
457  * xQueueSend() and xQueueReceive() can only be used from tasks.
458  *
459  * crQUEUE_RECEIVE can only be called from the co-routine function itself - not
460  * from within a function called by the co-routine function.  This is because
461  * co-routines do not maintain their own stack.
462  *
463  * See the co-routine section of the WEB documentation for information on
464  * passing data between tasks and co-routines and between ISR's and
465  * co-routines.
466  *
467  * @param xHandle The handle of the calling co-routine.  This is the xHandle
468  * parameter of the co-routine function.
469  *
470  * @param pxQueue The handle of the queue from which the data will be received.
471  * The handle is obtained as the return value when the queue is created using
472  * the xQueueCreate() API function.
473  *
474  * @param pvBuffer The buffer into which the received item is to be copied.
475  * The number of bytes of each queued item is specified when the queue is
476  * created.  This number of bytes is copied into pvBuffer.
477  *
478  * @param xTickToDelay The number of ticks that the co-routine should block
479  * to wait for data to become available from the queue, should data not be
480  * available immediately. The actual amount of time this equates to is defined
481  * by configTICK_RATE_HZ (set in FreeRTOSConfig.h).  The constant
482  * portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see the
483  * crQUEUE_SEND example).
484  *
485  * @param pxResult The variable pointed to by pxResult will be set to pdPASS if
486  * data was successfully retrieved from the queue, otherwise it will be set to
487  * an error code as defined within ProjDefs.h.
488  *
489  * Example usage:
490  * @code{c}
491  * // A co-routine receives the number of an LED to flash from a queue.  It
492  * // blocks on the queue until the number is received.
493  * static void prvCoRoutineFlashWorkTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
494  * {
495  * // Variables in co-routines must be declared static if they must maintain value across a blocking call.
496  * static BaseType_t xResult;
497  * static UBaseType_t uxLEDToFlash;
498  *
499  *  // All co-routines must start with a call to crSTART().
500  *  crSTART( xHandle );
501  *
502  *  for( ;; )
503  *  {
504  *      // Wait for data to become available on the queue.
505  *      crQUEUE_RECEIVE( xHandle, xCoRoutineQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
506  *
507  *      if( xResult == pdPASS )
508  *      {
509  *          // We received the LED to flash - flash it!
510  *          vParTestToggleLED( uxLEDToFlash );
511  *      }
512  *  }
513  *
514  *  crEND();
515  * }
516  * @endcode
517  * @cond
518  * \defgroup crQUEUE_RECEIVE crQUEUE_RECEIVE
519  * @endcond
520  * \ingroup Tasks
521  */
522 #define crQUEUE_RECEIVE( xHandle, pxQueue, pvBuffer, xTicksToWait, pxResult )           \
523     {                                                                                   \
524         *( pxResult ) = xQueueCRReceive( ( pxQueue ), ( pvBuffer ), ( xTicksToWait ) ); \
525         if( *( pxResult ) == errQUEUE_BLOCKED )                                         \
526         {                                                                               \
527             crSET_STATE0( ( xHandle ) );                                                \
528             *( pxResult ) = xQueueCRReceive( ( pxQueue ), ( pvBuffer ), 0 );            \
529         }                                                                               \
530         if( *( pxResult ) == errQUEUE_YIELD )                                           \
531         {                                                                               \
532             crSET_STATE1( ( xHandle ) );                                                \
533             *( pxResult ) = pdPASS;                                                     \
534         }                                                                               \
535     }
536 
537 /**
538  * @cond
539  * croutine. h
540  * @code{c}
541  * crQUEUE_SEND_FROM_ISR(
542  *                          QueueHandle_t pxQueue,
543  *                          void *pvItemToQueue,
544  *                          BaseType_t xCoRoutinePreviouslyWoken
545  *                     )
546  * @endcode
547  * @endcond
548  *
549  * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
550  * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
551  * functions used by tasks.
552  *
553  * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
554  * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
555  * xQueueReceiveFromISR() can only be used to pass data between a task and and
556  * ISR.
557  *
558  * crQUEUE_SEND_FROM_ISR can only be called from an ISR to send data to a queue
559  * that is being used from within a co-routine.
560  *
561  * See the co-routine section of the WEB documentation for information on
562  * passing data between tasks and co-routines and between ISR's and
563  * co-routines.
564  *
565  * @param xQueue The handle to the queue on which the item is to be posted.
566  *
567  * @param pvItemToQueue A pointer to the item that is to be placed on the
568  * queue.  The size of the items the queue will hold was defined when the
569  * queue was created, so this many bytes will be copied from pvItemToQueue
570  * into the queue storage area.
571  *
572  * @param xCoRoutinePreviouslyWoken This is included so an ISR can post onto
573  * the same queue multiple times from a single interrupt.  The first call
574  * should always pass in pdFALSE.  Subsequent calls should pass in
575  * the value returned from the previous call.
576  *
577  * @return pdTRUE if a co-routine was woken by posting onto the queue.  This is
578  * used by the ISR to determine if a context switch may be required following
579  * the ISR.
580  *
581  * Example usage:
582  * @code{c}
583  * // A co-routine that blocks on a queue waiting for characters to be received.
584  * static void vReceivingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
585  * {
586  * char cRxedChar;
587  * BaseType_t xResult;
588  *
589  *   // All co-routines must start with a call to crSTART().
590  *   crSTART( xHandle );
591  *
592  *   for( ;; )
593  *   {
594  *       // Wait for data to become available on the queue.  This assumes the
595  *       // queue xCommsRxQueue has already been created!
596  *       crQUEUE_RECEIVE( xHandle, xCommsRxQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
597  *
598  *       // Was a character received?
599  *       if( xResult == pdPASS )
600  *       {
601  *           // Process the character here.
602  *       }
603  *   }
604  *
605  *   // All co-routines must end with a call to crEND().
606  *   crEND();
607  * }
608  *
609  * // An ISR that uses a queue to send characters received on a serial port to
610  * // a co-routine.
611  * void vUART_ISR( void )
612  * {
613  * char cRxedChar;
614  * BaseType_t xCRWokenByPost = pdFALSE;
615  *
616  *   // We loop around reading characters until there are none left in the UART.
617  *   while( UART_RX_REG_NOT_EMPTY() )
618  *   {
619  *       // Obtain the character from the UART.
620  *       cRxedChar = UART_RX_REG;
621  *
622  *       // Post the character onto a queue.  xCRWokenByPost will be pdFALSE
623  *       // the first time around the loop.  If the post causes a co-routine
624  *       // to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE.
625  *       // In this manner we can ensure that if more than one co-routine is
626  *       // blocked on the queue only one is woken by this ISR no matter how
627  *       // many characters are posted to the queue.
628  *       xCRWokenByPost = crQUEUE_SEND_FROM_ISR( xCommsRxQueue, &cRxedChar, xCRWokenByPost );
629  *   }
630  * }
631  * @endcode
632  * @cond
633  * \defgroup crQUEUE_SEND_FROM_ISR crQUEUE_SEND_FROM_ISR
634  * @endcond
635  * \ingroup Tasks
636  */
637 #define crQUEUE_SEND_FROM_ISR( pxQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ) \
638     xQueueCRSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( xCoRoutinePreviouslyWoken ) )
639 
640 
641 /**
642  * @cond
643  * croutine. h
644  * @code{c}
645  * crQUEUE_SEND_FROM_ISR(
646  *                          QueueHandle_t pxQueue,
647  *                          void *pvBuffer,
648  *                          BaseType_t * pxCoRoutineWoken
649  *                     )
650  * @endcode
651  * @endcond
652  *
653  * The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
654  * co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
655  * functions used by tasks.
656  *
657  * crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
658  * pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
659  * xQueueReceiveFromISR() can only be used to pass data between a task and and
660  * ISR.
661  *
662  * crQUEUE_RECEIVE_FROM_ISR can only be called from an ISR to receive data
663  * from a queue that is being used from within a co-routine (a co-routine
664  * posted to the queue).
665  *
666  * See the co-routine section of the WEB documentation for information on
667  * passing data between tasks and co-routines and between ISR's and
668  * co-routines.
669  *
670  * @param xQueue The handle to the queue on which the item is to be posted.
671  *
672  * @param pvBuffer A pointer to a buffer into which the received item will be
673  * placed.  The size of the items the queue will hold was defined when the
674  * queue was created, so this many bytes will be copied from the queue into
675  * pvBuffer.
676  *
677  * @param pxCoRoutineWoken A co-routine may be blocked waiting for space to become
678  * available on the queue.  If crQUEUE_RECEIVE_FROM_ISR causes such a
679  * co-routine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise
680  * *pxCoRoutineWoken will remain unchanged.
681  *
682  * @return pdTRUE an item was successfully received from the queue, otherwise
683  * pdFALSE.
684  *
685  * Example usage:
686  * @code{c}
687  * // A co-routine that posts a character to a queue then blocks for a fixed
688  * // period.  The character is incremented each time.
689  * static void vSendingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
690  * {
691  * // cChar holds its value while this co-routine is blocked and must therefore
692  * // be declared static.
693  * static char cCharToTx = 'a';
694  * BaseType_t xResult;
695  *
696  *   // All co-routines must start with a call to crSTART().
697  *   crSTART( xHandle );
698  *
699  *   for( ;; )
700  *   {
701  *       // Send the next character to the queue.
702  *       crQUEUE_SEND( xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult );
703  *
704  *       if( xResult == pdPASS )
705  *       {
706  *           // The character was successfully posted to the queue.
707  *       }
708  *       else
709  *       {
710  *          // Could not post the character to the queue.
711  *       }
712  *
713  *       // Enable the UART Tx interrupt to cause an interrupt in this
714  *       // hypothetical UART.  The interrupt will obtain the character
715  *       // from the queue and send it.
716  *       ENABLE_RX_INTERRUPT();
717  *
718  *       // Increment to the next character then block for a fixed period.
719  *       // cCharToTx will maintain its value across the delay as it is
720  *       // declared static.
721  *       cCharToTx++;
722  *       if( cCharToTx > 'x' )
723  *       {
724  *          cCharToTx = 'a';
725  *       }
726  *       crDELAY( 100 );
727  *   }
728  *
729  *   // All co-routines must end with a call to crEND().
730  *   crEND();
731  * }
732  *
733  * // An ISR that uses a queue to receive characters to send on a UART.
734  * void vUART_ISR( void )
735  * {
736  * char cCharToTx;
737  * BaseType_t xCRWokenByPost = pdFALSE;
738  *
739  *   while( UART_TX_REG_EMPTY() )
740  *   {
741  *       // Are there any characters in the queue waiting to be sent?
742  *       // xCRWokenByPost will automatically be set to pdTRUE if a co-routine
743  *       // is woken by the post - ensuring that only a single co-routine is
744  *       // woken no matter how many times we go around this loop.
745  *       if( crQUEUE_RECEIVE_FROM_ISR( pxQueue, &cCharToTx, &xCRWokenByPost ) )
746  *       {
747  *           SEND_CHARACTER( cCharToTx );
748  *       }
749  *   }
750  * }
751  * @endcode
752  * @cond
753  * \defgroup crQUEUE_RECEIVE_FROM_ISR crQUEUE_RECEIVE_FROM_ISR
754  * @endcond
755  * \ingroup Tasks
756  */
757 #define crQUEUE_RECEIVE_FROM_ISR( pxQueue, pvBuffer, pxCoRoutineWoken ) \
758     xQueueCRReceiveFromISR( ( pxQueue ), ( pvBuffer ), ( pxCoRoutineWoken ) )
759 
760 /*
761  * This function is intended for internal use by the co-routine macros only.
762  * The macro nature of the co-routine implementation requires that the
763  * prototype appears here.  The function should not be used by application
764  * writers.
765  *
766  * Removes the current co-routine from its ready list and places it in the
767  * appropriate delayed list.
768  */
769 void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay,
770                                  List_t * pxEventList );
771 
772 /*
773  * This function is intended for internal use by the queue implementation only.
774  * The function should not be used by application writers.
775  *
776  * Removes the highest priority co-routine from the event list and places it in
777  * the pending ready list.
778  */
779 BaseType_t xCoRoutineRemoveFromEventList( const List_t * pxEventList );
780 
781 /* *INDENT-OFF* */
782 #ifdef __cplusplus
783     }
784 #endif
785 /* *INDENT-ON* */
786 
787 #endif /* CO_ROUTINE_H */
788