1 /*
2  *  The RSA public-key cryptosystem
3  *
4  *  Copyright (C) 2006-2022, ARM Limited, All Rights Reserved
5  *  Copyright (C) 2020, STMicroelectronics, All Rights Reserved
6  *  SPDX-License-Identifier: Apache-2.0
7  *
8  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
9  *  not use this file except in compliance with the License.
10  *  You may obtain a copy of the License at
11  *
12  *  http://www.apache.org/licenses/LICENSE-2.0
13  *
14  *  Unless required by applicable law or agreed to in writing, software
15  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
16  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  *  See the License for the specific language governing permissions and
18  *  limitations under the License.
19  *
20  *  This file implements ST RSA HW on RSA public key operation.
21  *
22  *  This file comes from mbed TLS (https://tls.mbed.org)
23  */
24 
25 /*
26  *  The following sources were referenced in the design of this implementation
27  *  of the RSA algorithm:
28  *
29  *  [1] A method for obtaining digital signatures and public-key cryptosystems
30  *      R Rivest, A Shamir, and L Adleman
31  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
32  *
33  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
34  *      Menezes, van Oorschot and Vanstone
35  *
36  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
37  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
38  *      Stefan Mangard
39  *      https://arxiv.org/abs/1702.08719v2
40  *
41  */
42 
43 /* Includes ------------------------------------------------------------------*/
44 #include "mbedtls/build_info.h"
45 
46 #if defined(MBEDTLS_RSA_C)
47 
48 #include "mbedtls/error.h"
49 #include "mbedtls/rsa.h"
50 #include "../library/rsa_alt_helpers.h"
51 #include "mbedtls/oid.h"
52 #include "mbedtls/platform_util.h"
53 #include "mbedtls/error.h"
54 
55 #include <string.h>
56 
57 #if defined(MBEDTLS_PKCS1_V21)
58 #include "mbedtls/md.h"
59 #endif
60 
61 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__)
62 #include <stdlib.h>
63 #endif
64 
65 #if defined(MBEDTLS_PLATFORM_C)
66 #include "mbedtls/platform.h"
67 #else
68 #include <stdio.h>
69 #define mbedtls_printf printf
70 #define mbedtls_calloc calloc
71 #define mbedtls_free   free
72 #endif
73 
74 #if defined(MBEDTLS_RSA_ALT)
75 
76 /* Parameter validation macros */
77 #define RSA_VALIDATE_RET( cond )                                       \
78     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
79 #define RSA_VALIDATE( cond )                                           \
80     MBEDTLS_INTERNAL_VALIDATE( cond )
81 
82 /* Private typedef -----------------------------------------------------------*/
83 /* Private define ------------------------------------------------------------*/
84 #define ST_PKA_TIMEOUT 5000      /* 5s timeout for the Public key accelerator */
85 
86 /* Private macro -------------------------------------------------------------*/
87 /*
88  * 32-bit integer manipulation macros (big endian)
89  */
90 #ifndef GET_UINT32_BE
91 #define GET_UINT32_BE(n,b,i)                            \
92 do {                                                    \
93     (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
94         | ( (uint32_t) (b)[(i) + 1] << 16 )             \
95         | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
96         | ( (uint32_t) (b)[(i) + 3]       );            \
97 } while( 0 )
98 #endif
99 
100 /**
101  * @brief       Operate the PKA Arithmetic multiplication : AxB = A x B
102  * @param[in]   A         Operand A
103  * @param[in]   A_len     Operand A length
104  * @param[in]   B         Operand B
105  * @param[in]   B_len     Operand B length
106  * @param[out]  AxB       Result
107  * @retval      0                                       Ok
108  * @retval      MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED    Error in the HW
109  */
rsa_pka_arithmetic_mul(const unsigned char * A,size_t A_len,const unsigned char * B,size_t B_len,uint32_t * AxB)110 static int rsa_pka_arithmetic_mul( const unsigned char *A,
111                                    size_t A_len,
112                                    const unsigned char *B,
113                                    size_t B_len,
114                                    uint32_t *AxB )
115 {
116     RSA_VALIDATE_RET( A != NULL );
117     RSA_VALIDATE_RET( B != NULL );
118     RSA_VALIDATE_RET( AxB != NULL );
119 
120     int ret = 0;
121     PKA_HandleTypeDef hpka = {0};
122     PKA_MulInTypeDef in = {0};
123     uint32_t *input_A = NULL;
124     uint32_t *input_B = NULL;
125     size_t i, op_len;
126 
127     if ( A_len != B_len )
128         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
129 
130     op_len = A_len;
131 
132     input_A = mbedtls_calloc( 1, op_len );
133     MBEDTLS_MPI_CHK( ( input_A == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
134 
135     for( i = op_len/4 ; i > 0; i-- )
136         GET_UINT32_BE( input_A[( op_len/4 ) - i], A, 4*(i-1) );
137 
138     input_B = mbedtls_calloc( 1, op_len );
139     MBEDTLS_MPI_CHK( ( input_B == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
140 
141     for( i = op_len/4 ; i > 0; i-- )
142         GET_UINT32_BE( input_B[( op_len/4 ) - i], B, 4*(i-1) );
143 
144     in.size = op_len/4;
145     in.pOp1 = input_A;
146     in.pOp2 = input_B;
147 
148     /* Enable HW peripheral clock */
149     __HAL_RCC_PKA_CLK_ENABLE();
150 
151     /* Initialize HW peripheral */
152     hpka.Instance = PKA;
153     MBEDTLS_MPI_CHK( ( HAL_PKA_Init( &hpka ) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
154 
155     /* Reset PKA RAM */
156     HAL_PKA_RAMReset(&hpka);
157 
158     MBEDTLS_MPI_CHK( ( HAL_PKA_Mul(&hpka, &in, ST_PKA_TIMEOUT) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
159 
160     HAL_PKA_Arithmetic_GetResult( &hpka, (uint32_t *)AxB );
161 
162 cleanup:
163     /* De-initialize HW peripheral */
164     HAL_PKA_DeInit( &hpka );
165 
166     /* Disable HW peripheral clock */
167     __HAL_RCC_PKA_CLK_DISABLE();
168 
169     if (input_A != NULL)
170     {
171         mbedtls_platform_zeroize( input_A, op_len );
172         mbedtls_free( input_A );
173     }
174 
175     if (input_B != NULL)
176     {
177         mbedtls_platform_zeroize( input_B, op_len );
178         mbedtls_free( input_B );
179     }
180 
181     return ret;
182 }
183 
184 /**
185  * @brief       Call the PKA Arithmetic multiplication : AxB = A x B
186  * @param[out]  AxB       Result in mpi format
187  * @param[in]   A         Operand A in mpi format
188  * @param[in]   B         Operand B in mpi format
189  * @retval      0                                       Ok
190  * @retval      MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED    Error in the HW
191  */
rsa_mpi2pka_mul(mbedtls_mpi * AxB,const mbedtls_mpi * A,const mbedtls_mpi * B)192 static int rsa_mpi2pka_mul( mbedtls_mpi *AxB,
193                             const mbedtls_mpi *A,
194                             const mbedtls_mpi *B )
195 {
196     int ret = 0;
197 
198     size_t A_len,
199            B_len,
200            AxB_len;
201     uint8_t *A_binary = NULL;
202     uint8_t *B_binary = NULL;
203     uint8_t *AxB_binary = NULL;
204 
205     A_len = mbedtls_mpi_size( A );
206     A_binary = mbedtls_calloc( 1, A_len );
207     MBEDTLS_MPI_CHK( ( A_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
208     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( A, A_binary, A_len ) );
209 
210     B_len = mbedtls_mpi_size( B );
211     B_binary = mbedtls_calloc( 1, B_len );
212     MBEDTLS_MPI_CHK( ( B_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
213     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( B, B_binary, B_len ) );
214 
215     AxB_len = A_len + B_len;
216     AxB_binary = mbedtls_calloc( 1, AxB_len );
217     MBEDTLS_MPI_CHK( ( AxB_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
218 
219     MBEDTLS_MPI_CHK( rsa_pka_arithmetic_mul( A_binary,
220                                              A_len,
221                                              B_binary,
222                                              B_len,
223                                              (uint32_t *)AxB_binary ) );
224 
225     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( AxB, AxB_binary, AxB_len ) );
226 
227 cleanup:
228     if (A_binary != NULL)
229     {
230         mbedtls_platform_zeroize( A_binary, A_len );
231         mbedtls_free( A_binary );
232     }
233 
234     if (B_binary != NULL)
235     {
236         mbedtls_platform_zeroize( B_binary, B_len );
237         mbedtls_free( B_binary );
238     }
239 
240     if (AxB_binary != NULL)
241     {
242         mbedtls_platform_zeroize( AxB_binary, AxB_len );
243         mbedtls_free( AxB_binary );
244     }
245 
246      return ret;
247 }
248 
249 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
250 /**
251  * @brief       Compute Euler totient function of n
252  * @param[in]   p            prime
253  * @param[in]   q            prime
254  * @param[out]  output       phi = ( p - 1 )*( q - 1 )
255  * @retval      0            Ok
256  */
rsa_deduce_phi(const mbedtls_mpi * p,const mbedtls_mpi * q,mbedtls_mpi * phi)257 static int rsa_deduce_phi( const mbedtls_mpi *p,
258                            const mbedtls_mpi *q,
259                            mbedtls_mpi *phi )
260 {
261     int ret = 0;
262 
263      /* Temporaries holding P-1, Q-1 */
264     mbedtls_mpi P1, Q1;
265 
266     mbedtls_mpi_init( &P1 );
267     mbedtls_mpi_init( &Q1 );
268 
269     /* P1 = p - 1 */
270     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, p, 1 ) );
271 
272     /* Q1 = q - 1 */
273     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, q, 1 ) );
274 
275     /* phi = ( p - 1 ) * ( q - 1 ) */
276     MBEDTLS_MPI_CHK( rsa_mpi2pka_mul( phi, &P1, &Q1 ) );
277 
278 cleanup:
279 
280     mbedtls_mpi_free( &P1 );
281     mbedtls_mpi_free( &Q1 );
282 
283     return ret;
284 }
285 #endif
286 
287 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
288 /**
289  * @brief       Call the PKA modular exponentiation : output = input^e mod n
290  * @param[in]   input        Input of the modexp
291  * @param[in]   ctx          RSA context
292  * @param[in]   is_private   public (0) or private (1) exponentiation
293  * @param[in]   is_protected normal (0) or protected (1) exponentiation
294  * @param[out]  output       Output of the ModExp (with length of the modulus)
295  * @retval      0                                       Ok
296  * @retval      MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED    Error in the HW
297  */
298 #else
299 /**
300  * @brief       Call the PKA modular exponentiation : output = input^e mod n
301  * @param[in]   input        Input of the modexp
302  * @param[in]   ctx          RSA context
303  * @param[in]   is_private   public (0) or private (1) exponentiation
304  * @param[out]  output       Output of the ModExp (with length of the modulus)
305  * @retval      0                                       Ok
306  * @retval      MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED    Error in the HW
307  */
308 #endif
rsa_pka_modexp(mbedtls_rsa_context * ctx,int is_private,int is_protected,const unsigned char * input,unsigned char * output)309 static int rsa_pka_modexp( mbedtls_rsa_context *ctx,
310                            int is_private,
311 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
312                            int is_protected,
313 #endif
314                            const unsigned char *input,
315                            unsigned char *output )
316 {
317     int ret = 0;
318     size_t nlen;
319     size_t elen;
320     PKA_HandleTypeDef hpka = {0};
321     PKA_ModExpInTypeDef in = {0};
322     uint8_t *e_binary = NULL;
323     uint8_t *n_binary = NULL;
324 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
325     /* parameters for exponentiation in protected mode */
326     size_t philen;
327     PKA_ModExpProtectModeInTypeDef in_protected = {0};
328     uint8_t *phi_binary = NULL;
329 #endif
330 
331     RSA_VALIDATE_RET( ctx != NULL );
332     RSA_VALIDATE_RET( input != NULL );
333     RSA_VALIDATE_RET( output != NULL );
334 
335     if ( is_private )
336         elen = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(D) );
337     else
338         elen = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(E) );
339 
340     /* exponent aligned on 4 bytes */
341     elen = ((elen + 3)/4)*4;
342 
343     e_binary = mbedtls_calloc( 1, elen );
344     MBEDTLS_MPI_CHK( ( e_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
345 
346     if ( is_private )
347         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(D), e_binary, elen ) );
348     else
349         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(E), e_binary, elen ) );
350 
351     nlen = ctx->MBEDTLS_PRIVATE(len);
352     n_binary = mbedtls_calloc( 1, nlen );
353     MBEDTLS_MPI_CHK( ( n_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
354     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(N), n_binary, nlen ) );
355 
356 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
357     if ( is_protected )
358     {
359         philen = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(Phi) );
360 
361         /* first phi computation */
362         if ( 0 == philen )
363         {
364             MBEDTLS_MPI_CHK( rsa_deduce_phi( &ctx->MBEDTLS_PRIVATE(P) , &ctx->MBEDTLS_PRIVATE(Q) , &ctx->MBEDTLS_PRIVATE(Phi) ) );
365             philen = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(Phi)  );
366         }
367 
368         phi_binary = mbedtls_calloc( 1, philen );
369         MBEDTLS_MPI_CHK( ( phi_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
370         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(Phi) , phi_binary, philen ) );
371 
372         in_protected.expSize = elen;           /* Exponent length */
373         in_protected.OpSize  = nlen;           /* modulus length */
374         in_protected.pOp1    = input;
375         in_protected.pExp    = e_binary;       /* Exponent */
376         in_protected.pMod    = n_binary;       /* modulus */
377         in_protected.pPhi    = phi_binary;     /* Euler tolient function */
378     }
379     else
380     /* exponention in normal mode */
381     {
382         in.expSize = elen;           /* Exponent length */
383         in.OpSize  = nlen;           /* modulus length */
384         in.pOp1    = input;
385         in.pExp    = e_binary;       /* Exponent */
386         in.pMod    = n_binary;       /* modulus */
387     }
388 #else
389     in.expSize = elen;           /* Exponent length */
390     in.OpSize  = nlen;           /* modulus length */
391     in.pOp1    = input;
392     in.pExp    = e_binary;       /* Exponent */
393     in.pMod    = n_binary;       /* modulus */
394 #endif
395 
396     /* Enable HW peripheral clock */
397     __HAL_RCC_PKA_CLK_ENABLE();
398 
399     /* Initialize HW peripheral */
400     hpka.Instance = PKA;
401     MBEDTLS_MPI_CHK( ( HAL_PKA_Init( &hpka ) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
402 
403     /* Reset PKA RAM */
404     HAL_PKA_RAMReset(&hpka);
405 
406 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
407     if ( is_protected )
408     {
409         /* output = input ^ e_binary mod n (protected mode) */
410         MBEDTLS_MPI_CHK( ( HAL_PKA_ModExpProtectMode( &hpka, &in_protected, ST_PKA_TIMEOUT ) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
411     }
412     else
413     {
414          /* output = input ^ e_binary mod n (normal mode) */
415         MBEDTLS_MPI_CHK( ( HAL_PKA_ModExp( &hpka, &in, ST_PKA_TIMEOUT ) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
416     }
417 #else
418     /* output = input ^ e_binary mod n */
419     MBEDTLS_MPI_CHK( ( HAL_PKA_ModExp( &hpka, &in, ST_PKA_TIMEOUT ) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
420 #endif
421 
422     HAL_PKA_ModExp_GetResult( &hpka, (uint8_t *)output );
423 
424 cleanup:
425 
426     /* De-initialize HW peripheral */
427     HAL_PKA_DeInit( &hpka );
428 
429     /* Disable HW peripheral clock */
430     __HAL_RCC_PKA_CLK_DISABLE();
431 
432     if (e_binary != NULL)
433     {
434         mbedtls_platform_zeroize( e_binary, elen );
435         mbedtls_free( e_binary );
436     }
437 
438     if (n_binary != NULL)
439     {
440         mbedtls_platform_zeroize( n_binary, nlen );
441         mbedtls_free( n_binary );
442     }
443 
444 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
445     if (phi_binary != NULL)
446     {
447         mbedtls_platform_zeroize( phi_binary, philen );
448         mbedtls_free( phi_binary );
449     }
450 #endif
451 
452     return ret;
453 }
454 
455 #if !defined(MBEDTLS_RSA_NO_CRT)
456 /**
457  * @brief       Call the PKA CRT exponentiation :
458  *              m1 = input ^ dP mod p
459  *              m2 = input ^ dQ mod q
460  *              h =  (qp)*(m1 - m2) mod p
461  *              output = m2 + h*q
462  *
463  * @param[in]   input        Input of the modexp
464  * @param[in]   dP           p’s CRT exponent
465  * @param[in]   dQ           q’s CRT exponent
466  * @param[in]   p            first precomputed prime factor
467  * @param[in]   q            second precomputed prime factor
468  * @param[in]   qp           qinv = q^-1 mod p
469  * @param[out]  output       Output of the ModExp (with length of the modulus)
470  * @retval      0                                       Ok
471  * @retval      MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED    Error in the HW
472  */
rsa_crt_pka_modexp(const mbedtls_mpi * dp,const mbedtls_mpi * dq,const mbedtls_mpi * p,const mbedtls_mpi * q,const mbedtls_mpi * qp,const unsigned char * input,size_t input_len,unsigned char * output)473 static int rsa_crt_pka_modexp( const mbedtls_mpi *dp,
474                                const mbedtls_mpi *dq,
475                                const mbedtls_mpi *p,
476                                const mbedtls_mpi *q,
477                                const mbedtls_mpi *qp,
478                                const unsigned char *input,
479                                size_t input_len,
480                                unsigned char *output )
481 {
482     int ret = 0;
483     size_t dplen,
484            dqlen,
485            plen,
486            qlen,
487            qplen;
488     PKA_HandleTypeDef hpka = {0};
489     PKA_RSACRTExpInTypeDef in = {0};
490     uint8_t *dp_binary = NULL;
491     uint8_t *dq_binary = NULL;
492     uint8_t *p_binary = NULL;
493     uint8_t *q_binary = NULL;
494     uint8_t *qp_binary = NULL;
495 
496     dplen = mbedtls_mpi_size( dp );
497     dp_binary = mbedtls_calloc( 1, dplen );
498     MBEDTLS_MPI_CHK( ( dp_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
499     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( dp, dp_binary, dplen ) );
500 
501     dqlen = mbedtls_mpi_size( dq );
502     dq_binary = mbedtls_calloc( 1, dqlen );
503     MBEDTLS_MPI_CHK( ( dq_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
504     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( dq, dq_binary, dqlen ) );
505 
506     plen = mbedtls_mpi_size( p );
507     p_binary = mbedtls_calloc( 1, plen );
508     MBEDTLS_MPI_CHK( ( p_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
509     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( p, p_binary, plen ) );
510 
511     qlen = mbedtls_mpi_size( q );
512     q_binary = mbedtls_calloc( 1, qlen );
513     MBEDTLS_MPI_CHK( ( q_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
514     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( q, q_binary, qlen ) );
515 
516     qplen = mbedtls_mpi_size( qp );
517     qp_binary = mbedtls_calloc( 1, qplen );
518     MBEDTLS_MPI_CHK( ( qp_binary == NULL ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
519     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( qp, qp_binary, qplen ) );
520 
521     in.size    = input_len;
522     in.pOpDp   = dp_binary;
523     in.pOpDq   = dq_binary;
524     in.pOpQinv = qp_binary;
525     in.pPrimeP = p_binary;
526     in.pPrimeQ = q_binary;
527     in.popA    = input;
528 
529     /* Enable HW peripheral clock */
530     __HAL_RCC_PKA_CLK_ENABLE();
531 
532     /* Initialize HW peripheral */
533     hpka.Instance = PKA;
534     MBEDTLS_MPI_CHK( ( HAL_PKA_Init( &hpka ) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
535 
536     /* Reset PKA RAM */
537     HAL_PKA_RAMReset(&hpka);
538 
539     MBEDTLS_MPI_CHK( ( HAL_PKA_RSACRTExp( &hpka, &in, ST_PKA_TIMEOUT ) != HAL_OK ) ? MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED : 0 );
540 
541     HAL_PKA_RSACRTExp_GetResult( &hpka, (uint8_t *)output );
542 
543 cleanup:
544 
545     /* De-initialize HW peripheral */
546     HAL_PKA_DeInit( &hpka );
547 
548     /* Disable HW peripheral clock */
549     __HAL_RCC_PKA_CLK_DISABLE();
550 
551     if (dp_binary != NULL)
552     {
553         mbedtls_platform_zeroize( dp_binary, dplen );
554         mbedtls_free( dp_binary );
555     }
556 
557     if (dq_binary != NULL)
558     {
559         mbedtls_platform_zeroize( dq_binary, dqlen );
560         mbedtls_free( dq_binary );
561     }
562 
563     if (p_binary != NULL)
564     {
565         mbedtls_platform_zeroize( p_binary, plen );
566         mbedtls_free( p_binary );
567     }
568 
569     if (q_binary != NULL)
570     {
571         mbedtls_platform_zeroize( q_binary, qlen );
572         mbedtls_free( q_binary );
573     }
574 
575     if (qp_binary != NULL)
576     {
577         mbedtls_platform_zeroize( qp_binary, qplen );
578         mbedtls_free( qp_binary );
579     }
580 
581     return ret;
582 }
583 #endif /* !MBEDTLS_RSA_NO_CRT */
584 
585 #if defined(MBEDTLS_PKCS1_V15)
586 /* constant-time buffer comparison */
mbedtls_safer_memcmp(const void * a,const void * b,size_t n)587 static inline int mbedtls_safer_memcmp( const void *a, const void *b, size_t n )
588 {
589     size_t i;
590     const unsigned char *A = (const unsigned char *) a;
591     const unsigned char *B = (const unsigned char *) b;
592     unsigned char diff = 0;
593 
594     for( i = 0; i < n; i++ )
595         diff |= A[i] ^ B[i];
596 
597     return( diff );
598 }
599 #endif /* MBEDTLS_PKCS1_V15 */
600 
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)601 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
602                         const mbedtls_mpi *N,
603                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
604                         const mbedtls_mpi *D, const mbedtls_mpi *E )
605 {
606     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
607     RSA_VALIDATE_RET( ctx != NULL );
608 
609     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->MBEDTLS_PRIVATE(N), N ) ) != 0 ) ||
610         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->MBEDTLS_PRIVATE(P), P ) ) != 0 ) ||
611         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->MBEDTLS_PRIVATE(Q), Q ) ) != 0 ) ||
612         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->MBEDTLS_PRIVATE(D), D ) ) != 0 ) ||
613         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->MBEDTLS_PRIVATE(E), E ) ) != 0 ) )
614     {
615         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
616     }
617 
618     if( N != NULL )
619         ctx->MBEDTLS_PRIVATE(len) = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(N) );
620 
621     return( 0 );
622 }
623 
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)624 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
625                             unsigned char const *N, size_t N_len,
626                             unsigned char const *P, size_t P_len,
627                             unsigned char const *Q, size_t Q_len,
628                             unsigned char const *D, size_t D_len,
629                             unsigned char const *E, size_t E_len )
630 {
631     int ret = 0;
632     RSA_VALIDATE_RET( ctx != NULL );
633 
634     if( N != NULL )
635     {
636         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->MBEDTLS_PRIVATE(N), N, N_len ) );
637         ctx->MBEDTLS_PRIVATE(len) = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(N) );
638     }
639 
640     if( P != NULL )
641         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->MBEDTLS_PRIVATE(P), P, P_len ) );
642 
643     if( Q != NULL )
644         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->MBEDTLS_PRIVATE(Q), Q, Q_len ) );
645 
646     if( D != NULL )
647         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->MBEDTLS_PRIVATE(D), D, D_len ) );
648 
649     if( E != NULL )
650         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->MBEDTLS_PRIVATE(E), E, E_len ) );
651 
652 cleanup:
653 
654     if( ret != 0 )
655         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
656 
657     return( 0 );
658 }
659 
660 /*
661  * Checks whether the context fields are set in such a way
662  * that the RSA primitives will be able to execute without error.
663  * It does *not* make guarantees for consistency of the parameters.
664  */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)665 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
666                               int blinding_needed )
667 {
668 #if !defined(MBEDTLS_RSA_NO_CRT)
669     /* blinding_needed is only used for NO_CRT to decide whether
670      * P,Q need to be present or not. */
671     ((void) blinding_needed);
672 #endif
673 
674     if( ctx->MBEDTLS_PRIVATE(len) != mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(N) ) ||
675         ctx->MBEDTLS_PRIVATE(len) > MBEDTLS_MPI_MAX_SIZE )
676     {
677         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
678     }
679 
680     /*
681      * 1. Modular exponentiation needs positive, odd moduli.
682      */
683 
684     /* Modular exponentiation wrt. N is always used for
685      * RSA public key operations. */
686     if( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(N), 0 ) <= 0 ||
687         mbedtls_mpi_get_bit( &ctx->MBEDTLS_PRIVATE(N), 0 ) == 0  )
688     {
689         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
690     }
691 
692 #if !defined(MBEDTLS_RSA_NO_CRT)
693     /* Modular exponentiation for P and Q is only
694      * used for private key operations and if CRT
695      * is used. */
696     if( is_priv &&
697         ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(P), 0 ) <= 0 ||
698           mbedtls_mpi_get_bit( &ctx->MBEDTLS_PRIVATE(P), 0 ) == 0 ||
699           mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(Q), 0 ) <= 0 ||
700           mbedtls_mpi_get_bit( &ctx->MBEDTLS_PRIVATE(Q), 0 ) == 0  ) )
701     {
702         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
703     }
704 #endif /* !MBEDTLS_RSA_NO_CRT */
705 
706     /*
707      * 2. Exponents must be positive
708      */
709 
710     /* Always need E for public key operations */
711     if( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(E), 0 ) <= 0 )
712         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
713 
714 #if defined(MBEDTLS_RSA_NO_CRT)
715     /* For private key operations, use D or DP & DQ
716      * as (unblinded) exponents. */
717     if( is_priv && mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(D), 0 ) <= 0 )
718         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
719 #else
720     if( is_priv &&
721         ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(DP), 0 ) <= 0 ||
722           mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(DQ), 0 ) <= 0  ) )
723     {
724         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
725     }
726 #endif /* MBEDTLS_RSA_NO_CRT */
727 
728     /* Blinding shouldn't make exponents negative either,
729      * so check that P, Q >= 1 if that hasn't yet been
730      * done as part of 1. */
731 #if defined(MBEDTLS_RSA_NO_CRT)
732     if( is_priv && blinding_needed &&
733         ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(P), 0 ) <= 0 ||
734           mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(Q), 0 ) <= 0 ) )
735     {
736         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
737     }
738 #endif
739 
740     /* It wouldn't lead to an error if it wasn't satisfied,
741      * but check for QP >= 1 nonetheless. */
742 #if !defined(MBEDTLS_RSA_NO_CRT)
743     if( is_priv &&
744         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(QP), 0 ) <= 0 )
745     {
746         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
747     }
748 #endif
749 
750     return( 0 );
751 }
752 
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)753 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
754 {
755     int ret = 0;
756     int have_N, have_P, have_Q, have_D, have_E;
757     int n_missing, pq_missing, d_missing, is_pub, is_priv;
758 
759     RSA_VALIDATE_RET( ctx != NULL );
760 
761     have_N = ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(N), 0 ) != 0 );
762     have_P = ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(P), 0 ) != 0 );
763     have_Q = ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(Q), 0 ) != 0 );
764     have_D = ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(D), 0 ) != 0 );
765     have_E = ( mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(E), 0 ) != 0 );
766 
767     /*
768      * Check whether provided parameters are enough
769      * to deduce all others. The following incomplete
770      * parameter sets for private keys are supported:
771      *
772      * (1) P, Q missing.
773      * (2) D and potentially N missing.
774      *
775      */
776 
777     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
778     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
779     d_missing  =              have_P &&  have_Q && !have_D && have_E;
780     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
781 
782     /* These three alternatives are mutually exclusive */
783     is_priv = n_missing || pq_missing || d_missing;
784 
785     if( !is_priv && !is_pub )
786         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
787 
788     /*
789      * Step 1: Deduce N if P, Q are provided.
790      */
791 
792     if( !have_N && have_P && have_Q )
793     {
794         if( ( ret = rsa_mpi2pka_mul( &ctx->MBEDTLS_PRIVATE(N), &ctx->MBEDTLS_PRIVATE(P),
795                                      &ctx->MBEDTLS_PRIVATE(Q) ) ) != 0 )
796         {
797             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
798         }
799 
800         ctx->MBEDTLS_PRIVATE(len) = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(N) );
801     }
802 
803     /*
804      * Step 2: Deduce and verify all remaining core parameters.
805      */
806 
807     if( pq_missing )
808     {
809         ret = mbedtls_rsa_deduce_primes( &ctx->MBEDTLS_PRIVATE(N), &ctx->MBEDTLS_PRIVATE(E), &ctx->MBEDTLS_PRIVATE(D),
810                                          &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q) );
811         if( ret != 0 )
812             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
813 
814     }
815     else if( d_missing )
816     {
817         if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->MBEDTLS_PRIVATE(P),
818                                                          &ctx->MBEDTLS_PRIVATE(Q),
819                                                          &ctx->MBEDTLS_PRIVATE(E),
820                                                          &ctx->MBEDTLS_PRIVATE(D) ) ) != 0 )
821         {
822             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
823         }
824     }
825 
826     /*
827      * Step 3: Deduce all additional parameters specific
828      *         to our current RSA implementation.
829      */
830 #if !defined(MBEDTLS_RSA_NO_CRT)
831     if( is_priv )
832     {
833         ret = mbedtls_rsa_deduce_crt( &ctx->MBEDTLS_PRIVATE(P),  &ctx->MBEDTLS_PRIVATE(Q),  &ctx->MBEDTLS_PRIVATE(D),
834                                       &ctx->MBEDTLS_PRIVATE(DP), &ctx->MBEDTLS_PRIVATE(DQ), &ctx->MBEDTLS_PRIVATE(QP) );
835         if( ret != 0 )
836             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
837     }
838 #endif /* MBEDTLS_RSA_NO_CRT */
839 
840     /*
841      * Step 3: Basic sanity checks
842      */
843 
844     return( rsa_check_context( ctx, is_priv, 1 ) );
845 }
846 
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)847 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
848                             unsigned char *N, size_t N_len,
849                             unsigned char *P, size_t P_len,
850                             unsigned char *Q, size_t Q_len,
851                             unsigned char *D, size_t D_len,
852                             unsigned char *E, size_t E_len )
853 {
854     int ret = 0;
855     int is_priv;
856     RSA_VALIDATE_RET( ctx != NULL );
857 
858     /* Check if key is private or public */
859     is_priv =
860         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(N), 0 ) != 0 &&
861         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(P), 0 ) != 0 &&
862         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(Q), 0 ) != 0 &&
863         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(D), 0 ) != 0 &&
864         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(E), 0 ) != 0;
865 
866     if( !is_priv )
867     {
868         /* If we're trying to export private parameters for a public key,
869          * something must be wrong. */
870         if( P != NULL || Q != NULL || D != NULL )
871             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
872 
873     }
874 
875     if( N != NULL )
876         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(N), N, N_len ) );
877 
878     if( P != NULL )
879         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(P), P, P_len ) );
880 
881     if( Q != NULL )
882         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(Q), Q, Q_len ) );
883 
884     if( D != NULL )
885         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(D), D, D_len ) );
886 
887     if( E != NULL )
888         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->MBEDTLS_PRIVATE(E), E, E_len ) );
889 
890 cleanup:
891 
892     return( ret );
893 }
894 
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)895 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
896                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
897                         mbedtls_mpi *D, mbedtls_mpi *E )
898 {
899     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
900     int is_priv;
901     RSA_VALIDATE_RET( ctx != NULL );
902 
903     /* Check if key is private or public */
904     is_priv =
905         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(N), 0 ) != 0 &&
906         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(P), 0 ) != 0 &&
907         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(Q), 0 ) != 0 &&
908         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(D), 0 ) != 0 &&
909         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(E), 0 ) != 0;
910 
911     if( !is_priv )
912     {
913         /* If we're trying to export private parameters for a public key,
914          * something must be wrong. */
915         if( P != NULL || Q != NULL || D != NULL )
916             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
917 
918     }
919 
920     /* Export all requested core parameters. */
921 
922     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->MBEDTLS_PRIVATE(N) ) ) != 0 ) ||
923         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->MBEDTLS_PRIVATE(P) ) ) != 0 ) ||
924         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->MBEDTLS_PRIVATE(Q) ) ) != 0 ) ||
925         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->MBEDTLS_PRIVATE(D) ) ) != 0 ) ||
926         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->MBEDTLS_PRIVATE(E) ) ) != 0 ) )
927     {
928         return( ret );
929     }
930 
931     return( 0 );
932 }
933 
934 /*
935  * Export CRT parameters
936  * This must also be implemented if CRT is not used, for being able to
937  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
938  * can be used in this case.
939  */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)940 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
941                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
942 {
943     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
944     int is_priv;
945     RSA_VALIDATE_RET( ctx != NULL );
946 
947     /* Check if key is private or public */
948     is_priv =
949         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(N), 0 ) != 0 &&
950         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(P), 0 ) != 0 &&
951         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(Q), 0 ) != 0 &&
952         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(D), 0 ) != 0 &&
953         mbedtls_mpi_cmp_int( &ctx->MBEDTLS_PRIVATE(E), 0 ) != 0;
954 
955     if( !is_priv )
956         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
957 
958 #if !defined(MBEDTLS_RSA_NO_CRT)
959     /* Export all requested blinding parameters. */
960     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->MBEDTLS_PRIVATE(DP) ) ) != 0 ) ||
961         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->MBEDTLS_PRIVATE(DQ) ) ) != 0 ) ||
962         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->MBEDTLS_PRIVATE(QP) ) ) != 0 ) )
963     {
964         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
965     }
966 #else
967     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q), &ctx->MBEDTLS_PRIVATE(D),
968                                         DP, DQ, QP ) ) != 0 )
969     {
970         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
971     }
972 #endif
973 
974     return( 0 );
975 }
976 
977 /*
978  * Initialize an RSA context
979  */
mbedtls_rsa_init(mbedtls_rsa_context * ctx)980 void mbedtls_rsa_init( mbedtls_rsa_context *ctx )
981 {
982     RSA_VALIDATE( ctx != NULL );
983 
984     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
985 
986 #if defined(MBEDTLS_THREADING_C)
987     mbedtls_mutex_init( &ctx->MBEDTLS_PRIVATE(mutex) );
988 #endif
989 }
990 
991 /*
992  * Set padding for an existing RSA context
993  */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,mbedtls_md_type_t hash_id)994 int mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
995                               mbedtls_md_type_t hash_id )
996 {
997     RSA_VALIDATE( ctx != NULL );
998     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
999                   padding == MBEDTLS_RSA_PKCS_V21 );
1000 
1001     ctx->MBEDTLS_PRIVATE(padding) = padding;
1002     ctx->MBEDTLS_PRIVATE(hash_id) = hash_id;
1003 
1004     return ( 0 );
1005 }
1006 
1007 /*
1008  * Get length in bytes of RSA modulus
1009  */
1010 
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)1011 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
1012 {
1013     return( ctx->MBEDTLS_PRIVATE(len) );
1014 }
1015 
1016 
1017 #if defined(MBEDTLS_GENPRIME)
1018 
1019 /*
1020  * Generate an RSA keypair
1021  *
1022  * This generation method follows the RSA key pair generation procedure of
1023  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
1024  */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)1025 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
1026                  int (*f_rng)(void *, unsigned char *, size_t),
1027                  void *p_rng,
1028                  unsigned int nbits, int exponent )
1029 {
1030     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1031     mbedtls_mpi H, G, L;
1032     int prime_quality = 0;
1033     RSA_VALIDATE_RET( ctx != NULL );
1034     RSA_VALIDATE_RET( f_rng != NULL );
1035 
1036     if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
1037         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1038 
1039     /*
1040      * If the modulus is 1024 bit long or shorter, then the security strength of
1041      * the RSA algorithm is less than or equal to 80 bits and therefore an error
1042      * rate of 2^-80 is sufficient.
1043      */
1044     if( nbits > 1024 )
1045         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
1046 
1047     mbedtls_mpi_init( &H );
1048     mbedtls_mpi_init( &G );
1049     mbedtls_mpi_init( &L );
1050 
1051     /*
1052      * find primes P and Q with Q < P so that:
1053      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
1054      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
1055      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
1056      */
1057     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->MBEDTLS_PRIVATE(E), exponent ) );
1058 
1059     do
1060     {
1061         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->MBEDTLS_PRIVATE(P), nbits >> 1,
1062                                                 prime_quality, f_rng, p_rng ) );
1063 
1064         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->MBEDTLS_PRIVATE(Q), nbits >> 1,
1065                                                 prime_quality, f_rng, p_rng ) );
1066 
1067         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
1068         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q) ) );
1069         if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
1070             continue;
1071 
1072         /* not required by any standards, but some users rely on the fact that P > Q */
1073         if( H.MBEDTLS_PRIVATE(s) < 0 )
1074             mbedtls_mpi_swap( &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q) );
1075 
1076         /* Temporarily replace P,Q by P-1, Q-1 */
1077         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(P), 1 ) );
1078         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->MBEDTLS_PRIVATE(Q), &ctx->MBEDTLS_PRIVATE(Q), 1 ) );
1079         MBEDTLS_MPI_CHK( rsa_mpi2pka_mul( &H, &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q) ) );
1080 
1081         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
1082         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->MBEDTLS_PRIVATE(E), &H  ) );
1083         if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
1084             continue;
1085 
1086         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
1087         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q) ) );
1088         MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
1089         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->MBEDTLS_PRIVATE(D), &ctx->MBEDTLS_PRIVATE(E), &L ) );
1090 
1091         if( mbedtls_mpi_bitlen( &ctx->MBEDTLS_PRIVATE(D) ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
1092             continue;
1093 
1094         break;
1095     }
1096     while( 1 );
1097 
1098     /* Restore P,Q */
1099     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->MBEDTLS_PRIVATE(P),  &ctx->MBEDTLS_PRIVATE(P), 1 ) );
1100     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->MBEDTLS_PRIVATE(Q),  &ctx->MBEDTLS_PRIVATE(Q), 1 ) );
1101 
1102     MBEDTLS_MPI_CHK( rsa_mpi2pka_mul( &ctx->MBEDTLS_PRIVATE(N), &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q) ) );
1103 
1104     ctx->MBEDTLS_PRIVATE(len) = mbedtls_mpi_size( &ctx->MBEDTLS_PRIVATE(N) );
1105 
1106 #if !defined(MBEDTLS_RSA_NO_CRT)
1107     /*
1108      * DP = D mod (P - 1)
1109      * DQ = D mod (Q - 1)
1110      * QP = Q^-1 mod P
1111      */
1112     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q), &ctx->MBEDTLS_PRIVATE(D),
1113                                              &ctx->MBEDTLS_PRIVATE(DP), &ctx->MBEDTLS_PRIVATE(DQ), &ctx->MBEDTLS_PRIVATE(QP) ) );
1114 #endif /* MBEDTLS_RSA_NO_CRT */
1115 
1116     /* Double-check */
1117     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
1118 
1119 cleanup:
1120 
1121     mbedtls_mpi_free( &H );
1122     mbedtls_mpi_free( &G );
1123     mbedtls_mpi_free( &L );
1124 
1125     if( ret != 0 )
1126     {
1127         mbedtls_rsa_free( ctx );
1128         return( MBEDTLS_ERR_RSA_KEY_GEN_FAILED + ret );
1129     }
1130 
1131     return( 0 );
1132 }
1133 
1134 #endif /* MBEDTLS_GENPRIME */
1135 
1136 /*
1137  * Check a public RSA key
1138  */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)1139 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
1140 {
1141     RSA_VALIDATE_RET( ctx != NULL );
1142 
1143     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
1144         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1145 
1146     if( mbedtls_mpi_bitlen( &ctx->MBEDTLS_PRIVATE(N) ) < 128 )
1147     {
1148         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1149     }
1150 
1151     if( mbedtls_mpi_get_bit( &ctx->MBEDTLS_PRIVATE(E), 0 ) == 0 ||
1152         mbedtls_mpi_bitlen( &ctx->MBEDTLS_PRIVATE(E) )     < 2  ||
1153         mbedtls_mpi_cmp_mpi( &ctx->MBEDTLS_PRIVATE(E), &ctx->MBEDTLS_PRIVATE(N) ) >= 0 )
1154     {
1155         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1156     }
1157 
1158     return( 0 );
1159 }
1160 
1161 /*
1162  * Check for the consistency of all fields in an RSA private key context
1163  */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)1164 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
1165 {
1166     RSA_VALIDATE_RET( ctx != NULL );
1167 
1168     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
1169         rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
1170     {
1171         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1172     }
1173 
1174     if( mbedtls_rsa_validate_params( &ctx->MBEDTLS_PRIVATE(N), &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q),
1175                                      &ctx->MBEDTLS_PRIVATE(D), &ctx->MBEDTLS_PRIVATE(E), NULL, NULL ) != 0 )
1176     {
1177         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1178     }
1179 
1180 #if !defined(MBEDTLS_RSA_NO_CRT)
1181     else if( mbedtls_rsa_validate_crt( &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q), &ctx->MBEDTLS_PRIVATE(D),
1182                                        &ctx->MBEDTLS_PRIVATE(DP), &ctx->MBEDTLS_PRIVATE(DQ), &ctx->MBEDTLS_PRIVATE(QP) ) != 0 )
1183     {
1184         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1185     }
1186 #endif
1187 
1188     return( 0 );
1189 }
1190 
1191 /*
1192  * Check if contexts holding a public and private key match
1193  */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)1194 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
1195                                 const mbedtls_rsa_context *prv )
1196 {
1197     RSA_VALIDATE_RET( pub != NULL );
1198     RSA_VALIDATE_RET( prv != NULL );
1199 
1200     if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
1201         mbedtls_rsa_check_privkey( prv ) != 0 )
1202     {
1203         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1204     }
1205 
1206     if( mbedtls_mpi_cmp_mpi( &pub->MBEDTLS_PRIVATE(N), &prv->MBEDTLS_PRIVATE(N) ) != 0 ||
1207         mbedtls_mpi_cmp_mpi( &pub->MBEDTLS_PRIVATE(E), &prv->MBEDTLS_PRIVATE(E) ) != 0 )
1208     {
1209         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
1210     }
1211 
1212     return( 0 );
1213 }
1214 
1215 /*
1216  * Do an RSA public key operation
1217  */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)1218 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
1219                 const unsigned char *input,
1220                 unsigned char *output )
1221 {
1222     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1223     mbedtls_mpi T;
1224 
1225     RSA_VALIDATE_RET( ctx != NULL );
1226     RSA_VALIDATE_RET( input != NULL );
1227     RSA_VALIDATE_RET( output != NULL );
1228 
1229     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
1230         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1231 
1232     mbedtls_mpi_init( &T );
1233 
1234 #if defined(MBEDTLS_THREADING_C)
1235     if( ( ret = mbedtls_mutex_lock( &ctx->MBEDTLS_PRIVATE(mutex) ) ) != 0 )
1236         return( ret );
1237 #endif
1238 
1239     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->MBEDTLS_PRIVATE(len) ) );
1240 
1241     if( mbedtls_mpi_cmp_mpi( &T, &ctx->MBEDTLS_PRIVATE(N) ) >= 0 )
1242     {
1243         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1244         goto cleanup;
1245     }
1246 
1247     /* output = input ^ E mod N */
1248 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
1249     /*
1250      * Protected decryption
1251      */
1252     /* T = T ^ D mod N */
1253     MBEDTLS_MPI_CHK( rsa_pka_modexp( ctx, 0 /* private */, 0 /* un protected mode */, input, output ) );
1254 #else
1255     /* T = T ^ D mod N */
1256     MBEDTLS_MPI_CHK( rsa_pka_modexp( ctx, 0 /* private */, input, output ) );
1257 #endif
1258 
1259 cleanup:
1260 
1261 #if defined(MBEDTLS_THREADING_C)
1262     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1263         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1264 #endif
1265 
1266     mbedtls_mpi_free( &T );
1267 
1268     if( ret != 0 )
1269         return( MBEDTLS_ERR_RSA_PUBLIC_FAILED + ret );
1270 
1271     return( 0 );
1272 }
1273 
1274 /*
1275  * Exponent blinding supposed to prevent side-channel attacks using multiple
1276  * traces of measurements to recover the RSA key. The more collisions are there,
1277  * the more bits of the key can be recovered. See [3].
1278  *
1279  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
1280  * observations on average.
1281  *
1282  * For example with 28 byte blinding to achieve 2 collisions the adversary has
1283  * to make 2^112 observations on average.
1284  *
1285  * (With the currently (as of 2017 April) known best algorithms breaking 2048
1286  * bit RSA requires approximately as much time as trying out 2^112 random keys.
1287  * Thus in this sense with 28 byte blinding the security is not reduced by
1288  * side-channel attacks like the one in [3])
1289  *
1290  * This countermeasure does not help if the key recovery is possible with a
1291  * single trace.
1292  */
1293 #define RSA_EXPONENT_BLINDING 28
1294 
1295 /*
1296  * Do an RSA private key operation
1297  */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)1298 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
1299                  int (*f_rng)(void *, unsigned char *, size_t),
1300                  void *p_rng,
1301                  const unsigned char *input,
1302                  unsigned char *output )
1303 {
1304     /* Silence warnings about unused variables */
1305     (void)p_rng; (void)f_rng;
1306     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1307 
1308     /* Temporary holding the result */
1309     mbedtls_mpi T;
1310 
1311 #if !defined(MBEDTLS_RSA_NO_CRT)
1312     /* Pointers to actual exponents to be used - either the unblinded
1313      * or the blinded ones, depending on the presence of a PRNG. */
1314     mbedtls_mpi *DP = &ctx->MBEDTLS_PRIVATE(DP);
1315     mbedtls_mpi *DQ = &ctx->MBEDTLS_PRIVATE(DQ);
1316 #endif /* MBEDTLS_RSA_NO_CRT */
1317 
1318     /* Temporaries holding the initial input and the double
1319      * checked result; should be the same in the end. */
1320     mbedtls_mpi I, C;
1321 
1322     RSA_VALIDATE_RET( ctx != NULL );
1323     RSA_VALIDATE_RET( input  != NULL );
1324     RSA_VALIDATE_RET( output != NULL );
1325 
1326     if( rsa_check_context( ctx, 1             /* private key checks */,
1327                                 f_rng != NULL /* blinding y/n       */ ) != 0 )
1328     {
1329         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1330     }
1331 
1332 #if defined(MBEDTLS_THREADING_C)
1333     if( ( ret = mbedtls_mutex_lock( &ctx->MBEDTLS_PRIVATE(mutex) ) ) != 0 )
1334         return( ret );
1335 #endif
1336 
1337     /* MPI Initialization */
1338     mbedtls_mpi_init( &T );
1339     mbedtls_mpi_init( &I );
1340     mbedtls_mpi_init( &C );
1341 
1342     /* End of MPI initialization */
1343 
1344     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->MBEDTLS_PRIVATE(len) ) );
1345     if( mbedtls_mpi_cmp_mpi( &T, &ctx->MBEDTLS_PRIVATE(N) ) >= 0 )
1346     {
1347         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1348         goto cleanup;
1349     }
1350 
1351     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
1352 
1353 #if defined(MBEDTLS_RSA_NO_CRT)
1354 #if defined(GENERATOR_HW_PKA_EXTENDED_API)
1355     /*
1356      * Protected decryption
1357      */
1358     /* T = T ^ D mod N */
1359     MBEDTLS_MPI_CHK( rsa_pka_modexp( ctx, 1 /* private */, 1 /* protected mode */, input, output ) );
1360 #else
1361     /* T = T ^ D mod N */
1362     MBEDTLS_MPI_CHK( rsa_pka_modexp( ctx, 1 /* private */, input, output ) );
1363 #endif
1364 #else
1365     /*
1366      * Faster decryption using the CRT
1367      */
1368     MBEDTLS_MPI_CHK( rsa_crt_pka_modexp( DP, DQ, &ctx->MBEDTLS_PRIVATE(P), &ctx->MBEDTLS_PRIVATE(Q), &ctx->MBEDTLS_PRIVATE(QP), input, ctx->MBEDTLS_PRIVATE(len), output) );
1369 #endif /* MBEDTLS_RSA_NO_CRT */
1370 
1371 cleanup:
1372 #if defined(MBEDTLS_THREADING_C)
1373     if( mbedtls_mutex_unlock( &ctx->MBEDTLS_PRIVATE(mutex) ) != 0 )
1374         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1375 #endif
1376 
1377     mbedtls_mpi_free( &T );
1378     mbedtls_mpi_free( &C );
1379     mbedtls_mpi_free( &I );
1380 
1381     if( ret != 0 )
1382         return( MBEDTLS_ERR_RSA_PRIVATE_FAILED + ret );
1383 
1384     return( 0 );
1385 }
1386 
1387 #if defined(MBEDTLS_PKCS1_V21)
1388 /**
1389  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1390  *
1391  * \param dst       buffer to mask
1392  * \param dlen      length of destination buffer
1393  * \param src       source of the mask generation
1394  * \param slen      length of the source buffer
1395  * \param md_ctx    message digest context to use
1396  */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_context_t * md_ctx)1397 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1398                       size_t slen, mbedtls_md_context_t *md_ctx )
1399 {
1400     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1401     unsigned char counter[4];
1402     unsigned char *p;
1403     unsigned int hlen;
1404     size_t i, use_len;
1405     int ret = 0;
1406 
1407     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1408     memset( counter, 0, 4 );
1409 
1410     hlen = mbedtls_md_get_size( md_ctx->MBEDTLS_PRIVATE(md_info) );
1411 
1412     /* Generate and apply dbMask */
1413     p = dst;
1414 
1415     while( dlen > 0 )
1416     {
1417         use_len = hlen;
1418         if( dlen < hlen )
1419             use_len = dlen;
1420 
1421         if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1422             goto exit;
1423         if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1424             goto exit;
1425         if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1426             goto exit;
1427         if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1428             goto exit;
1429 
1430         for( i = 0; i < use_len; ++i )
1431             *p++ ^= mask[i];
1432 
1433         counter[3]++;
1434 
1435         dlen -= use_len;
1436     }
1437 
1438 exit:
1439     mbedtls_platform_zeroize( mask, sizeof( mask ) );
1440 
1441     return( ret );
1442 }
1443 #endif /* MBEDTLS_PKCS1_V21 */
1444 
1445 #if defined(MBEDTLS_PKCS1_V21)
1446 /*
1447  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1448  */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1449 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1450                             int (*f_rng)(void *, unsigned char *, size_t),
1451                             void *p_rng,
1452                             const unsigned char *label, size_t label_len,
1453                             size_t ilen,
1454                             const unsigned char *input,
1455                             unsigned char *output )
1456 {
1457     size_t olen;
1458     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1459     unsigned char *p = output;
1460     unsigned int hlen;
1461     const mbedtls_md_info_t *md_info;
1462     mbedtls_md_context_t md_ctx;
1463 
1464     RSA_VALIDATE_RET( ctx != NULL );
1465     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1466                       mode == MBEDTLS_RSA_PUBLIC );
1467     RSA_VALIDATE_RET( output != NULL );
1468     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1469     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1470 
1471     if( f_rng == NULL )
1472         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1473 
1474     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->MBEDTLS_PRIVATE(hash_id) );
1475     if( md_info == NULL )
1476         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1477 
1478     olen = ctx->MBEDTLS_PRIVATE(len);
1479     hlen = mbedtls_md_get_size( md_info );
1480 
1481     /* first comparison checks for overflow */
1482     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1483         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1484 
1485     memset( output, 0, olen );
1486 
1487     *p++ = 0;
1488 
1489     /* Generate a random octet string seed */
1490     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1491         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1492 
1493     p += hlen;
1494 
1495     /* Construct DB */
1496     if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1497         return( ret );
1498     p += hlen;
1499     p += olen - 2 * hlen - 2 - ilen;
1500     *p++ = 1;
1501     if( ilen != 0 )
1502         memcpy( p, input, ilen );
1503 
1504     mbedtls_md_init( &md_ctx );
1505     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1506         goto exit;
1507 
1508     /* maskedDB: Apply dbMask to DB */
1509     if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1510                           &md_ctx ) ) != 0 )
1511         goto exit;
1512 
1513     /* maskedSeed: Apply seedMask to seed */
1514     if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1515                           &md_ctx ) ) != 0 )
1516         goto exit;
1517 
1518 exit:
1519     mbedtls_md_free( &md_ctx );
1520 
1521     if( ret != 0 )
1522         return( ret );
1523 
1524     return( mbedtls_rsa_public(  ctx, output, output ) );
1525 }
1526 #endif /* MBEDTLS_PKCS1_V21 */
1527 
1528 #if defined(MBEDTLS_PKCS1_V15)
1529 /*
1530  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1531  */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1532 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1533                                  int (*f_rng)(void *, unsigned char *, size_t),
1534                                  void *p_rng,
1535                                  size_t ilen,
1536                                  const unsigned char *input,
1537                                  unsigned char *output )
1538 {
1539     size_t nb_pad, olen;
1540     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1541     unsigned char *p = output;
1542 
1543     RSA_VALIDATE_RET( ctx != NULL );
1544     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1545                       mode == MBEDTLS_RSA_PUBLIC );
1546     RSA_VALIDATE_RET( output != NULL );
1547     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1548 
1549     olen = ctx->MBEDTLS_PRIVATE(len);
1550 
1551     /* first comparison checks for overflow */
1552     if( ilen + 11 < ilen || olen < ilen + 11 )
1553         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1554 
1555     nb_pad = olen - 3 - ilen;
1556 
1557     if( f_rng == NULL )
1558         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1559 
1560     /* EM = 0x00 || 0x02 || PS || 0x00 || M */
1561     *p++ = 0x00;
1562     *p++ = MBEDTLS_RSA_CRYPT;
1563 
1564     /* Generate PS and concatenate after 0x00 || 0x02 */
1565     while( nb_pad-- > 0 )
1566     {
1567         int rng_dl = 100;
1568 
1569         do {
1570             ret = f_rng( p_rng, p, 1 );
1571         } while( *p == 0 && --rng_dl && ret == 0 );
1572 
1573         /* Check if RNG failed to generate data */
1574         if( rng_dl == 0 || ret != 0 )
1575             return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
1576 
1577         p++;
1578     }
1579 
1580     /* Concatenate 0x00 || M after 0x00 || 0x02 || PS */
1581     *p++ = 0x00;
1582     if( ilen != 0 )
1583         memcpy( p, input, ilen );
1584 
1585     /* Encrypt */
1586     return( mbedtls_rsa_public(  ctx, output, output ) );
1587 }
1588 #endif /* MBEDTLS_PKCS1_V15 */
1589 
1590 /*
1591  * Add the message padding, then do an RSA operation
1592  */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1593 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1594                        int (*f_rng)(void *, unsigned char *, size_t),
1595                        void *p_rng,
1596                        size_t ilen,
1597                        const unsigned char *input,
1598                        unsigned char *output )
1599 {
1600     RSA_VALIDATE_RET( ctx != NULL );
1601     RSA_VALIDATE_RET( output != NULL );
1602     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1603 
1604     switch( ctx->MBEDTLS_PRIVATE(padding) )
1605     {
1606 #if defined(MBEDTLS_PKCS1_V15)
1607         case MBEDTLS_RSA_PKCS_V15:
1608             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, ilen,
1609                                                 input, output );
1610 #endif
1611 
1612 #if defined(MBEDTLS_PKCS1_V21)
1613         case MBEDTLS_RSA_PKCS_V21:
1614             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, NULL, 0,
1615                                            ilen, input, output );
1616 #endif
1617 
1618         default:
1619             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1620     }
1621 }
1622 
1623 #if defined(MBEDTLS_PKCS1_V21)
1624 /*
1625  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1626  */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1627 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1628                             int (*f_rng)(void *, unsigned char *, size_t),
1629                             void *p_rng,
1630                             const unsigned char *label, size_t label_len,
1631                             size_t *olen,
1632                             const unsigned char *input,
1633                             unsigned char *output,
1634                             size_t output_max_len )
1635 {
1636     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1637     size_t ilen, i, pad_len;
1638     unsigned char *p, bad, pad_done;
1639     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1640     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1641     unsigned int hlen;
1642     const mbedtls_md_info_t *md_info;
1643     mbedtls_md_context_t md_ctx;
1644 
1645     RSA_VALIDATE_RET( ctx != NULL );
1646     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1647     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1648     RSA_VALIDATE_RET( input != NULL );
1649     RSA_VALIDATE_RET( olen != NULL );
1650 
1651     /*
1652      * Parameters sanity checks
1653      */
1654     ilen = ctx->MBEDTLS_PRIVATE(len);
1655 
1656     if( ilen < 16 || ilen > sizeof( buf ) )
1657         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1658 
1659     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->MBEDTLS_PRIVATE(hash_id) );
1660     if( md_info == NULL )
1661         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1662 
1663     hlen = mbedtls_md_get_size( md_info );
1664 
1665     // checking for integer underflow
1666     if( 2 * hlen + 2 > ilen )
1667         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1668 
1669     /*
1670      * RSA operation
1671      */
1672     ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1673 
1674     if( ret != 0 )
1675         goto cleanup;
1676 
1677     /*
1678      * Unmask data and generate lHash
1679      */
1680     mbedtls_md_init( &md_ctx );
1681     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1682     {
1683         mbedtls_md_free( &md_ctx );
1684         goto cleanup;
1685     }
1686 
1687     /* seed: Apply seedMask to maskedSeed */
1688     if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1689                           &md_ctx ) ) != 0 ||
1690     /* DB: Apply dbMask to maskedDB */
1691         ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1692                           &md_ctx ) ) != 0 )
1693     {
1694         mbedtls_md_free( &md_ctx );
1695         goto cleanup;
1696     }
1697 
1698     mbedtls_md_free( &md_ctx );
1699 
1700     /* Generate lHash */
1701     if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1702         goto cleanup;
1703 
1704     /*
1705      * Check contents, in "constant-time"
1706      */
1707     p = buf;
1708     bad = 0;
1709 
1710     bad |= *p++; /* First byte must be 0 */
1711 
1712     p += hlen; /* Skip seed */
1713 
1714     /* Check lHash */
1715     for( i = 0; i < hlen; i++ )
1716         bad |= lhash[i] ^ *p++;
1717 
1718     /* Get zero-padding len, but always read till end of buffer
1719      * (minus one, for the 01 byte) */
1720     pad_len = 0;
1721     pad_done = 0;
1722     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1723     {
1724         pad_done |= p[i];
1725         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1726     }
1727 
1728     p += pad_len;
1729     bad |= *p++ ^ 0x01;
1730 
1731     /*
1732      * The only information "leaked" is whether the padding was correct or not
1733      * (eg, no data is copied if it was not correct). This meets the
1734      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1735      * the different error conditions.
1736      */
1737     if( bad != 0 )
1738     {
1739         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1740         goto cleanup;
1741     }
1742 
1743     if( ilen - ( p - buf ) > output_max_len )
1744     {
1745         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1746         goto cleanup;
1747     }
1748 
1749     *olen = ilen - (p - buf);
1750     if( *olen != 0 )
1751         memcpy( output, p, *olen );
1752     ret = 0;
1753 
1754 cleanup:
1755     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1756     mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1757 
1758     return( ret );
1759 }
1760 #endif /* MBEDTLS_PKCS1_V21 */
1761 
1762 #if defined(MBEDTLS_PKCS1_V15)
1763 /** Turn zero-or-nonzero into zero-or-all-bits-one, without branches.
1764  *
1765  * \param value     The value to analyze.
1766  * \return          Zero if \p value is zero, otherwise all-bits-one.
1767  */
all_or_nothing_int(unsigned value)1768 static unsigned all_or_nothing_int( unsigned value )
1769 {
1770     /* MSVC has a warning about unary minus on unsigned, but this is
1771      * well-defined and precisely what we want to do here */
1772 #if defined(_MSC_VER)
1773 #pragma warning( push )
1774 #pragma warning( disable : 4146 )
1775 #endif
1776     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
1777 #if defined(_MSC_VER)
1778 #pragma warning( pop )
1779 #endif
1780 }
1781 
1782 /** Check whether a size is out of bounds, without branches.
1783  *
1784  * This is equivalent to `size > max`, but is likely to be compiled to
1785  * to code using bitwise operation rather than a branch.
1786  *
1787  * \param size      Size to check.
1788  * \param max       Maximum desired value for \p size.
1789  * \return          \c 0 if `size <= max`.
1790  * \return          \c 1 if `size > max`.
1791  */
size_greater_than(size_t size,size_t max)1792 static unsigned size_greater_than( size_t size, size_t max )
1793 {
1794     /* Return the sign bit (1 for negative) of (max - size). */
1795     return( ( max - size ) >> ( sizeof( size_t ) * 8 - 1 ) );
1796 }
1797 
1798 /** Choose between two integer values, without branches.
1799  *
1800  * This is equivalent to `cond ? if1 : if0`, but is likely to be compiled
1801  * to code using bitwise operation rather than a branch.
1802  *
1803  * \param cond      Condition to test.
1804  * \param if1       Value to use if \p cond is nonzero.
1805  * \param if0       Value to use if \p cond is zero.
1806  * \return          \c if1 if \p cond is nonzero, otherwise \c if0.
1807  */
if_int(unsigned cond,unsigned if1,unsigned if0)1808 static unsigned if_int( unsigned cond, unsigned if1, unsigned if0 )
1809 {
1810     unsigned mask = all_or_nothing_int( cond );
1811     return( ( mask & if1 ) | (~mask & if0 ) );
1812 }
1813 
1814 /** Shift some data towards the left inside a buffer without leaking
1815  * the length of the data through side channels.
1816  *
1817  * `mem_move_to_left(start, total, offset)` is functionally equivalent to
1818  * ```
1819  * memmove(start, start + offset, total - offset);
1820  * memset(start + offset, 0, total - offset);
1821  * ```
1822  * but it strives to use a memory access pattern (and thus total timing)
1823  * that does not depend on \p offset. This timing independence comes at
1824  * the expense of performance.
1825  *
1826  * \param start     Pointer to the start of the buffer.
1827  * \param total     Total size of the buffer.
1828  * \param offset    Offset from which to copy \p total - \p offset bytes.
1829  */
mem_move_to_left(void * start,size_t total,size_t offset)1830 static void mem_move_to_left( void *start,
1831                               size_t total,
1832                               size_t offset )
1833 {
1834     volatile unsigned char *buf = start;
1835     size_t i, n;
1836     if( total == 0 )
1837         return;
1838     for( i = 0; i < total; i++ )
1839     {
1840         unsigned no_op = size_greater_than( total - offset, i );
1841         /* The first `total - offset` passes are a no-op. The last
1842          * `offset` passes shift the data one byte to the left and
1843          * zero out the last byte. */
1844         for( n = 0; n < total - 1; n++ )
1845         {
1846             unsigned char current = buf[n];
1847             unsigned char next = buf[n+1];
1848             buf[n] = if_int( no_op, current, next );
1849         }
1850         buf[total-1] = if_int( no_op, buf[total-1], 0 );
1851     }
1852 }
1853 
1854 /*
1855  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1856  */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1857 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1858                                  int (*f_rng)(void *, unsigned char *, size_t),
1859                                  void *p_rng,
1860                                  size_t *olen,
1861                                  const unsigned char *input,
1862                                  unsigned char *output,
1863                                  size_t output_max_len )
1864 {
1865     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1866     size_t ilen, i, plaintext_max_size;
1867     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1868     /* The following variables take sensitive values: their value must
1869      * not leak into the observable behavior of the function other than
1870      * the designated outputs (output, olen, return value). Otherwise
1871      * this would open the execution of the function to
1872      * side-channel-based variants of the Bleichenbacher padding oracle
1873      * attack. Potential side channels include overall timing, memory
1874      * access patterns (especially visible to an adversary who has access
1875      * to a shared memory cache), and branches (especially visible to
1876      * an adversary who has access to a shared code cache or to a shared
1877      * branch predictor). */
1878     size_t pad_count = 0;
1879     unsigned bad = 0;
1880     unsigned char pad_done = 0;
1881     size_t plaintext_size = 0;
1882     unsigned output_too_large;
1883 
1884     RSA_VALIDATE_RET( ctx != NULL );
1885     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1886     RSA_VALIDATE_RET( input != NULL );
1887     RSA_VALIDATE_RET( olen != NULL );
1888 
1889     ilen = ctx->MBEDTLS_PRIVATE(len);
1890     plaintext_max_size = ( output_max_len > ilen - 11 ?
1891                            ilen - 11 :
1892                            output_max_len );
1893 
1894     if( ilen < 16 || ilen > sizeof( buf ) )
1895         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1896 
1897     ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1898 
1899     if( ret != 0 )
1900         goto cleanup;
1901 
1902     /* Check and get padding length in constant time and constant
1903      * memory trace. The first byte must be 0. */
1904     bad |= buf[0];
1905 
1906     /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
1907      * where PS must be at least 8 nonzero bytes. */
1908     bad |= buf[1] ^ MBEDTLS_RSA_CRYPT;
1909 
1910     /* Read the whole buffer. Set pad_done to nonzero if we find
1911      * the 0x00 byte and remember the padding length in pad_count. */
1912     for( i = 2; i < ilen; i++ )
1913     {
1914         pad_done  |= ((buf[i] | (unsigned char)-buf[i]) >> 7) ^ 1;
1915         pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1916     }
1917 
1918     /* If pad_done is still zero, there's no data, only unfinished padding. */
1919     bad |= if_int( pad_done, 0, 1 );
1920 
1921     /* There must be at least 8 bytes of padding. */
1922     bad |= size_greater_than( 8, pad_count );
1923 
1924     /* If the padding is valid, set plaintext_size to the number of
1925      * remaining bytes after stripping the padding. If the padding
1926      * is invalid, avoid leaking this fact through the size of the
1927      * output: use the maximum message size that fits in the output
1928      * buffer. Do it without branches to avoid leaking the padding
1929      * validity through timing. RSA keys are small enough that all the
1930      * size_t values involved fit in unsigned int. */
1931     plaintext_size = if_int( bad,
1932                              (unsigned) plaintext_max_size,
1933                              (unsigned) ( ilen - pad_count - 3 ) );
1934 
1935     /* Set output_too_large to 0 if the plaintext fits in the output
1936      * buffer and to 1 otherwise. */
1937     output_too_large = size_greater_than( plaintext_size,
1938                                           plaintext_max_size );
1939 
1940     /* Set ret without branches to avoid timing attacks. Return:
1941      * - INVALID_PADDING if the padding is bad (bad != 0).
1942      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
1943      *   plaintext does not fit in the output buffer.
1944      * - 0 if the padding is correct. */
1945     ret = - (int) if_int( bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
1946                   if_int( output_too_large, - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
1947                           0 ) );
1948 
1949     /* If the padding is bad or the plaintext is too large, zero the
1950      * data that we're about to copy to the output buffer.
1951      * We need to copy the same amount of data
1952      * from the same buffer whether the padding is good or not to
1953      * avoid leaking the padding validity through overall timing or
1954      * through memory or cache access patterns. */
1955     bad = all_or_nothing_int( bad | output_too_large );
1956     for( i = 11; i < ilen; i++ )
1957         buf[i] &= ~bad;
1958 
1959     /* If the plaintext is too large, truncate it to the buffer size.
1960      * Copy anyway to avoid revealing the length through timing, because
1961      * revealing the length is as bad as revealing the padding validity
1962      * for a Bleichenbacher attack. */
1963     plaintext_size = if_int( output_too_large,
1964                              (unsigned) plaintext_max_size,
1965                              (unsigned) plaintext_size );
1966 
1967     /* Move the plaintext to the leftmost position where it can start in
1968      * the working buffer, i.e. make it start plaintext_max_size from
1969      * the end of the buffer. Do this with a memory access trace that
1970      * does not depend on the plaintext size. After this move, the
1971      * starting location of the plaintext is no longer sensitive
1972      * information. */
1973     mem_move_to_left( buf + ilen - plaintext_max_size,
1974                       plaintext_max_size,
1975                       plaintext_max_size - plaintext_size );
1976 
1977     /* Finally copy the decrypted plaintext plus trailing zeros into the output
1978      * buffer. If output_max_len is 0, then output may be an invalid pointer
1979      * and the result of memcpy() would be undefined; prevent undefined
1980      * behavior making sure to depend only on output_max_len (the size of the
1981      * user-provided output buffer), which is independent from plaintext
1982      * length, validity of padding, success of the decryption, and other
1983      * secrets. */
1984     if( output_max_len != 0 )
1985         memcpy( output, buf + ilen - plaintext_max_size, plaintext_max_size );
1986 
1987     /* Report the amount of data we copied to the output buffer. In case
1988      * of errors (bad padding or output too large), the value of *olen
1989      * when this function returns is not specified. Making it equivalent
1990      * to the good case limits the risks of leaking the padding validity. */
1991     *olen = plaintext_size;
1992 
1993 cleanup:
1994     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1995 
1996     return( ret );
1997 }
1998 #endif /* MBEDTLS_PKCS1_V15 */
1999 
2000 /*
2001  * Do an RSA operation, then remove the message padding
2002  */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)2003 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
2004                        int (*f_rng)(void *, unsigned char *, size_t),
2005                        void *p_rng,
2006                        size_t *olen,
2007                        const unsigned char *input,
2008                        unsigned char *output,
2009                        size_t output_max_len )
2010 {
2011     RSA_VALIDATE_RET( ctx != NULL );
2012     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
2013     RSA_VALIDATE_RET( input != NULL );
2014     RSA_VALIDATE_RET( olen != NULL );
2015 
2016     switch( ctx->MBEDTLS_PRIVATE(padding) )
2017     {
2018 #if defined(MBEDTLS_PKCS1_V15)
2019         case MBEDTLS_RSA_PKCS_V15:
2020             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, olen,
2021                                                 input, output, output_max_len );
2022 #endif
2023 
2024 #if defined(MBEDTLS_PKCS1_V21)
2025         case MBEDTLS_RSA_PKCS_V21:
2026             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, NULL, 0,
2027                                            olen, input, output,
2028                                            output_max_len );
2029 #endif
2030 
2031         default:
2032             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2033     }
2034 }
2035 
2036 #if defined(MBEDTLS_PKCS1_V21)
2037 /*
2038  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
2039  */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2040 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
2041                          int (*f_rng)(void *, unsigned char *, size_t),
2042                          void *p_rng,
2043                          mbedtls_md_type_t md_alg,
2044                          unsigned int hashlen,
2045                          const unsigned char *hash,
2046                          unsigned char *sig )
2047 {
2048     size_t olen;
2049     unsigned char *p = sig;
2050     unsigned char salt[MBEDTLS_MD_MAX_SIZE];
2051     size_t slen, min_slen, hlen, offset = 0;
2052     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2053     size_t msb;
2054     const mbedtls_md_info_t *md_info;
2055     mbedtls_md_context_t md_ctx;
2056     RSA_VALIDATE_RET( ctx != NULL );
2057     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2058                         hashlen == 0 ) ||
2059                       hash != NULL );
2060     RSA_VALIDATE_RET( sig != NULL );
2061 
2062     if( f_rng == NULL )
2063         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2064 
2065     olen = ctx->MBEDTLS_PRIVATE(len);
2066 
2067     if( md_alg != MBEDTLS_MD_NONE )
2068     {
2069         /* Gather length of hash to sign */
2070         md_info = mbedtls_md_info_from_type( md_alg );
2071         if( md_info == NULL )
2072             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2073 
2074         hashlen = mbedtls_md_get_size( md_info );
2075     }
2076 
2077     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->MBEDTLS_PRIVATE(hash_id) );
2078     if( md_info == NULL )
2079         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2080 
2081     hlen = mbedtls_md_get_size( md_info );
2082 
2083     /* Calculate the largest possible salt length. Normally this is the hash
2084      * length, which is the maximum length the salt can have. If there is not
2085      * enough room, use the maximum salt length that fits. The constraint is
2086      * that the hash length plus the salt length plus 2 bytes must be at most
2087      * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
2088      * (PKCS#1 v2.2) §9.1.1 step 3. */
2089     min_slen = hlen - 2;
2090     if( olen < hlen + min_slen + 2 )
2091         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2092     else if( olen >= hlen + hlen + 2 )
2093         slen = hlen;
2094     else
2095         slen = olen - hlen - 2;
2096 
2097     memset( sig, 0, olen );
2098 
2099     /* Generate salt of length slen */
2100     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
2101         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
2102 
2103     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
2104     msb = mbedtls_mpi_bitlen( &ctx->MBEDTLS_PRIVATE(N) ) - 1;
2105     p += olen - hlen - slen - 2;
2106     *p++ = 0x01;
2107     memcpy( p, salt, slen );
2108     p += slen;
2109 
2110     mbedtls_md_init( &md_ctx );
2111     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2112         goto exit;
2113 
2114     /* Generate H = Hash( M' ) */
2115     if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
2116         goto exit;
2117     if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
2118         goto exit;
2119     if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
2120         goto exit;
2121     if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
2122         goto exit;
2123     if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
2124         goto exit;
2125 
2126     /* Compensate for boundary condition when applying mask */
2127     if( msb % 8 == 0 )
2128         offset = 1;
2129 
2130     /* maskedDB: Apply dbMask to DB */
2131     if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
2132                           &md_ctx ) ) != 0 )
2133         goto exit;
2134 
2135     msb = mbedtls_mpi_bitlen( &ctx->MBEDTLS_PRIVATE(N) ) - 1;
2136     sig[0] &= 0xFF >> ( olen * 8 - msb );
2137 
2138     p += hlen;
2139     *p++ = 0xBC;
2140 
2141     mbedtls_platform_zeroize( salt, sizeof( salt ) );
2142 
2143 exit:
2144     mbedtls_md_free( &md_ctx );
2145 
2146     if( ret != 0 )
2147         return( ret );
2148 
2149     return( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
2150 }
2151 #endif /* MBEDTLS_PKCS1_V21 */
2152 
2153 #if defined(MBEDTLS_PKCS1_V15)
2154 /*
2155  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
2156  */
2157 
2158 /* Construct a PKCS v1.5 encoding of a hashed message
2159  *
2160  * This is used both for signature generation and verification.
2161  *
2162  * Parameters:
2163  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
2164  *            MBEDTLS_MD_NONE if raw data is signed.
2165  * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
2166  * - hash:    Buffer containing the hashed message or the raw data.
2167  * - dst_len: Length of the encoded message.
2168  * - dst:     Buffer to hold the encoded message.
2169  *
2170  * Assumptions:
2171  * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
2172  * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
2173  * - dst points to a buffer of size at least dst_len.
2174  *
2175  */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)2176 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
2177                                         unsigned int hashlen,
2178                                         const unsigned char *hash,
2179                                         size_t dst_len,
2180                                         unsigned char *dst )
2181 {
2182     size_t oid_size  = 0;
2183     size_t nb_pad    = dst_len;
2184     unsigned char *p = dst;
2185     const char *oid  = NULL;
2186 
2187     /* Are we signing hashed or raw data? */
2188     if( md_alg != MBEDTLS_MD_NONE )
2189     {
2190         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
2191         if( md_info == NULL )
2192             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2193 
2194         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
2195             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2196 
2197         hashlen = mbedtls_md_get_size( md_info );
2198 
2199         /* Double-check that 8 + hashlen + oid_size can be used as a
2200          * 1-byte ASN.1 length encoding and that there's no overflow. */
2201         if( 8 + hashlen + oid_size  >= 0x80         ||
2202             10 + hashlen            <  hashlen      ||
2203             10 + hashlen + oid_size <  10 + hashlen )
2204             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2205 
2206         /*
2207          * Static bounds check:
2208          * - Need 10 bytes for five tag-length pairs.
2209          *   (Insist on 1-byte length encodings to protect against variants of
2210          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
2211          * - Need hashlen bytes for hash
2212          * - Need oid_size bytes for hash alg OID.
2213          */
2214         if( nb_pad < 10 + hashlen + oid_size )
2215             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2216         nb_pad -= 10 + hashlen + oid_size;
2217     }
2218     else
2219     {
2220         if( nb_pad < hashlen )
2221             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2222 
2223         nb_pad -= hashlen;
2224     }
2225 
2226     /* Need space for signature header and padding delimiter (3 bytes),
2227      * and 8 bytes for the minimal padding */
2228     if( nb_pad < 3 + 8 )
2229         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2230     nb_pad -= 3;
2231 
2232     /* Now nb_pad is the amount of memory to be filled
2233      * with padding, and at least 8 bytes long. */
2234 
2235     /* Write signature header and padding */
2236     *p++ = 0;
2237     *p++ = MBEDTLS_RSA_SIGN;
2238     memset( p, 0xFF, nb_pad );
2239     p += nb_pad;
2240     *p++ = 0;
2241 
2242     /* Are we signing raw data? */
2243     if( md_alg == MBEDTLS_MD_NONE )
2244     {
2245         memcpy( p, hash, hashlen );
2246         return( 0 );
2247     }
2248 
2249     /* Signing hashed data, add corresponding ASN.1 structure
2250      *
2251      * DigestInfo ::= SEQUENCE {
2252      *   digestAlgorithm DigestAlgorithmIdentifier,
2253      *   digest Digest }
2254      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
2255      * Digest ::= OCTET STRING
2256      *
2257      * Schematic:
2258      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
2259      *                                 TAG-NULL + LEN [ NULL ] ]
2260      *                 TAG-OCTET + LEN [ HASH ] ]
2261      */
2262     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2263     *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
2264     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2265     *p++ = (unsigned char)( 0x04 + oid_size );
2266     *p++ = MBEDTLS_ASN1_OID;
2267     *p++ = (unsigned char) oid_size;
2268     memcpy( p, oid, oid_size );
2269     p += oid_size;
2270     *p++ = MBEDTLS_ASN1_NULL;
2271     *p++ = 0x00;
2272     *p++ = MBEDTLS_ASN1_OCTET_STRING;
2273     *p++ = (unsigned char) hashlen;
2274     memcpy( p, hash, hashlen );
2275     p += hashlen;
2276 
2277     /* Just a sanity-check, should be automatic
2278      * after the initial bounds check. */
2279     if( p != dst + dst_len )
2280     {
2281         mbedtls_platform_zeroize( dst, dst_len );
2282         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2283     }
2284 
2285     return( 0 );
2286 }
2287 
2288 /*
2289  * Do an RSA operation to sign the message digest
2290  */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2291 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
2292                                int (*f_rng)(void *, unsigned char *, size_t),
2293                                void *p_rng,
2294                                mbedtls_md_type_t md_alg,
2295                                unsigned int hashlen,
2296                                const unsigned char *hash,
2297                                unsigned char *sig )
2298 {
2299     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2300     unsigned char *sig_try = NULL, *verif = NULL;
2301 
2302     RSA_VALIDATE_RET( ctx != NULL );
2303     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2304                         hashlen == 0 ) ||
2305                       hash != NULL );
2306     RSA_VALIDATE_RET( sig != NULL );
2307 
2308     /*
2309      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
2310      */
2311 
2312     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
2313                                              ctx->MBEDTLS_PRIVATE(len), sig ) ) != 0 )
2314         return( ret );
2315 
2316     /*
2317      * Call respective RSA primitive
2318      */
2319 
2320     /* Private key operation
2321      *
2322      * In order to prevent Lenstra's attack, make the signature in a
2323      * temporary buffer and check it before returning it.
2324      */
2325 
2326     sig_try = mbedtls_calloc( 1, ctx->MBEDTLS_PRIVATE(len) );
2327     if( sig_try == NULL )
2328         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2329 
2330     verif = mbedtls_calloc( 1, ctx->MBEDTLS_PRIVATE(len) );
2331     if( verif == NULL )
2332     {
2333         mbedtls_free( sig_try );
2334         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2335     }
2336 
2337     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
2338     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
2339 
2340     if( mbedtls_safer_memcmp( verif, sig, ctx->MBEDTLS_PRIVATE(len) ) != 0 )
2341     {
2342         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
2343         goto cleanup;
2344     }
2345 
2346     memcpy( sig, sig_try, ctx->MBEDTLS_PRIVATE(len) );
2347 
2348 cleanup:
2349     mbedtls_free( sig_try );
2350     mbedtls_free( verif );
2351 
2352     return( ret );
2353 }
2354 #endif /* MBEDTLS_PKCS1_V15 */
2355 
2356 /*
2357  * Do an RSA operation to sign the message digest
2358  */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2359 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
2360                     int (*f_rng)(void *, unsigned char *, size_t),
2361                     void *p_rng,
2362                     mbedtls_md_type_t md_alg,
2363                     unsigned int hashlen,
2364                     const unsigned char *hash,
2365                     unsigned char *sig )
2366 {
2367     RSA_VALIDATE_RET( ctx != NULL );
2368     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2369                         hashlen == 0 ) ||
2370                       hash != NULL );
2371     RSA_VALIDATE_RET( sig != NULL );
2372 
2373     switch( ctx->MBEDTLS_PRIVATE(padding) )
2374     {
2375 #if defined(MBEDTLS_PKCS1_V15)
2376         case MBEDTLS_RSA_PKCS_V15:
2377             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, md_alg,
2378                                               hashlen, hash, sig );
2379 #endif
2380 
2381 #if defined(MBEDTLS_PKCS1_V21)
2382         case MBEDTLS_RSA_PKCS_V21:
2383             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
2384                                         hashlen, hash, sig );
2385 #endif
2386 
2387         default:
2388             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2389     }
2390 }
2391 
2392 #if defined(MBEDTLS_PKCS1_V21)
2393 /*
2394  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2395  */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)2396 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
2397                                mbedtls_md_type_t md_alg,
2398                                unsigned int hashlen,
2399                                const unsigned char *hash,
2400                                mbedtls_md_type_t mgf1_hash_id,
2401                                int expected_salt_len,
2402                                const unsigned char *sig )
2403 {
2404     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2405     size_t siglen;
2406     unsigned char *p;
2407     unsigned char *hash_start;
2408     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2409     unsigned char zeros[8];
2410     unsigned int hlen;
2411     size_t observed_salt_len, msb;
2412     const mbedtls_md_info_t *md_info;
2413     mbedtls_md_context_t md_ctx;
2414     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2415 
2416     RSA_VALIDATE_RET( ctx != NULL );
2417     RSA_VALIDATE_RET( sig != NULL );
2418     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2419                         hashlen == 0 ) ||
2420                       hash != NULL );
2421 
2422     siglen = ctx->MBEDTLS_PRIVATE(len);
2423 
2424     if( siglen < 16 || siglen > sizeof( buf ) )
2425         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2426 
2427     ret = mbedtls_rsa_public(  ctx, sig, buf );
2428 
2429     if( ret != 0 )
2430         return( ret );
2431 
2432     p = buf;
2433 
2434     if( buf[siglen - 1] != 0xBC )
2435         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2436 
2437     if( md_alg != MBEDTLS_MD_NONE )
2438     {
2439         /* Gather length of hash to sign */
2440         md_info = mbedtls_md_info_from_type( md_alg );
2441         if( md_info == NULL )
2442             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2443 
2444         hashlen = mbedtls_md_get_size( md_info );
2445     }
2446 
2447     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2448     if( md_info == NULL )
2449         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2450 
2451     hlen = mbedtls_md_get_size( md_info );
2452 
2453     memset( zeros, 0, 8 );
2454 
2455     /*
2456      * Note: EMSA-PSS verification is over the length of N - 1 bits
2457      */
2458     msb = mbedtls_mpi_bitlen( &ctx->MBEDTLS_PRIVATE(N) ) - 1;
2459 
2460     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2461         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2462 
2463     /* Compensate for boundary condition when applying mask */
2464     if( msb % 8 == 0 )
2465     {
2466         p++;
2467         siglen -= 1;
2468     }
2469 
2470     if( siglen < hlen + 2 )
2471         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2472     hash_start = p + siglen - hlen - 1;
2473 
2474     mbedtls_md_init( &md_ctx );
2475     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2476         goto exit;
2477 
2478     ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2479     if( ret != 0 )
2480         goto exit;
2481 
2482     buf[0] &= 0xFF >> ( siglen * 8 - msb );
2483 
2484     while( p < hash_start - 1 && *p == 0 )
2485         p++;
2486 
2487     if( *p++ != 0x01 )
2488     {
2489         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2490         goto exit;
2491     }
2492 
2493     observed_salt_len = hash_start - p;
2494 
2495     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2496         observed_salt_len != (size_t) expected_salt_len )
2497     {
2498         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2499         goto exit;
2500     }
2501 
2502     /*
2503      * Generate H = Hash( M' )
2504      */
2505     ret = mbedtls_md_starts( &md_ctx );
2506     if ( ret != 0 )
2507         goto exit;
2508     ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2509     if ( ret != 0 )
2510         goto exit;
2511     ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2512     if ( ret != 0 )
2513         goto exit;
2514     ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2515     if ( ret != 0 )
2516         goto exit;
2517     ret = mbedtls_md_finish( &md_ctx, result );
2518     if ( ret != 0 )
2519         goto exit;
2520 
2521     if( memcmp( hash_start, result, hlen ) != 0 )
2522     {
2523         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2524         goto exit;
2525     }
2526 
2527 exit:
2528     mbedtls_md_free( &md_ctx );
2529 
2530     return( ret );
2531 }
2532 
2533 /*
2534  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2535  */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2536 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2537                            mbedtls_md_type_t md_alg,
2538                            unsigned int hashlen,
2539                            const unsigned char *hash,
2540                            const unsigned char *sig )
2541 {
2542     mbedtls_md_type_t mgf1_hash_id;
2543     RSA_VALIDATE_RET( ctx != NULL );
2544     RSA_VALIDATE_RET( sig != NULL );
2545     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2546                         hashlen == 0 ) ||
2547                       hash != NULL );
2548 
2549     mgf1_hash_id = ( ctx->MBEDTLS_PRIVATE(hash_id) != MBEDTLS_MD_NONE )
2550                              ? (mbedtls_md_type_t) ctx->MBEDTLS_PRIVATE(hash_id)
2551                              : md_alg;
2552 
2553     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, md_alg, hashlen, hash,
2554                                        mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
2555                                        sig ) );
2556 
2557 }
2558 #endif /* MBEDTLS_PKCS1_V21 */
2559 
2560 #if defined(MBEDTLS_PKCS1_V15)
2561 /*
2562  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2563  */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2564 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2565                                  mbedtls_md_type_t md_alg,
2566                                  unsigned int hashlen,
2567                                  const unsigned char *hash,
2568                                  const unsigned char *sig )
2569 {
2570     int ret = 0;
2571     size_t sig_len;
2572     unsigned char *encoded = NULL, *encoded_expected = NULL;
2573 
2574     RSA_VALIDATE_RET( ctx != NULL );
2575     RSA_VALIDATE_RET( sig != NULL );
2576     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2577                         hashlen == 0 ) ||
2578                       hash != NULL );
2579 
2580     sig_len = ctx->MBEDTLS_PRIVATE(len);
2581 
2582     /*
2583      * Prepare expected PKCS1 v1.5 encoding of hash.
2584      */
2585 
2586     if( ( encoded          = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2587         ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2588     {
2589         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2590         goto cleanup;
2591     }
2592 
2593     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2594                                              encoded_expected ) ) != 0 )
2595         goto cleanup;
2596 
2597     /*
2598      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2599      */
2600 
2601     ret = mbedtls_rsa_public( ctx, sig, encoded );
2602     if( ret != 0 )
2603         goto cleanup;
2604 
2605     /*
2606      * Compare
2607      */
2608 
2609     if( ( ret = mbedtls_safer_memcmp( encoded, encoded_expected,
2610                                       sig_len ) ) != 0 )
2611     {
2612         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2613         goto cleanup;
2614     }
2615 
2616 cleanup:
2617 
2618     if( encoded != NULL )
2619     {
2620         mbedtls_platform_zeroize( encoded, sig_len );
2621         mbedtls_free( encoded );
2622     }
2623 
2624     if( encoded_expected != NULL )
2625     {
2626         mbedtls_platform_zeroize( encoded_expected, sig_len );
2627         mbedtls_free( encoded_expected );
2628     }
2629 
2630     return( ret );
2631 }
2632 #endif /* MBEDTLS_PKCS1_V15 */
2633 
2634 /*
2635  * Do an RSA operation and check the message digest
2636  */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2637 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2638                       mbedtls_md_type_t md_alg,
2639                       unsigned int hashlen,
2640                       const unsigned char *hash,
2641                       const unsigned char *sig )
2642 {
2643     RSA_VALIDATE_RET( ctx != NULL );
2644     RSA_VALIDATE_RET( sig != NULL );
2645     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2646                         hashlen == 0 ) ||
2647                       hash != NULL );
2648 
2649     switch( ctx->MBEDTLS_PRIVATE(padding) )
2650     {
2651 #if defined(MBEDTLS_PKCS1_V15)
2652         case MBEDTLS_RSA_PKCS_V15:
2653             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, md_alg,
2654                                                 hashlen, hash, sig );
2655 #endif
2656 
2657 #if defined(MBEDTLS_PKCS1_V21)
2658         case MBEDTLS_RSA_PKCS_V21:
2659             return mbedtls_rsa_rsassa_pss_verify( ctx, md_alg,
2660                                           hashlen, hash, sig );
2661 #endif
2662 
2663         default:
2664             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2665     }
2666 }
2667 
2668 /*
2669  * Copy the components of an RSA key
2670  */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2671 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2672 {
2673     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2674     RSA_VALIDATE_RET( dst != NULL );
2675     RSA_VALIDATE_RET( src != NULL );
2676 
2677     dst->MBEDTLS_PRIVATE(ver) = src->MBEDTLS_PRIVATE(ver);
2678     dst->MBEDTLS_PRIVATE(len) = src->MBEDTLS_PRIVATE(len);
2679 
2680     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(N), &src->MBEDTLS_PRIVATE(N) ) );
2681     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(E), &src->MBEDTLS_PRIVATE(E) ) );
2682 
2683     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(D), &src->MBEDTLS_PRIVATE(D) ) );
2684     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(P), &src->MBEDTLS_PRIVATE(P) ) );
2685     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(Q), &src->MBEDTLS_PRIVATE(Q) ) );
2686 
2687 #if !defined(MBEDTLS_RSA_NO_CRT)
2688     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(DP), &src->MBEDTLS_PRIVATE(DP) ) );
2689     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(DQ), &src->MBEDTLS_PRIVATE(DQ) ) );
2690     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(QP), &src->MBEDTLS_PRIVATE(QP) ) );
2691     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(RP), &src->MBEDTLS_PRIVATE(RP) ) );
2692     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(RQ), &src->MBEDTLS_PRIVATE(RQ) ) );
2693 #endif
2694 
2695     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(RN), &src->MBEDTLS_PRIVATE(RN) ) );
2696 
2697     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(Vi), &src->MBEDTLS_PRIVATE(Vi) ) );
2698     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->MBEDTLS_PRIVATE(Vf), &src->MBEDTLS_PRIVATE(Vf) ) );
2699 
2700     dst->MBEDTLS_PRIVATE(padding) = src->MBEDTLS_PRIVATE(padding);
2701     dst->MBEDTLS_PRIVATE(hash_id) = src->MBEDTLS_PRIVATE(hash_id);
2702 
2703 cleanup:
2704     if( ret != 0 )
2705         mbedtls_rsa_free( dst );
2706 
2707     return( ret );
2708 }
2709 
2710 /*
2711  * Free the components of an RSA key
2712  */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2713 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2714 {
2715     if( ctx == NULL )
2716         return;
2717 
2718     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(Vi) );
2719     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(Vf) );
2720     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(RN) );
2721     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(D)  );
2722     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(Q)  );
2723     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(P)  );
2724     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(E)  );
2725     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(N)  );
2726 
2727 #if !defined(MBEDTLS_RSA_NO_CRT)
2728     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(RQ) );
2729     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(RP) );
2730     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(QP) );
2731     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(DQ) );
2732     mbedtls_mpi_free( &ctx->MBEDTLS_PRIVATE(DP) );
2733 #endif /* MBEDTLS_RSA_NO_CRT */
2734 
2735 #if defined(MBEDTLS_THREADING_C)
2736     mbedtls_mutex_free( &ctx->MBEDTLS_PRIVATE(mutex) );
2737 #endif
2738 }
2739 
2740 #endif /* MBEDTLS_RSA_ALT */
2741 
2742 #endif /* MBEDTLS_RSA_C */
2743